Expectile prediction through asymmetric kriging
Véronique Maume-Deschamps, Didier Rullière, Antoine Usseglio-Carleve

To cite this version:
Véronique Maume-Deschamps, Didier Rullière, Antoine Usseglio-Carleve. Expectile prediction through asymmetric kriging. MASCOT NUM 2017 meeting, Mar 2017, Paris, France. <hal-01492754>

HAL Id: hal-01492754
https://hal.archives-ouvertes.fr/hal-01492754
Submitted on 20 Mar 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Kriging (see Krige (1951)) aims at predicting the conditional mean of a random field \((Z_t)_{t \in T}\) given the values \(Z_{t_1}, \ldots, Z_{t_n}\) of the field at some points \(t_1, \ldots, t_n \in T\), where typically \(T \subset \mathbb{R}^d\). It seems natural to predict, in the same spirit as Kriging, other functional fields. In our study, we focus on expectiles for elliptical random fields. We also did a similar work for quantiles (see Maume-Deschamps et al. (2016b)).

Elliptical Distributions

Cambanis et al. (1981) give the representation : the random vector \(X \in \mathbb{R}^d\) is elliptical with parameters \(\mu \in \mathbb{R}^d\) and \(\Sigma \in \mathbb{R}^{d \times d}\), if and only if

\[
X = \mu + R \Lambda U,
\]

where \(\Lambda \Lambda^T = \Sigma,\) \(U \in \mathbb{R}^d\) is a \(d\)-dimensional random vector uniformly distributed on \(S^{d-1}\) (the unit disk of dimension \(d\)), and \(R\) is a non-negative random variable independent of \(U \in \mathbb{R}^d\). Furthermore, \(X\) is said consistent if:

\[
\mathbb{R} \ni X \overset{c}{\sim} \chi^2 (d).
\]

Example Regression

From now on, we consider the following context: \((X(t))_{t \in T}\) is an \(R\)-elliptical random field. We consider \(N\) observations at locations \(t_1, \ldots, t_n \in T\), called \((X(t_1), \ldots, X(t_n))\). In order to predict the value of \(X_0 = X(t)\) given \(X_0 = X(t_1), \ldots, X(t_n)\), we approximate \(X(t)\) by:

\[
\hat{e}_\alpha(X(t)|X_0) = \beta_0 + \beta_1 x_0,
\]

where \(\beta_0\) and \(\beta_1\) are solutions of the following minimization problem:

\[
(\beta_0, \beta_1) = \arg \min \sum_{i=1}^n (y_i - \hat{y}_i)^2.
\]

\[
\hat{y}_i = \beta_0 + \beta_1 x_i.
\]

In the general case, the term \(\frac{2}{2\alpha} \hat{y}_i^2 \alpha X_0\) is difficult to compute. This is why we propose some other predictors.

Expectile Regression

In our context of elliptical random fields, we are able to solve this minimization problem, and then define the Expectile Regression Predictor:

\[
\hat{e}_\alpha(X(t)|X_0) = \mu + \Sigma V_1^\alpha + \frac{1}{\alpha} \xi_{11} \Sigma_1 \Sigma_{12} R \Lambda U.
\]

Furthermore, its distribution

\[
\hat{e}_\alpha(X(t)|X_0) = \hat{e}_\alpha(X(t)|X_0) + \Sigma V_1^\alpha + \frac{1}{\alpha} \xi_{11} \Sigma_1 \Sigma_{12} R \Lambda U.
\]

Extremal expectiles

In this section, the aim is to establish a relation between \(V_\alpha^1\) and \(V_\alpha^2\) for extremal values of \(\alpha\). For that, we do an assumption : their exist \(0 < c < +\infty\) and \(\gamma \in \mathbb{R}\) such as:

\[
\lim_{\alpha \to 1} \frac{1 - V_\alpha^1(x)}{V_\alpha^2(x)} = \gamma
\]

Under this assumption, we can define Extreme Conditional Expectiles Predictors:

\[
\hat{e}_\alpha(X(t)|X_0) = \mu + \Sigma V_1^\alpha + \frac{1}{\alpha} \xi_{11} \Sigma_1 \Sigma_{12} R \Lambda U.
\]