
HAL Id: hal-01491064
https://hal.science/hal-01491064

Submitted on 16 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical Model-Checking for Autonomous Vehicle
Safety Validation

Benoît Barbot, Béatrice Bérard, Yann Duplouy, Serge Haddad

To cite this version:
Benoît Barbot, Béatrice Bérard, Yann Duplouy, Serge Haddad. Statistical Model-Checking for Au-
tonomous Vehicle Safety Validation. Conference SIA Simulation Numérique, Société des Ingénieurs
de l’Automobile, Mar 2017, Montigny-le-Bretonneux, France. �hal-01491064�

https://hal.science/hal-01491064
https://hal.archives-ouvertes.fr


Statistical Model-Checking for Autonomous Vehicle Safety
Validation

Benoît Barbot4, Béatrice Bérard2,3
, Yann Duplouy1,2

, Serge Haddad2

1: IRT SystemX, Paris-Saclay, France
2: LSV, ENS Paris-Saclay, CNRS, Inria, France

3: Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7606, LIP6, Paris, France
4: LACL, Université Paris Est Créteil

Abstract: We present an application of statistical
model-checking to the verification of an autonomous
vehicle controller. Our goal is to check safety proper-
ties in various traffic situations. More specifically, we
focus on a traffic jam situation.
The controller is specified by a C++ program. Using
sensors, it registers positions and velocities of nearby
vehicles and modifies the position and velocity of the
controlled vehicle to avoid collisions. We model the en-
vironment using a stochastic high level Petri net, where
random behaviors of other vehicles can be described.
We use HASL, a quantitative variant of linear temporal
logic, to express the desired properties. A large fam-
ily of performance indicators can be specified in HASL
and we target in particular the expectation of travelled
distance or the collision probability.
We evaluate the properties of this model using COS-
MOS1. This simulation tool implements numerous sta-
tistical techniques such as sequential hypothesis test-
ing and most confidence range computation methods.
Its efficiency allowed us to conduct several experi-
ments with success.
Keywords: Statistical Model Checking, Simulation,
Autonomous Vehicle, Controller

1. Introduction
Context. Intelligent Transport Systems (ITS) address
the numerous challenges faced by the design of safe
softwares dedicated to (almost) autonomous trans-
portation systems.
Recently several ITS projects aim at providing assis-
tance to drivers and focus on partially automatized
roads. Researchers have first chosen an approach
based on a fully automatized infrastructure (see project
PATH [9]) in the nineties. This approach has been
gradually replaced by a new research direction, more
oriented on strategies to ensure specific properties like
collision avoidance or preserving safety distances [10].
In particular the control of an autonomous vehicle may
be switched between the driver and an automatic con-
troller depending on the traffic situation and the road
structure.

1Statistical Concepts and Tools for Stochastic Models

Goal. This work takes place in the SVA2 project,
hosted by IRT SystemX. Our long term aim is to be
able to verify the controller developped in this project
for a traffic jam situation. As a first step in this direction,
our goal here is to propose a methodology to check
whether in a given situation the controller ensures a
specific property. Such a work raises difficult issues:
(1) the modelling of the environment and the vehicle
requires a careful study to define which parameters
are relevant and (2) the variety of possible incidents
that may occur during the travel triggers a combinatory
explosion that may forbid any verification procedure.
Our approach. From a modelling point of view, we
selected a stochastic high-level Petri net based ap-
proach. Indeed (1) the parallelism induced by the
moves of the cars requires a model able to handle
this feature (hence Petri nets), (2) this model should
manage user-defined data structures and code (hence
high-level Petri nets) and (3) the model should quan-
tify the frequency of the different incidents as well as
the unpredictability of the behaviour of the other cars
(hence stochastic high-level Petri nets).
In order to evaluate performance indicators of stochas-
tic systems there are currently two main approaches.
Numerical methods require to restrict the probability
distributions occurring in the system in order to exhibit
a Markovian-like behaviour. In addition, except in very
particular cases, they cannot handle large scale sys-
tems. Statistical methods are more robust although
they only provide confidence intervals for the perfor-
mance indices. However for most of the applications,
these intervals are sufficient.
Contributions. With the approach described above,
we propose a stochastic high-level Petri net modeling a
traffic jam situation. Besides the probabilistic features
representing the environment, this model takes into ac-
count the control of the autonomous vehicle by a C++
program. It is then given as input to the tool COSMOS,
with two performance indicators: the expected trav-
elled distance and the probability of collision. Using
simulations in various situations, we produce estima-
tions of these indices with confidence intervals.

2Simulation pour la Sécurité du Véhicule Autonome (Simulation
for the Safety of Autonomous Vehicle)

1



We have considered two simple controllers: a basic
one that adjusts its speed on the vehicle preceeding it
without changing its lane and a slightly more evolved
one that may change its lane depending on the situa-
tion. We have taken into account two behaviours for
the other vehicles: either smooth speed changes or
unpredictible ones. Our experimentations have estab-
lished that a small increase in the controller capacities
triggers a large increase about the vehicle safety per-
formances. On the other hand the simulation time that
we observed confirm that our approach is able to man-
age large scale models.
Outline. The modeling formalism is described in Sec-
tion 2 and the case study is presented in Section 3. We
briefly explain the main features of the tool COSMOS in
Section 4 and show our experimental results in Sec-
tion 5. Finally, we present work in progress and per-
spectives in Section 6.

2. Formalism
In this section, we briefly describe the formalisms used
in this work: Petri net variants to represent the model
of the motorway and HASL formulas for the properties.
2.1 Petri nets
A Petri net is a bipartite graph, whose nodes are ei-
ther places or transitions. Places may contain tokens,
and depict the states of the system. Transitions repre-
sent the activities of the system, which correspond to
state changes. Arcs from the input places of a tran-
sition are labeled by a condition on the tokens under
which the transition can be fired. When the transition
is fired (atomically), these tokens are consumed, while
new tokens are produced in the output places of a tran-
sition, again according to the labels of the associated
arcs. A marking is a mapping giving the number of
tokens in each place.

p1

t1

p2

p3

t2

p4

t3

Figure 1: A Petri net

For instance, in the Petri net of Figure 1, the absence of
labels on arcs indicates a default value of 1. From the
initial marking, which can be represented by the vector
(1, 0, 2, 1), transition t2 cannot fire because there is no
token in input place p2, and firing t3 results in marking
(1, 0, 2, 0). On the other hand, from the same initial
marking, sequence t1t2 reaches marking (1, 0, 2, 2).
High-level Petri nets are an extension of Petri nets
where tokens carry information. Data types, called
color sets, are associated with places and transitions
and tokens respect the typing of places. The type of a

transition specifies how it might be fired and is called a
binding (since it binds local variables of the transition
to values, see below).

a

b c

Processes

1 2

Resources
Acquisition

<x>

<y>

<x,y>

(a)

a c

Processes

1

Resources
Acquisition

(b,2)

<x>

<y>

<x,y>

(b)

Figure 2: A high-level Petri net, before and after firing
a transition

For instance, the high-level Petri net of Figure 2 de-
scribes how processes might acquire resources. On
edges, the tokens are described by variables x (a pro-
cess) and y (a resource). In this example, process b
has acquired resource 2 which is represented by the
presence of token (b, 2)) in the rightmost place. It might
have been any other combination of process in {a, b, c}
and resource in {1, 2}.
To further increase the expressiveness of such Petri
nets, we associate C code with some transitions, which
will be executed at the end of the firing process. The
global state of the net is thus defined as a tuple
containing the marking (tokens present in the vari-
ous places of the net) and the current values of the
global variables of the C code. For instance one could
manage a variable count that records the number of
synchronisations between process and resource and
would be incremented by the firing of the transition.
Stochastic high-level Petri nets are a further exten-
sion, where a probabilistic distribution is associated
with each color of a transition, to specify the random
delay between the enabling of the transition and its
possible firing. These distributions can be marking-
dependent and describe the stochastic behaviour of
the model.
Thus the configuration of such a net consists of: (1)
the marking of the net, (2) the values of global C vari-
ables, (3) for any transition binding associated with
an enabled transition firing a scheduled time and (4)
the current simulation time. The configuration change
involves the following stages: (1) determine the next

2



firing among those with the earliest schedule, (2) ad-
vance the simution time, (3) update the marking w.r.t.
the transition firing, (4) delete the disabled transition
firings, and (5) for any newly enabled transition firings
sample its delay distribution in order to get its sched-
ule. The selection of the next transition firing is based
first on the priority of the transitions and in case of mul-
tiple transition firings with same priority by a random
choice related to the transition weights.
The model of the motorway depicted in Figure 4 is an
example of such stochastic high-level Petri net, that will
be explained in more details in Section 3.
2.2 HASL formulas
Properties of such stochastic high-level Petri nets are
specified by performance indices, expressed in the
logic HASL3. A formula of this logic is described by two
components:
• a linear hybrid automaton which is, during execu-

tion, synchronized with the Petri net, in order to
gather additional information, based on the LHA
variables;

• an expression which includes the state variables of
the automaton, path operators (i.e. max,min, last),
alongside with probability operators such as the ex-
pectation over successful runs, or the probability of
a successful run.

Example. We end this section with a toy example il-
lustrating our approach on the computation of an esti-
mation of π by the Monte-Carlo method. The idea is to
select randomly points (x, y) in the square [0, 1]× [0, 1]
and to check if they belong to the quarter disc with
measure π/4 by testing x2 + y2 ≤ 1. Figure 3 de-
picts a simple Petri net with two transitions and a
HASL formula composed of a LHA and the expression
E(last(r)). A trajectory is obtained by synchronizing
the LHA with the Petri net, first on transition e1, then
on e2, producing random values for x (firing delay of e1)
and y (firing delay of e2) respectively. The last value of
r is then 4 if x2 + y2 ≤ 1, leading to one final state and
0 otherwise, leading to the other final state.

3. Case study
The case study concerns a (one way) motorway sec-
tion shared by the controlled vehicle and other vehi-
cles with trajectories that are randomized, but respect
some constraints to keep them realistic. The controller
is given by a C++ program and its goal is to avoid col-
lision for the autonomous vehicle.
3.1 Model of the motorway
As shown in Figure 4, with the controlled vehicle drawn
in red, the motorway section is discretized into cells,
the cell with coordinates (i, j) representing position i
on lane j.
The model of the motorway with vehicles is the

3Hybrid Automata Stochastic Language

1

1

x

y

(a)

UNIF(0,1)

e1

UNIF(0,1)

e2

(b)

ẋ = 1
ẏ = 0

s0

ẋ = 0
ẏ = 1

s1

s2

s3

e1
e2; x2 + y2 ≤ 1; r := 4

e2 ; x2
+ y2

> 1; r := 0

E(LAST(r))

(c)

Figure 3: Computing an approximation of π (a) with a
Petri net (b) and an associated HASL formula (c)

Figure 4: A motorway section

stochastic high-level Petri net depicted in Figure 5, with
parameters the length Npos of the section, the number
Nl of lanes, the maximal speed vmax, and the maxi-
mal number Nveh of vehicles, given by the types of the
tokens.
The execution of the model starts with transition
initGeneration, which is fired only once and pro-
duces the initial configuration (via the dashed arcs).
The orange part handles the behaviour of the con-
trolled vehicle while the blue part handles the other ve-
hicles, represented by tokens in the associated places:
• An environment vehicle is a token of the form
(x, y, ẋ, ẏ) where (x, y) corresponds to the current
cell and (ẋ, ẏ) is the speed vector, composed of hor-
izontal and vertical speed (on each axis, in cells
per time unit). These tokens can be either in place
otherVehicles or in place inProcess when an up-
date is performed.
• The controlled vehicle is a token stored in place
selfVehicle. In addition to the elements used for

3



Temporal sync of simulation steps

Movement of others vehicles
Moving controlled vehicle

Controller call

sim_step1
DIRAC(δ) pri=1

step1

sim_step2
pri=1

step2

sim_step3
pri=1

step3

step4

random_other
pri=2

inProcess

update_other

pri=2

otherVehicles

enter
UNIF (a, b)

exit
x > xmax

pri=2

update_self

pri=2

selfVehicle

Controller

collision

end

x > xmax

< x, y, ẋ, ẏ >

< x, y, ẋ, ẏ >

< x, y, ẋ, ẏ >

< x, y, ẋ, ẏ >

< x, y, ẋ, ẏ >

< x, y, ẋ, ẏ >

< x, y, ẋ, ẏ, ẍ, ÿ >

< x, y, ẋ, ẏ, ẍ, ÿ >

< x, y, ẋ, ẏ >

< x, y, ẋ′, ẏ′, ẍ, ÿ >

< x, y, ẋ, ẏ, ẍ, ÿ >

< x, y, ẋ, ẏ, ẍ, ÿ > < x, y, ẋ, ẏ, ẍ, ÿ >

initialized
initGeneration

C code

C code

C code

C code

C code

Figure 5: Motorway model

other vehicles, its description also includes the ac-
celeration.

The green part of the Petri net controls the differ-
ent phases of the simulation. The model runs quasi-
synchronously, with a time step δ equal to the time
step of the controller. Synchronously, the sim_step1

transition fires for each δ (with the Dirac distribution)
and starts the following process:

• In transition sim_step2, the new position of envi-
ronment vehicles is computed using their current
speed. The new speed is then randomly gener-
ated using a distribution that depends on environ-
ment parameters.

• In transition sim_step3, the new position and speed
of controlled vehicle is computed, using its current
speed and acceleration.

• The last step uses transition Controller which ex-
ecutes the associated C++ program, resulting in the
update of the controlled vehicle acceleration.

Asynchronously, new vehicles are added at the start
of the section, using transition enter. This transition
is equipped with a uniform distribution on interval [a, b]
where a and b are parameters, which influence the load
of the motorway.

The pink part on the right of the model handles the end
of the simulation: either the controlled vehicle reaches
the end of the section, which corresponds to the test
x > xmax, with xmax = Npos or a collision happens
between the controlled vehicle and one of the environ-
ment vehicles.
All informations about the controlled vehicle are given
to the controller, together with a view on the other ve-
hicles modeling the input received from sensors. For
instance, Figure 6 shows a possible realization of this
communication.

← vmax →← vmax →

Figure 6: A possible view of the controller

3.2 Specification of the performance indices
We consider two performance indices: the probability
of collision and the expected distance covered by the
controlled vehicle before collision, if it occurs, or until
the end of the section otherwise.

4



For the first one, we use the HASL formula represented
in the upper part of Figure 7, where T denotes the set
of all transitions of the Petri net in Figure 5. The syn-
chronization implies that the state scol is reached ex-
actly when transition collision is fired in the simula-
tion and the expression PROB means that the value
returned is the probability of reaching scol.
The second performance indice is obtained via the
HASL formula depicted in the bottom part of Figure 7.
With respect to the previous automaton, we add a new
transition reaching state send that will be synchronized
with the transition end of the Petri net, and a vari-
able x that will take the current value of the horizontal
position when the transition is fired. The expression
E(LAST(x)) (expected value of the last value of x)
yields the desired indice.

s0 scol

T \ {collision, end}

collision

PROB

(a)

s0

scol

send

T \ {collision, end}
collision

x := PosF in

end
x := PosMax

E(LAST(x))

(b)

Figure 7: Two HASL formulas (a) for the probability of
collision and (b) for expected travelled distance

4. Cosmos
We now give a brief description of the tool COSMOS
used to compute the performance indices.
4.1 Architecture
COSMOS is a statistical model checker accepting Dis-
crete Event Dynamic System (DEDS) as input mod-
els. In particular COSMOS takes as input several types
of stochastic Petri nets with general distributions. As
shown above in Figures 3 and 7, the specification to
be checked is given as an HASL formula described
by a Linear Hybrid Automaton (LHA) and an expres-
sion. The main algorithm of this tool randomly simu-
lates the DEDS according to its stochastic semantics
and synchronizes it with the execution of the automa-
ton. During the synchronization, it evaluates HASL

expressions. A statistical procedure decides when to
stop the simulation and produces a confidence interval
for a HASL expression.
The tool COSMOS consists of about 22000 lines of C++
code and is freely available at [2] under the Gnu Gen-
eral Public License version 3 (GPLv3). The tool relies
on code generation to perform efficient simulation. It is
divided into three main parts:

1. The parsing and code generation part reads the
input files and the command line to build data
structures for the DEDS and the automaton. Then
optimised C++ code simulating both the behaviors
of the DEDS and the automaton is generated. The
resulting code is compiled by a C++ compiler and
linked with the simulator library. The resulting bi-
nary is the simulator program.

2. The simulator part is a library implementing the al-
gorithm synchronizing the DEDS and the automa-
ton. It also implements the stochastic generation
of events using the pseudo random number gen-
erator provided by the BOOST library and han-
dles these events in an event queue.

3. The server part launches several copies of the
simulator and aggregates their results. Accord-
ing to statistical parameters, a procedure de-
cides whether enough trajectories have been sim-
ulated and stops all simulators when needed.
Then, HASL expressions are evaluated and sev-
eral output files are produced according to op-
tions. The computation of confidence intervals
uses the BOOST library for the computation of
quantiles of the normal distribution function and
binomial distribution.

Several tools interact with COSMOS either by calling it
or by being called by it:

• A C++ compiler is required to build the simulator
from the generated code. Until now, GCC and Clang
have been used.
• When the model is Markovian and the automaton

has no clock, PRISM can be called by the simulator.
In this case a state space generator is used and the
CTMC of the product between the model and the
automaton is given to PRISM. The vector of proba-
bilities computed by PRISM on this model is parsed
by COSMOS. This allows one to use PRISM to com-
pute transient and steady state probabilities.
• The plotter GnuPlot can be called by COSMOS to

produce a graph providing visualization of the re-
sults.
• Several OCaml scripts shipped with COSMOS per-

form benchmark, testing and plotting.

4.2 Application fields
In addition to the statistical model checking of DEDS
on which COSMOS has shown its efficiency (see [1] for
benchmarks with other tools), the particular architec-

5



ture of COSMOS have proven useful in several projects:

• The simulation engine has been specialised to han-
dle simulation of rare events. By altering the sam-
pling of distribution in the simulation algorithm effi-
cient estimations of rare event probability have been
computed [4].

• Thank to the very small footprint of the generated
simulator, COSMOS has been used for the cosimu-
lation of a pacemaker software with a model of the
human heart. The generated simulator was small
enough to fit in the memory of microcontroller on
which live power consumption was measured [5].

• Custom probability distribution defined by polynomi-
als have been used to sample uniform trajectory for
timed automata [3].

4.3 Statistical procedures
We now detail the different statistical procedures pro-
posed by COSMOS for evaluating HASL expression de-
pending on several criteria.

• Sequential hypothesis testing [11]. This proce-
dure checks whether a probability is above a thresh-
old. Parameters of this procedure are the probability
of an error for a positive answer and a negative an-
swer and the width of the indifference region. When
the value of the probability is outside the indifference
interval, the probability of an error is bounded by the
parameter corresponding to the answer.

• Chernoff-Hoeffding bounds [8]. This static
method requires three related parameters, each of
them can be determined by the two others. These
parameters are the interval width, the confidence
level and the number of samples. It outputs a con-
fidence interval whose width satisfies the require-
ment and where the probabilistic guarantee is exact.
It applies to estimate the expectation of a bounded
random variable.

• Chow-Robbins bounds [6]. This sequential
method requires two parameters: the interval width
and the confidence level. It outputs an interval
whose width satisfies the requirement and where
the probabilistic guarantee is asymptotic w.r.t. the
width of the interval. It applies to estimate the ex-
pectation of a random variable, when no known
bound is available.

• Gaussian approximation. This static method re-
quires two parameters. The number of samples has
to be given. The second parameter is either the con-
fidence level or the interval width, one of these de-
termining the other one. It ouputs an interval whose
width satisfies the requirement and where the prob-
abilistic guarantee is asymptotic w.r.t. the number
of samples. It applies to estimate the expectation of
a random variable. It is based on the central limit
theorem.

• Clopper-Pearson bound [7] This static method
computes confidence intervals for binomial distribu-

tions. It takes as input three parameters, the total
number of samples, the confidence level and the
number of successful samples and outputs a con-
fidence interval for the probability of a sample to be
successful.

5. Evaluation
Description. To evaluate our approach we have mod-
elled simple controllers. We first study a basic con-
troller which only aims at monitoring the vehicle in front
of it and aligns its velocity to avoid collision with it.
When there is no vehicle in front of it or if it is far ahead,
this basic controller speeds up until it reaches a max-
imal velocity vmax. Then we study a more advanced
controller which is able to change its lane to take over
the vehicle in front of it. In order to change its lane the
controller monitors vehicles in the two adjacent lanes.
The controller initiates a take over only when the speed
of the vehicle in front of him is slower than the speed
vmax and when there is no vehicle in one of the adja-
cent lanes. In the positive case, the controller goes to
the vehicle-free lane.
We have evaluated the controllers in the environment
described in section 3 with two kinds of behaviours
for other vehicles. One set of experiments in which
all speed changes of other vehicles are smooth, at
each step of simulation vehicles either stay at the same
speed, moderately accelerate (the speed is increased
by 1) or moderately decelerate (the speed is increased
by 1). Those behaviours produce a highly predic-
tive environment making the controller job easier. In
contrast the second set of experiment involves vehi-
cles which speed changes considerably: at each step
of simulation, every vehicle randomly selects a new
speed in a predefined interval.
Evaluation. The first objective of this benchmark is
to compare the performances of the two controllers in
different situations. As explained in Section 3.2, two
performance indices have been measured: the proba-
bility of a collision and the expected covered distance
before collision if any. The second objective is to quan-
tify the influence of these parameters on the simulation
time.
Observation. The results of our simulations are col-
lected in Table 1. For these computations we sim-
ulate a motorway with 2 lanes and 1000 cells. The
controlled vehicle is surrounded by 20 other vehicles
whom speed varies between 3 and 5 cells per step.
More precisely, all vehicles (including the controlled
one) are generated randomly, with an uniform distribu-
tion on both lane and cells (up to the 200th). If a vehicle
is generated on a cell where there is another vehicle,
we generate new values for both lane and cell. We
perform all the simulations on a single machine with
12 Intel Xeon cores using 8 parallel threads.
Comparing the probability of collision between the two

6



Smooth velocity change Aggressive velocity change
Basic Lane-changing Basic Lane-changing

Collision probability 0.838± 0.005 0.023± 0.005 0.847± 0.005 0.022± 0.005
468.51s 36 120 153.41s 6 620 459.67s 34 520 147.94s 6 020

Average distance before collision 267.44± 6.68 102.61± 2.56 282.23± 7.06 106.22± 2.66
71.48s 5 400 4 147 s 169 640 74s 5 480 3 766 s 154 120

Table 1: Evaluation of controllers. For each measure, controller and other vehicle behaviours we provide a 99%
confidence interval of the measure, the time in second require to perform the simulation and the number of simulated
trajectories.

controllers, we observe that the lane changing con-
troller is far better than the basic one: 2.3% probability
of collision vs 83.8% in the smooth environment and
2.2% vs 84.7% it the more aggressive one. We no-
tice that the behaviours of other vehicles do not have a
major impact on the probability of collisions. Similarly,
the average travelled distance before collision is highly
different between the two controllers.
We also have identified several limits of our simulation
which we should overtake to produce more precise re-
sults.
Compared to real vehicles which feature turn signals
and braking lights, there is no communication between
vehicles in our simulation. This prevents the controller
from synchronising its action with those of other ve-
hicles. The behaviours of vehicles on the motorway
should be enhanced to feature some communication.
We observe in table 1 that when the probability of colli-
sions became small, the number of simulation required
to obtain relevant estimates became large. This is
clear when comparing the required time to estimate the
average distance before collision for the two controllers
(71s vs 4147s and 74s vs 3766s). Thus the simulation
could be intractable when the probability of collisions
becomes close to zero. This is a well-known difficulty
in presence of rare event for which several theoretical
techniques and practical tools have been developed in
the literature and can be used to improve this simula-
tion.
In Table 1 we observe that most collisions occurred at
the beginning of the simulation. They occur around cell
104 for the lane changing controller and around cell 275
for the basic one. This shows that the simulation is bi-
ased by its initial state. More reliable results could be
obtained by simulating a sliding window of the motor-
way around the controlled vehicle. Instead of simulat-
ing the controlled vehicle on the entire motorway we
could make the controlled vehicle static in the middle
of a short motorway and simulate all vehicles relatively
to the controlled one.

6. Conclusion
In this work, we conducted with COSMOS several ex-
periments on autonomous vehicle controllers, where
the environment is modeled by a stochastic high level

Petri net. With this model, it is possible to change
easily the parameters of the simulations, producing
different settings for the flow of other vehicles and
their speed. However, the motorway section still cor-
responds to a basic situation.
Therefore, future research directions concern the de-
sign of refined models, where other situations could be
taken into account. This could include for instance the
addition of an emergency lane where the controlled ve-
hicle could be led if there is no other way to avoid col-
lision. Other interesting situations correspond to the
presence of arrival or exit lanes, or of an alredy exist-
ing collision between other vehicles blocking one of the
lanes.
Finally, considering a controller designed with Simulink
would lead to check more elaborated versions of it.

Acknowledgement
This research work has been carried out in the frame-
work of IRT SystemX, Paris-Saclay, France, and there-
fore granted with public funds within the scope of the
French Programme "Investissements d’Avenir".

References
[1] P. Ballarini, B. Barbot, M. Duflot, S. Haddad, and

N. Pekergin. Hasl: A new approach for perfor-
mance evaluation and model checking from con-
cepts to experimentation. Performance Evalua-
tion, 90(0):53 – 77, 2015.

[2] B. Barbot, P. Ballarini, and H. Djafri.
http://www.lsv.ens-cachan.fr/Software/cosmos/.

[3] B. Barbot, N. Basset, M. Beunardeau, and
M. Kwiatkowska. Uniform Sampling for Timed
Automata with Application to Language Inclusion
Measurement. In 13th International Conference
on Quantitative Evaluation of SysTems (QEST
2016), volume 9826 of Lecture Notes in Computer
Science, pages 175–190. Springer, 2016.

[4] B. Barbot, S. Haddad, and C. Picaronny. Coupling
and importance sampling for statistical model
checking. In Proceedings of (TACAS’12), pages
331–346, 2012.

[5] B. Barbot, M. Kwiatkowska, A. Mereacre, and
N. Paoletti. Building Power Consumption Mod-
els from Executable Timed I/O Automata Speci-

7



fications. In 19th ACM International Conference
on Hybrid Systems: Computation and Control
(HSCC 2016), pages 195–204. ACM, 2016.

[6] Y. S. Chow and H. Robbins. On the asymptotic
theory of fixed-width sequential confidence inter-
vals for the mean. The Annals of Mathematical
Statistics, pages 457–462, 1965.

[7] C. Clopper and E. S. Pearson. The use of con-
fidence or fiducial limits illustrated in the case of
the binomial. Biometrika, pages 404–413, 1934.

[8] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the Ameri-
can statistical association, 58(301):13–30, 1963.

[9] R. Horowitz and P. Varaiya. Control design of an
automated highway system. In Proc. of the IEEE
88(7), 2000.

[10] Intelligent Vehicle Initiative. Saving lives through
advanced vehicle safety technology, September
2005.

[11] A. Wald. Sequential tests of statistical hypothe-
ses. The Annals of Mathematical Statistics,
16(2):117–186, 06 1945.

8


