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Minimal time problem for crowd models with localized vector fields

Michel Duprez1 and Morgan Morancey1 and Francesco Rossi2

Abstract— In this work, we study the minimal time to steer
a crowd to a desired configuration. The control is a vector
field, representing a perturbation of the crowd displacement,
localized on a fixed control set. We give a characterization of
the minimal time both for discrete and continuous crowds.

I. INTRODUCTION AND MAIN RESULTS

In recent years, the study of systems describing a crowd

of interacting autonomous agents has drawn a great interest

from the control community. A better understanding of such

interaction phenomena can have a strong impact in several

key applications, such as road traffic and egress problems for

pedestrians. For a few reviews about this topic, see e.g. [1]–

[8]. Beside the description of interactions, it is now relevant

to study problems of control of crowds, i.e. of controlling

such systems by acting on few agents, or on a small subset

of the configuration space.

The nature of the control problem relies on the model used

to describe the crowd. Two main classes are widely used.

In discrete models, the position of each agent is clearly

identified; the crowd dynamics is described by a large di-

mensional ordinary differential equation, in which couplings

of terms represent interactions. For control of such models, a

large literature is available, see e.g. reviews [9]–[11], as well

as applications, both to pedestrian crowds [12], [13] and to

road traffic [14], [15].

In continuous models, instead, the idea is to represent the

crowd by the spatial density of agents; in this setting, the

evolution of the density solves a partial differential equation

of transport type. Nonlocal terms (such as convolutions)

model the interactions between the agents. To our knowledge,

there exist few studies of control of this family of equations.

In [16], the authors provide approximate alignment of a

crowd described by the continuous Cucker-Smale model

[17]. In a similar situation, a stabilization strategy has been

established in [18], [19], by generalizing the Jurdjevic-Quinn

method to partial differential equations.

In this article, we first study a discrete model, where the

crowd is represented by a vector with nd components (n, d ∈
N

∗) representing the positions of n agents in R
d. The natural
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(uncontrolled) vector field is denoted by v : R
d → R

d,

assumed Lipschitz and uniformly bounded. We act on the

vector field in a fixed portion ω of the space, which will be a

nonempty open convex subset of Rd. The admissible controls

are thus functions of the form 1ωu(x, t) : R
d × R

+ → R
d.

We then consider the following discrete model
{

ẋi(t) = (v + 1ωu)(xi(t), t) for a.e. t > 0,

xi(0) = x0
i

(1)

for i ∈ {1, ..., n}, where X0 := {x0
1, ..., x

0
n} is the initial

configuration of the crowd.

We also study a continuous model, where the crowd is

represented by its density, that is a time-evolving measure

µ(t) defined on the space R
d. We consider the same natural

vector field v, control region ω and admissible controls 1ωu.

We then study the following continuous model
{

∂tµ+∇ · ((v + 1ωu)µ) = 0 in R
d × R

+,

µ(·, 0) = µ0 in R
d,

(2)

where µ0 is the initial density of the crowd. The function

v + 1ωu represents the vector field acting on µ.

Systems (1) and (2) are first approximations for crowd

models, since the uncontrolled vector field v is given, and it

does not describe interactions between agents. Nevertheless,

it is necessary to understand control properties for such

simple equations as a first step, before dealing with vector

fields depending on the crowd itself. In a future work, we

will study control problems for crowd models with a non-

local term v[µ], based on the results for systems presented

here.

To a discrete configuration {x1, ..., xn}, we can associate

the empirical measures

µ :=
∑n

i=1
1
nδxi

.

With this notation, System (1) is a particular case of System

(2). This identification will be used several times in the

following, namely to approximate continuous crowds with

discrete ones.

We now recall the notion of approximate and exact

controllability for Systems (1) and (2). We say that they

are approximately controllable from the initial configuration

from µ0 to the final one µ1 on the time interval [0, T ] if we

can steer the solution from µ0 at time 0 to a configuration

at time T as close to the final configuration as we want

with a suitable control 1ωu. Similarly, exact controllability

means that we can steer the solution from µ0 at time 0

exactly to µ1 at time T . In Definition 5 below, we give a



formal definition of the notion of approximate controllability

in terms of Wasserstein distance.

In all this paper, we assume that the following geometric

condition is satisfied:

CONDITION 1.1 (Geometric condition): Let µ0, µ1 be

two probability measures on R
d satisfying:

(i) For each x0 ∈ supp(µ0), there exists t0 > 0 such that

Φv
t0(x

0) ∈ ω, where Φv
t is the flow associated to v (see

Definition 3 below).

(ii) For each x1 ∈ supp(µ1), there exists t1 > 0 such that

Φv
−t1(x

1) ∈ ω.

Condition 1.1 means that particle crosses the control

region. It is the minimal condition that we can expect to

steer any initial condition to any target. Indeed, if Item (i)

of Condition 1.1 is not satisfied, then there exists a whole

subpopulation of the measure µ0 or µ1 that never intersects

the control region, thus we cannot act on it.

We have proved in [20] that if we consider µ0, µ1 two

probability measures on R
d compactly supported, absolutely

continuous with respect to the Lebesgue measure and sat-

isfying Condition 1.1, then there exists T such that System

(2) is approximately controllable at time T from µ0 to µ1

with a control 1ωu : Rd × R
+ → R

d uniformly bounded,

Lipschitz in space and measurable in time.

For arbitrary continuous measures, one can expect approx-

imate controllability only, since for general measures there

exists no homeomorphism sending one to another. Indeed,

if we impose the classical Carathéodory condition of 1ωu
being Lipschitz in space, measurable in time and uniformly

bounded, then the flow Φv+1ωu
t is an homeomorphism (see

[21, Th. 2.1.1]). Similarly, in the discrete case, such control

vector field u cannot separate points, due to uniqueness of the

solution of (1). We then assume that both the configuration

X0 and X1 are disjoint, in the following sense.

DEFINITION 1: A configuration X = {x1, ..., xn} is said

to be disjoint if xi 6= xj for all i 6= j.

Consider the quantity

T ∗ := sup{ti(x) s.t. x ∈ supp(µi) and i = 0, 1},
where, for all x ∈ R

d,
{

t0(x) := inf{t ∈ R
+ : Φv

t (x) ∈ ω},
t1(x) := inf{t ∈ R

+ : Φv
−t(x) ∈ ω}.

In this article, we aim to study the minimal time problem.

We denote by Ta the minimal time to approximately steer

the initial configuration µ0 to a final one µ1 in the following

sense: it is the infimum of times T > T ∗ for which there

exists a control with a control 1ωu : R
d × R

+ → R
d

uniformly bounded, Lipschitz in space and measurable in

time steering µ0 arbitrarily close to µ1. We similarly define

the minimal time Te to exactly steer the initial configuration

µ0 to a final one µ1. Since the minimal time is not always

reached, we will speak about infimum time.

A. Infimum time for discrete crowds

We denote by t0i := t0(x0
i ) and t1i := t1(x1

i ), for i ∈
{1, ..., n}. We now state our first main result.

THEOREM 1.1: (Main result - discrete crowd) Let X0 :=
{x0

1, ..., x
0
n} and X1 := {x1

1, ..., x
1
n} be disjoint config-

urations, satisfying Condition 1.1. Arrange the sequences

{t0i }i and {t1j}j to be increasingly and decreasingly ordered,

respectively. Then the infimum time for exact control of

System (1) satisfies

Te = M(X0, X1) := max
i∈{1,...,n}

|t0i + t1i |. (3)

We give a proof of Theorem 1.1 in Section III. We only

consider the case T > T ∗, that is when all particles of X0

has entered in ω, so we can act on them (idem for X1). When

T ∈ (0, T ∗) or T = M , System (1) can be controllable in

some specific cases only (see [22]).

B. Infimum time for continuous crowds

Introduce the maps F0 and F1 defined for all t > 0 by
{

F0(t) := µ0({x0 ∈ supp(µ0) : t0(x0) 6 t}),
F1(t) := µ1({x1 ∈ supp(µ1) : t1(x1) 6 t}).

The function F0 (resp. F1) gives the quantity of mass

coming from µ0 (resp. the quantity of mass coming from µ1

backward in time) which has entered in ω at time t. Observe

that we do not decrease F0 when the mass eventually leaves

ω, and similarly for F1. Define the generalized inverse

functions F−1
0 and F−1

1 by
{

F−1
0 (m) := inf{t ≥ 0 : F0(t) > m},

F−1
1 (m) := inf{t ≥ 0 : F1(t) > m}.

(4)

The function F−1
0 is increasing, lower semi-continuous and

gives the time at which a mass m has entered in ω, and

similarly for F−1
1 . We then have the following main result

about infimum time in the continuous case:

THEOREM 1.2 (Main result - continuous crowd): Let µ0

and µ1 be two probability measures, with compact support,

absolutely continuous with respect to the Lebesgue measure

and satisfying Condition 1.1. Then the infimum time Ta to

approximately steer µ0 to µ1 is equal to

S(µ0, µ1) := sup
m∈[0,1]

{F−1
0 (m) + F−1

1 (1−m)}. (5)

We give a proof of Theorem 1.2 in Section IV. We observe

that S in (5) is the continuous equivalent of M in (3). As in

the discrete case, for the same reason, we only consider the

case T > T ∗ and T 6= S (see [22, Rem. 5 and 6]).

This paper is organised as follow. In Section II, we

recall basic properties of the Wasserstein distance, ordinary

differential equations and continuity equations. We prove our

main results Theorem 1.1 in Section III and Theorem 1.2 in

Section IV.

II. THE WASSERSTEIN DISTANCE

In this section, we recall some properties of the Wasser-

stein distance and its connections with dynamics (1) and (2).

We denote by Pc(R
d) the space of probability measures in

R
d with compact support.

DEFINITION 2: For µ, ν ∈ Pc(R
d), we denote by

Π(µ, ν) the set of transference plans from µ to ν, i.e. the



probability measures on R
d × R

d with first marginal µ and

second marginal ν. Let p ∈ [1,∞) and µ, ν ∈ Pc(R
d).

Define

Wp(µ, ν) = inf
π∈Π(µ,ν)

(∫∫
Rd×Rd |x− y|pdπ

)1/p

, (6)

W∞(µ, ν) := inf{π − esssup|x− y| : π ∈ Π(µ, ν)}. (7)

This is the idea of optimal transportation, consisting in

finding the optimal way to transport mass from a given

measure to another. For a thorough introduction, see e.g. [23].

These distances satisfy some useful properties.

PROPERTY 2.1 (see [23, Chap. 7] and [24]): For all

µ, ν ∈ Pc(R
d), the infima in (6) or (7) are achieved by at

least one minimizer π ∈ Π(µ, ν).
For p ∈ [1,∞], Wp is a distance on Pc(R

d), called

the Wasserstein distance. Moreover, for p ∈ [1,∞), the

topology induced by the Wasserstein distance Wp on Pc(R
d)

coincides with the weak topology.

The Wasserstein distance with p ∈ [1,+∞) can be

extended to all pairs of measures µ, ν compactly supported

with the same mass |µ| := µ(Rd) = |ν| 6= 0, by the formula

Wp(µ, ν) = |µ|1/pWp(µ/|µ|, ν/|ν|).

In the rest of the paper, the following properties of the

Wasserstein distance will be helpful.

PROPERTY 2.2 (see [23], [25]): Let µ, ρ, ν, η be four

positive measures compactly supported satisfying µ(Rd) =
ν(Rd) and ρ(Rd) = η(Rd). For each p ∈ [1,∞], it holds

W p
p (µ+ ρ, ν + η) 6 W p

p (µ, ν) +W p
p (ρ, η).

Consider the Cauchy problem
{

∂tµ+∇ · (wµ) = 0 in R
d × R

+,

µ(·, 0) = µ0 in R
d,

(8)

where w : R
d × R

+ → R
d. This equation is called the

continuity equation. We now introduce the flow associated

to System (8).

DEFINITION 3: We define the flow associated to the vec-

tor field w as the application (x0, t) 7→ Φw
t (x

0) such that,

for all x0 ∈ R
d, t 7→ Φw

t (x
0) is the solution to

ẋ(t) = w(x(t), t) for a.e. t > 0, x(0) = x0. (9)

We denote by Γ the set of the Borel maps γ : Rd → R
d. We

first recall the definition of the push-forward of a measure

and of the Wasserstein distance.

DEFINITION 4: For a γ ∈ Γ, we define the push-forward

γ#µ of a measure µ of Rd as follows:

(γ#µ)(E) := µ(γ−1(E)),

for every subset E such that γ−1(E) is µ-measurable.

PROPERTY 2.3 (see [25]): Let µ, ν ∈ Pc(R
d) and w :

R
d×R → R

d be a vector field uniformly bounded, Lipschitz

in space and measurable in time with a Lipschitz constant

equal to L. For each t ∈ R and p ∈ [1,∞), it holds

Wp(Φ
w
t #µ,Φw

t #ν) 6 e
(p+1)

p
L|t|Wp(µ, ν). (10)

We denote by “AC measures” the measures which are

absolutely continuous with respect to the Lebesgue measure

and by Pac
c (Rd) the subset of Pc(R

d) of AC measures. We

now recall a standard result linking (8) and (9), known as

the method of characteristics.

THEOREM 2.1 (see [23, Th. 5.34]): Let T > 0, µ0 ∈
Pc(R

d) and w a vector field uniformly bounded, Lipschitz

in space and measurable in time. Then, System (8) admits

a unique solution µ in C0([0, T ];Pc(R
d)), where Pc(R

d) is

equipped with the weak topology. Moreover:

(i) it holds µ(·, t) = Φw
t #µ0;

(ii) if µ0 ∈ Pac
c (Rd), then µ(·, t) ∈ Pac

c (Rd).
We now give the precise notions of approximate control-

lability for System (2) in terms of the Wasserstein distance.

DEFINITION 5: We say that System (2) is approximately

controllable from µ0 to µ1 on the time interval (0, T ) if

for each ε > 0 there exists a control 1ωu such that the

corresponding solution µ to System (2) satisfies

Wp(µ
1, µ(T )) 6 ε.

All the Wasserstein distances Wp are equivalent for p ∈
[1,∞), see [23]. Thus, from now on we study approximate

controllability with the Wasserstein distance W1.

III. INFIMUM TIME IN THE DISCRETE CASE

In this section, we prove Theorem 1.1, i.e. the infimum

time in the discrete case. We first obtain the following result:

PROPOSITION 3.1: Let X0 := {x0
1, ..., x

0
n} ⊂ R

d and

X1 := {x1
1, ..., x

1
n} ⊂ R

d be disjoint, satisfying Condition

1.1. Then the infimum time Te for exact control of (1) is

Te = M̃(X0, X1) := min
σ∈Sn

max
i∈{1,...,n}

|t0i + t1σ(i)|. (11)

Proof: Let T := M̃(X0, X1) + δ with δ > 0. Consider

the sequences {t0i }i∈{1,...,n} and {t1i }i∈{1,...,n} given at the

beginning of Section I-A. For all i ∈ {1, ..., n}, there exist

s0i ∈ (t0i , t
0
i + δ/3) and s1i ∈ (t1i , t

1
i + δ/3) such that

y0i := Φv
s0
i
(x0

i ) ∈ ω and y1i := Φv
−s1

i
(x1

i ) ∈ ω.

For all i, j ∈ {1, ..., n}, we define the cost

Kij :=

{
‖(y0i , s0i )− (y1j , T − s1j)‖Rd+1 if s0i < T − s1j ,
∞ otherwise.

Consider the minimization problem:

inf
π∈Bn

1

n

n∑

i,j=1

Kijπij , (12)

where Bn is the set of the bistochastic n × n matrices, i.e.

the matrices π := (πij)16i,j6n satisfying, for all i, j ∈
{1, ..., n},

∑n
i=1 πij = 1,

∑n
j=1 πij = 1, πij > 0.

Using the definition of M̃(X0, X1), the infimum in (12) is

attained. It is a linear minimization problem on the closed

convex set Bn. Hence, as a consequence of Krein-Milman’s

Theorem (see [26]), the functional (12) admits a minimum

at a extremal point, i.e. a permutation matrix. Let σ be a

permutation, for which the associated matrix minimizes (12).

Consider the linear trajectory yi(t) steering y0i at time s0i



to y1σ(i) at time T − s1σ(i). We now prove by contradiction

that these trajectories have no intersection: Assume that there

are i and j such that the associated trajectories yi(t) and

yj(t) intersect. If we steer x0
i to x0

σ(j) and x0
j to x0

σ(i),

i.e. we consider the permutation Ti,j ◦ σ, where Ti,j is the

transposition between the ith and the jth elements, then the

associated cost (12) is strictly smaller than the cost associated

to σ. This is in contradiction with the fact that σ minimizes

(12). We conclude taking a control u around trajectories of

class C∞ steering X0 to X1.

Assume now that System (1) is exact controllable at a time

T > T ∗. Consider σ the permutation satisfying xi(T ) =

x1
σ(i). Then, using the definition of M̃e(X

0, X1), it holds

T > M̃e(X
0, X1).

Formula (11) leads to the proof of Theorem 1.1.

Proof of Theorem 1.1: Consider M̃(X0, X1) given in (11).

We assume that the sequence {t0i }i∈{1,...,n} is increasingly

ordered. Let σ0 be a minimizing permutation in (11), and k1
such that t1σ0(k1)

is a maximiser of {t1σ0(1)
, ..., t1σ0(n)

}. Since

t01 ≤ t0k1
and t1σ0(1)

≤ t1σ0(k1)
, it holds

max{t01 + t1σ0(1)
, t01 + t1σ0(k1)

, t0k1
+ t1σ0(1)

}
6 t0k1

+ t1σ0(k1)
.

We denote by σ1 := T1,k1 ◦ σ0; it minimizes (11)

too. We build recursively the sequence of permutations

σi+1 = Ti+1,ki+1 ◦ σi, where ki is a maximizer of

{t1σi(i+1), ..., t
1
σi(n)

}. The sequence {t1σn(1)
, ..., t1σn(n)

} is

then decreasing and σn is a minimizing permutation in (11).

We deduce that M̃(X0, X1) = M(X0, X1).

IV. INFIMUM TIME FOR AC MEASURES

In this section, we prove main Theorem 1.2 about infimum

time for AC measures. We first introduce the auxiliary Corol-

lary 4.1 and Proposition 4.1, that are its natural counterparts

for discrete measures. We then prove the main theorem by

discrete approximation.

Let M > 0 be a positive mass, not necessarily 1, and

µ0, µ1 be two disjoint measures given by

µ0 :=
∑n

i=1
M
n δx0

i
and µ1 :=

∑n
i=1

M
n δx1

i
. (13)

It is possible to compute the infimum time to steer µ0 to µ1

up to a small mass.

DEFINITION 6 (Infimum time up to small mass): Let

X0 := {x0
1, ..., x

0
n} ⊂ R

d and X1 := {x1
1, ..., x

1
n} ⊂ R

d

be disjoint, and satisfying Condition 1.1. Let M > 0 and

the corresponding measures µ0 and µ1 defined in (13). Fix

R ∈ {1, ..., n} and ε := MR/n. We define the infimum

time Te,ε to exactly steer µ0 to µ1 (or X0 to X1) up to

a mass ε (or R particles) as the infimum of time T > T ∗

for which there exists a control 1ωu : R
d × R

+ → R
d

uniformly bounded, Lipschitz in space and measurable in

time and σ0, σ1 ∈ Sn such that for all i ∈ {1, ..., n− R} it

holds xσ0(i)(T ) = x1
σ1(i)

.

We use the definition of F0, F1, t0i and t1i , together with

applying Theorem 1.1 to suitable subsets of X0, X1, to have

the following result.

COROLLARY 4.1: Let X0 := {x0
1, ..., x

0
n} ⊂ R

d and

X1 := {x1
1, ..., x

1
n} ⊂ R

d be disjoint, satisfying Condition

1.1, and µ0, µ1 the corresponding measures defined by (13).

Fix ε := MR/n with R ∈ {1, ..., n}. The infimum time Te,ε

to exactly steer µ0 to µ1 up to a mass ε is equal to

Sε(µ
0, µ1) := sup

m∈[0,1−ε]

{F−1
0 (m)+F−1

1 (1−ε−m)}, (14)

where F−1
0 and F−1

1 are given in (4).

Proof: Remark that if the sequences {t0i }i∈{1,...n}

and {t1i }i∈{1,...n} are increasingly and decreasingly ordered

respectively, then for m ∈
(
i−1
n , i

n

)
it holds F−1

0 (m) = t0i
and F−1

1 (1−m) = t1i .

PROPOSITION 4.1: Consider µ0, µ1 ∈ Pac
c (Rd) satisfying

Condition 1.1, sequences {µ0
n}n∈N, {µ1

n}n∈N of measures

compactly supported satisfying Condition 1.1 and two se-

quences of sets {R0
n}n∈N, {R1

n}n∈N of Rd such that




rn := µ0(R0
n) = µ1(R1

n) −→
n→∞

0,

µ0
n(R

d) = µ1
n(R

d) = 1− rn,
d0n := W∞(µ0

|(R0
n)

c , µ0
n) −→

n→∞
0,

d1n := W∞(µ1
|(R1

n)
c , µ1

n) −→
n→∞

0.

Consider the quantity Sε given in (14). Then for all ε, δ > 0,

there exists N ∈ N
∗ such that for all n ≥ N , it holds

(i) S2ε(µ
0
n, µ

1
n) 6 Sε(µ

0, µ1) + δ.
(ii) S2ε(µ

0, µ1) 6 Sε(µ
0
n, µ

1
n) + δ.

Proof: There exists r0n −→
n→∞

0 and r1n −→
n→∞

0 such that

S2ε(µ
0
n, µ

1
n) =

sup
m∈[0,1−rn−2ε]

{F−1
0,n(m) + F−1

1,n(1− rn − 2ε−m)}

6 sup
m∈[0,1−rn−2ε]

{F−1
0 (m+ r0n + rn)

+F−1
1 (1 + r1n − 2ε−m)} + δ

6 sup
m∈[r0n+rn,1+r0n−2ε]

{F−1
0 (m)

+F−1
1 (1 + r1n + r0n + rn − 2ε−m)}+ δ.

Thus, taking n large enough such that r1n + r0n + rn 6 ε, we

deduce Item (i) by using the fact that F−1
1 (m1) 6 F−1

1 (m2),
for all m1 6 m2.

We similarly prove Item (ii).

We now prove Theorem 1.2.

Proof of Theorem 1.2: We first prove Item (i). Fix ε, s > 0.

We prove that we can steer µ0 to a W1-neighbourhood of

µ1 of size ε at time T := S(µ0, µ1) + s. We assume that

d := 2, but the reader will see that the proof can be clearly

adapted to any space dimension. The proof is divided into

four steps.

Step 1: We first discretize uniformly in space the sup-

ports of µ0 and µ1. To simplify the presentation, assume

supp(µ0) ⊂ (0, 1)2 and supp(µ1) ⊂ (0, 1)2. Consider the

sequence of uniform meshes Tn := ∪k∈{0,...,n−1}2Sn,k with

Sn,k := [k1/n, (k1+1)/n)×[k2/n, (k2+1)/n), k := (k1, k2).

Define

S0
n := {x ∈ supp(µ0) : ∃k ∈ {1, ..., n}2

and t∗(x) ∈ (t0(x), t0(x) + s/8)
s.t. x ∈ Sn,k and Φv

t∗(x)(Sn,k) ⊂⊂ ω}.



We similarly construct S1
n. Condition 1.1 implies for l = 0, 1

µl((Sl
n)

c) −→
n→∞

0.

Without loss of generality, we assume µ0(S0
n) = µ1(S1

n).
We now control only µ0

|
S0
n

, that will be sent close to µ1
|
S1
n

.

Step 2: To send a measure to another, these measures need

to have the same total mass. Thus, for each n ∈ N
∗ and k ∈

{1, ..., n}2 such that µ0(Sn,k ∩ S0
n) > 1/n4, we discretize

measures µ0
|Sn,k∩S0

n
and µ1

|Sn,k∩S1
n

with some measures with

the same total mass 1/n4. As illustrated in Figure 1, we

partition Sn,k ∩ S0
n into some subsets {A0

ki}i with A0
ki =

[a0i , a
0
i+1) × (0, 1) such that µ0

|Sn,k∩S0
n
(A0

ki) = 1/n2 and

for all i we partition A0
ki into some subsets {A0

kij}ij with

A0
kij = [a0i , a

0
i+1)× [a0ij , a

0
i(j+1)) such that

µ0
|Sn,k∩S0

n
(A0

kij) = 1/n4.

For more details on such discretization, we refer to [20].

x2

x1

... · · ·
...

...

a0i a0i+1

1/n2

a0ij

a0i(j+1)
1/n4 · · · ...

Fig. 1. Example of a partition of Sn,k with a cell A0

kij
(hashed).

If µ0(Sn,k ∩ S0
n) is not a multiple of 1/n4, it remains a

small mass (smaller than 1/n2) that we do not control. We

discretize similarly the measure µ1 on some sets A1
kij . As in

Figure 2, we then build B0
kij := [b0i , b

0
i+1)×[b0ij , b

0
i(j+1)) ⊂⊂

A0
kij and B1

kij := [b1i , b
1
i+1) × [b1ij , b

1
i(j+1)) ⊂⊂ A1

kij such

that µ0(B0
kij) = µ1(B1

kij) = (n2 − 2)2/n8.

a0i a0i+1

a0ij

a0i(j+1)

b0i b0i+1

b0ij

b0i(j+1)
(n2

− 2)2/n8

Fig. 2. Example of cells B0

kij
(hashed).

Step 3: In this step, we send the mass of µ0 from each

B0
kij ∩S0

n to each B1
k′i′j′ ∩S1

n, while we do not control the

rest of the mass outside B0
kij ∩ S0

n.

We first explain why this rest is negligible. Consider

I0n := {(k, i, j) : µ0(B0
kij ∩ S0

n) > 1/n4}.

We define similarly I1n. Without loss of generality, we can

assume that |I0n| = |I1n|. Indeed, for example in the case

n0 := |I0n| − |I1n| > 0, we remove the n0 last cells in the

set of indices I0n, the total corresponding removed mass is

smaller that 1/n2, then negligible when n → ∞. We define

for l = 0, 1 the sets

Rl
n := R

d\
⋃

kij∈Il
n

(Bl
kij ∩ Sl

n).

We remark that, for l = 0, 1, it holds

µl(Rl
n) 6 1− (n2−2)2

n4 + 2
n2 + µ0((S0

n)
c)

= 6n2−4
n4 + µ0((S0

n)
c) −→

n→∞
0.

We now approximate the measures µl restricted to (Rl
n)

c

(l = 0, 1) by a sum of Dirac masses µl
n defined by

µl
n :=

∑

kij∈Il
n

(n2 − 2)2

n8
δxl

kij
,

where the points xl
kij will be chosen later, to obtain suitable

properties of the measures µl
n. Using the definition of S0

n, for

all n ∈ N
∗ and k ∈ {1, ..., n}2 satisfying µ0(Sn,k∩S0

n) 6= 0,

there exists a square Q0
n,k ⊂ Sn,k ∩S0

n and a time t0n,k such

that for all x ∈ Q0
n,k there exists

t0n,k(x) ∈ (t0(x), t0(x) + s/8)

for which Φv
t0
n,k

(x)
(Sn,k) ⊂⊂ ω. We define x0

kij as the

homothetic transformation of the center of B0
kij from Sn,k

to Q0
n,k. In particular,

t0n,k ∈ (t0(x0
kij), t

0(x0
kij) + s/8). (15)

It is important that points x0
kij satisfy (15). Indeed, in

Theorem 1.1 for the discrete case we act on the particles at

time t0(x0
kij), whereas we want to act on them only at time

t0n,k, i.e. when the cell B0
kij is completely included in ω, so

it will be possible to use the control applied to µ0
n. Thus, the

two times need to be close each other. We similarly build the

points x1
kij . By definition of Sl

n,k, for l ∈ {0, 1}, it holds

W∞(µl
|(Rl

n)
c , µ

l
n) 6

√
2/n −→

n→∞
0. (16)

We remark that the measures µ0, µ1 and the sequences

{µ0
n}n∈N∗ , {µ1

n}n∈N∗ , {R0
n}n∈N∗ and {R0

n}n∈N∗ satisfy the

hypothesis of Proposition 4.1. Since

Sε/4(µ
0, µ1) 6 S(µ0, µ1),

applying Proposition 4.1 for δ := s/2, it holds

Sε/2(µ
0
n, µ

1
n) +

s

2
6 Sε/4(µ

0, µ1) + s 6 S(µ0, µ1) + s = T.

(17)

We now explain how to use (15) to build the control acting on

the Dirac masses only at time t0n,k. Using Corollary 4.1, if we

assume that the sequences {t0(x0
kij)}kij and {t1(x1

kij)}kij
are respectively increasingly and decreasingly ordered, then

Sε/2(µ
0
n, µ

1
n) = max

kij∈{1,...,|I0
n|−M0

n}
|t0(x0

kij) + t1(x1
kij+M0

n
)|,

(18)

where M0
n = ⌈εn8/(n2 − 2)2⌉. Then, (15) implies

tlk,n 6 tlkij(x
l
kij) + s/8.



Assume the sequences {t0k,n}k and {t1k,n}k are respec-

tively increasingly and decreasingly ordered; then, up to

adapt Corollary 4.1, we can prove that the minimal time

T̃e,ε/2(µ
0
n, µ

1
n) to exactly steer µ0

n to µ1
n up to a mass ε/2

but acting on the particle coming from x0
kij only after the

time t0k,n and idem for µ1
n, is equal to

T̃e,ε/2(µ
0
n, µ

1
n) = maxkij∈{1,...,|I0

n|−M0
n}

|t0k,n + t1k,n|
6 maxkij∈{1,...,|I0

n|−M0
n}

|t0(x0
k,n) + t1(x1

kij)|+ s/4.

Combining this estimate with (17), (18) it holds

T̃e,ε/2(µ
0
n, µ

1
n) < T.

Then, there exists a control un such that for the initial data

µ0
n the associated solution µn to System (2) satisfies

W1(µ
1
n, µn(T )) 6 ε/2. (19)

Denoting by σ0 and σ1 the associated permutations, it holds

Φv+1ωun

T (x0
σ0(kij)

) = x1
σ1(kij)

, for all kij ∈ {1, ..., |I0n| −M0
n}.

Since we have no intersection of the trajectories Φun
· (x0

kij)
(see argument given in the proof of Proposition 3.1), there

exist 0 < r < R such that for all t ∈ (t0n,k, T − t1n,k)

Φv+1ωun

t (Br(x
0
kij)) ⊂ Φv+1ωun

t (BR(x
0
kij)) ⊂ ω

and, for all t ∈ (0, T ), it holds

∩kij∈I0
n
Φv+1ωun

t (BR(x
0
kij)) = ∅. If necessary, the

final control un concentrates the mass of µ0
|B0

kij

in

Φv+un

t0
n,k

(Br̃(x
0
kij) ∩Q0

n,k)

in the time interval (t0n,k, t
0
n,k+δ), with δ > 0 small enough.

For details, we refer to [20, Prop. 3.3].

Step 4: We now estimate the Wasserstein distance between

Φv+1ωun

T #µ0 and µ1. Using Property 2.2, it holds

W1(Φ
v+1ωun

T #µ0, µ1) 6 W1(Φ
v+1ωun

T #µ0
|(R0

n)
c , µ1

|(R1
n)

c)

+W1(Φ
v+1ωun

T #µ0
|R0

n
, µ1

|R1
n
). (20)

By triangular inequality, it holds

W1(Φ
v+1ωun

T #µ0
|(R0

n)
c , µ1

|(R1
n)

c))

6 W1(Φ
v+1ωun

T #µ0
|(R0

n)
c ,Φ

v+1ωun

T #µ0
n)

+W1(Φ
v+1ωun

T #µ0
n, µ

1
n) +W1(µ

1
n, µ

1
|(R1

n)
c).

(21)

We now estimate each term in the right-hand side in (21).

Using inequalities (10) and (16), it holds

W1(Φ
v+1ωun

T #µ0
|(R0

n)
c ,Φ

v+1ωun

T #µ0
n) 6 e2LT

√
2/n (22)

W1(µ
1
n, µ

1
|(R0

n)
c) 6 W∞(µ1

n, µ
1
|(R0

n)
c) 6

√
2/n. (23)

Combining (19), (21), (22) and (23), it holds

W1(Φ
v+1ωun

T #µ0
|(R0

n)
c , µ1

|(R1
n)

c)) 6 ε/2 + (1 + e2LT )
√
2/n.

(24)

By Property 2.1, there exists π ∈ Π(Φv+1ωun

T #µ0
|R0

n
, µ1

|R1
n
)

such that

W1(Φ
v+1ωun

T #µ0
|R0

n
, µ1

|R1
n
) =

∫
(0,1)2×(0,1)2 |x− y|dπ(x, y)

6 (2 + T sup |v|)× (6n
2−4
n4 + µ0((S0

n)
c)).

Combining this inequality with (20), (24), we obtain

W1(Φ
v+1ωun

T #µ0, µ1) 6 ε/2 +
√
2(1 + e2LT )/n

+(2 + T sup |v|)(6n2−4
n4 + µ0((S0

n)
c)),

which leads to the conclusion when n → ∞.

We similarly prove Item (ii).
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