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Abstract

We go on with the study of the solutions to the focusing one dimen-
sional nonlinear Schrödinger equation (NLS). We construct here the thir-
teen’s Peregrine breather (P13 breather) with its twenty four real param-
eters, creating deformation solutions to the NLS equation. New families
of quasi-rational solutions to the NLS equation in terms of explicit ra-
tios of polynomials of degree 182 in x and t multiplied by an exponential
depending on t are obtained. We present characteristic patterns of the
modulus of these solutions in the (x; t) plane, in function of the different
parameters.

PACS : 35Q55, 37K10.
Keywords : NLS equation, Peregrine breather, rogue waves.

1 Introduction

From the first quasi-rational solution to NLS equation constructed in 1983 by
Peregrine [3], a lot of works have carried out. Akhmediev, Eleonskii and Kulagin
obtained the first higher order analogue of the Peregrine breather [4, 5] in 1986
and construted also other families of higher order 3 and 4 were constructed in
a series of articles [6, 7], using Darboux transformations.
Since the years 2010, many works were published using various methods, in
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particular in 2013, it was found in [8] solution in terms of wronskians and in [9],
solutions expressed in terms of determinants of order 2N depending on 2N − 2
real parameters. A new representation has been found as a ratio of a deter-
minant of order N + 1 by another one of order N by Ling and Zhao in [10].
Very recently in 2014, another approach have been given in [11] using a dressing
method where the solutions are expressed as the quotient of a determinant of
order N + 1 by another one of order N .

We construct here new solutions to the focusing one dimensional nonlinear
Schrödinger equation which appear as deformations of the (analogue) Peregrine
breather of order 13 with 24 real parameters. These solutions are completely
expressed as a ratio of two polynomials of degree 182 in x and t by an exponen-
tial depending on t. We cannot give the solutions in terms of polynomials of x
and t in this text because of their lengths; only plots in the (x; t) plane of the
modulus of the solutions to analyze the evolution of the solutions in function of
the different parameters are presented in details here.

2 Solutions to NLS equation as a ratio of two

determinants

We recall the following result which have been proved in [12, 13] :

Theorem 2.1 The function v defined by

v(x, t) =
det((njk)j,k∈[1,2N]

)

det((djk)j,k∈[1,2N]
)
e(2it−iϕ)

is a quasi-rational solution to the NLS equation

ivt + vxx + 2|v|2v = 0,

where

nj1 = fj,1(x, t, 0), njk =
∂2k−2fj,1
∂ǫ2k−2

(x, t, 0),

njN+1 = fj,N+1(x, t, 0), njN+k =
∂2k−2fj,N+1

∂ǫ2k−2
(x, t, 0),

dj1 = gj,1(x, t, 0), djk =
∂2k−2gj,1
∂ǫ2k−2

(x, t, 0),

djN+1 = gj,N+1(x, t, 0), djN+k =
∂2k−2gj,N+1

∂ǫ2k−2
(x, t, 0),

2 ≤ k ≤ N, 1 ≤ j ≤ 2N
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The functions f and g are defined for 1 ≤ k ≤ N by :

f4j+1,k = γ4j−1
k sinAk, f4j+2,k = γ4j

k cosAk,

f4j+3,k = −γ4j+1
k sinAk, f4j+4,k = −γ4j+2

k cosAk,

f4j+1,N+k = γ2N−4j−2
k cosAN+k, f4j+2,N+k = −γ2N−4j−3

k sinAN+k,

f4j+3,N+k = −γ2N−4j−4
k cosAN+k, f4j+4,k = γ2N−4j−5

k sinAN+k,

g4j+1,k = γ4j−1
k sinBk, g4j+2,k = γ4j

k cosBk,

g4j+3,k = −γ4j+1
k sinBk, g4j+4,k = −γ4j+2

k cosBk,

g4j+1,N+k = γ2N−4j−2
k cosBN+k, g4j+2,N+k = −γ2N−4j−3

k sinBN+k,

g4j+3,N+k = −γ2N−4j−4
k cosBN+k, g4j+4,N+k = γ2N−4j−5

k sinBN+k,

(1)

The arguments Aν and Bν of these functions are given for 1 ≤ ν ≤ 2N by

Aν = κνx/2 + iδνt− ix3,ν/2− ieν/2, Bν = κνx/2 + iδνt− ix1,ν/2− ieν/2.

The terms κν , δν , γν are defined by 1 ≤ ν ≤ 2N

κj = 2
√

1− λ2
j , δj = κjλj , γj =

√

1− λj

1 + λj

,

κN+j = κj , δN+j = −δj , γN+j = 1/γj , 1 ≤ j ≤ N,

(2)

where λj are given for 1 ≤ j ≤ N by :

λj = 1− 2j2ǫ2, λN+j = −λj . (3)

The terms xr,ν (r = 3, 1) are defined for 1 ≤ ν ≤ 2N by :

xr,ν = (r − 1) ln
γν − i

γν + i
. (4)

The parameters eν are given by

ej = i
∑N−1

k=1 ajǫ
2k+1j2k+1 −

∑N−1
k=1 bjǫ

2k+1j2k+1,

eN+j = i
∑N−1

k=1 ajǫ
2k+1j2k+1 +

∑N−1
k=1 bjǫ

2k+1j2k+1, 1 ≤ j ≤ N,
(5)

3 Solutions of order 13 with twenty four parame-

ters

We construct here deformations of the Peregrine breather P13 of order 13 de-
pending on 24 parameters. We cannot give the analytic expression of the solu-
tion to NLS equation of order 13 with twenty four parameters because of their
lengths. For simplicity, we denote

d3 := det((njk)j,k∈[1,2N]
), d1 := det((djk)j,k∈[1,2N]

).

In this study, one reaches the current limits of capacity of calculation; all the
explicit expressions were calculated for the parameters ai and bi for indices i
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from 2 to 12. The only expression which was not calculated is that correspond-
ing to i equal to 1 : the calculation of the expression needing 32 core stopped
at the end of 6 months.
On the other hand, one could generate the corresponding images in this case i
equal to 1 without calculating the determinants explicitly.
Calculations are the more long as indices i are close to 1. Precisely for a12,
calculations last approximately 1 hour on 20 cores; for a2, it is approximately
about 3 months on 32 cores.

The number of terms of the polynomials of the numerator d3 and denomi-
nator d1 of the solutions are shown in the table below (Table 1) when other ai
and bi are set to 0.

ai d3 d1
2 1051741 531675
3 559480 282841
4 348403 176084
5 245676 124198
6 183131 92581
7 143053 72324
8 115599 58448
9 94974 48014
10 76243 38529
11 55015 27787
12 30003 15154

Table 1: Number of terms for the polynomials d3 and d1 of the solutions to the
NLS equation in the case N = 13.

We construct figures to show deformations of the Peregrine breather of order
13. We get different types of symmetries in the plots in the (x, t) plane. We
give some examples of this fact in the following discussion.

3.1 Peregrine breather of order 13

If we choose ai = bi = 0 for 1 ≤ i ≤ 10, we obtain the classical thirteenth
Peregrine breather (here, the peak going until 27 has been truncated)
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Figure 1: Solution to NLS, N=13, all parameters equal to 0, Peregrine breather
P13.

3.2 Variation of parameters

With other choices of parameters, we obtain all types of configurations : trian-
gles and multiple concentric rings configurations with a maximum of 91 peaks.
The configuration of the solutions of the NLS equation in the (x; t) plane being
the same for aj or bj , we restrict ourself to present the solutions only in the case
of the parameters aj , for 1 ≤ j ≤ 12. We present figures of deformations with
only one parameter non equal to zero, all other parameters are fixed equal to
zero. For more accuracy, one presents in the following only the views of top.
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Figure 2: Solution to NLS, N=13, a1 = 103 : triangle with 91 peaks, sight from
top.

Figure 3: Solution to NLS, N=13, a2 = 104 : 11 rings with 5, 10, 10, 10, 10, 10,
10, 5, 5, 10, 5 peaks and one peak in the center, sight from top.
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Figure 4: Solution to NLS, N=13, a3 = 106 : 10 rings with 7, 14, 7, 7, 14, 14,
7, 7, 7, 7, peaks, sight from top.

Figure 5: Solution to NLS, N=13, a4 = 108 : 5 rings with 9, 18, 18, 18, 18,
peaks, in the center P4, sight from top.
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Figure 6: Solution to NLS, N=13, a5 = 109 : 7 rings of 11, 11, 22, 11, 11, 11,
11 peaks one peak in he center P2, sight from top.

Figure 7: Solution to NLS, N=13, a6 = 1012 : 7 rings with 13 peaks without
peak in the center, sight of top.
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Figure 8: Solution to NLS, N=13, a7 = 1014 : 6 rings with 15 peaks and in the
center one peak, sight from top.

Figure 9: Solution to NLS, N=13, a8 = 1015 : 5 rings with 17 peaks and in the
center the Peregrine breather of order 3, sight from top.
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Figure 10: Solution to NLS, N=13, a9 = 1019 : 4 rings with 19 peaks and in
the center the Peregrine breather of order 5, sight from top.

Figure 11: Solution to NLS, N=13, a10 = 1020 : three rings with 21 peaks and
in the center the Peregrine breather of order 7, sight from top.
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Figure 12: Solution to NLS, N=13, a11 = 1020 : two rings with 23 peaks and in
the center the Peregrine breather of order 9, sight from top.

Figure 13: Solution to NLS, N=13, a12 = 1020 : one ring with 25 peaks and in
the center the Peregrine breather of order 11, sight from top.
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4 Conclusion

We have given here an explicit construction of multi-parametric solutions to the
NLS equation of order 13 with 24 real parameters. We cannot give the explicit
representation in terms of polynomials of degree 182 in x and t because of his
length. The properties about the shape of the breather in the (x, t) coordinates,
the maximum of amplitude equal to 2N +1 and the degree of polynomials in x
and t here equal to N(N + 1) are checked.
We obtained different patterns in the (x; t) plane by different choices of these
parameters. So we obtain a classification of the rogue waves at order 13.
We obtain two types of patterns : the triangles and the concentric rings for the
same index i for ai or bi non equals to 0.
In the cases a1 6= 0 or b1 6= 0 we obtain triangles with a maximum of 91 peaks;
for a2 6= 0 or b2 6= 0 , we have rings with 5 or 10 peaks. For a3 6= 0 or b3 6= 0,
we obtain rings with 7 or 14 peaks with in the center P2. For a4 6= 0 or b4 6= 0,
we have 5 rings with 9, 18, 18, 19, 18, peaks with in the center the Peregrine
P4. For a5 6= 0 or b5 6= 0 , we have 7 rings of 11, 11, 22, 11, 11, 11, 11 peaks
with in the center P3. For a6 6= 0 or b6 6= 0 , we have 7 rings with 13 peaks on
each of them without peak in the center. For a7 6= 0 or b7 6= 0 , we have 6 rings
with 15 peaks on each of them and in the center the Peregrine breather of order
1 (one peak). For a8 6= 0 or b8 6= 0, we have 5 rings with 17 peaks on each of
them and in the center the Peregrine breather of order 3. For a9 6= 0 or b9 6= 0,
we have 4 rings with 19 peaks and in the center the Peregrine breather of order
5. For a10 6= 0 or b10 6= 0, we have 3 rings with 21 peaks and in the center the
Peregrine breather of order 7. For a11 6= 0 or b11 6= 0, we have only two rings
with 23 peaks and in the center the Peregrine breather of order 9. At least, for
a12 6= 0 or b12 6= 0, we have only one ring with 25 peaks and in the center the
Peregrine breather of order 11.
We verify in this study the following conjectures :
at order N , for a1 6= 0 or b1 6= 0, the modulus of the solution to the

NLS equation presents the configuration of a triangle with N(N+1)/2
peaks; this has been formulated already by different authors, in particular
Akhmediev and Matveev.

at order N , in the case 1 ≤ i ≤ [
N

2
], for aN−i 6= 0 or bN−i 6= 0, the

modulus of the solution to he NLS equation presents i concentric

rings with 2N − 2i+1 peaks and in the center the PN−2i breather; this
conjecture was given for this time by the authors of this paper in 2015.

at order N , in the case [
N

2
] < i ≤ N − 2, for aN−i 6= 0 or bN−i 6= 0,

the modulus of the solution to the NLS equation presents nk rings of

k(2N − 2i+ 1) peaks, for 1 ≤ k ≤ r, rnr(2N − 2i+ 1) < N(N + 1)/2) with
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in the center the PN−2i breather, verifying

r
∑

nk=1

nkk(2N − 2i+ 1) = 2iN − 2i2 + i.

This conjecture was also given for this time by the authors of this paper in
2015.
It would be relevant to prove the preceding conjectures.
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