R. Clackdoyle and M. Defrise, Tomographic reconstruction in the 21st century, IEEE Signal Processing Magazine, vol.27, issue.4, pp.60-80, 2010.
URL : https://hal.archives-ouvertes.fr/ujm-00492771

. Stanley-r-deans, The Radon transform and some of its applications, Courier Corporation, 2007.

N. Chetih and Z. Messali, Tomographic image reconstruction using Filtered Back Projection (FBP) and Algebraic Reconstruction Technique (ART), Control, Engineering & Information Technology (CEIT), 2015 3rd International Conference on, pp.1-6, 2015.
DOI : 10.1109/ceit.2015.7233031

S. Rit, D. Sarrut, and L. Desbat, Comparison of analytic and algebraic methods for motion-compensated cone-beam CT reconstruction of the thorax, IEEE Transactions on Medical Imaging, vol.28, issue.10, pp.1513-1525, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00443440

J. Jang-hwan-cho and . Fessler, Regularization designs for uniform spatial resolution and noise properties in statistical image reconstruction for 3-D X-ray CT, IEEE Transactions on Medical Imaging, vol.34, issue.2, pp.678-689, 2015.

T. Goldstein and S. Osher, The Split Bregman method for L1regularized problems, SIAM Journal on Imaging Sciences, vol.2, issue.2, pp.323-343, 2009.
DOI : 10.1137/080725891

G. H. Tony-f-chan, P. Golub, and . Mulet, A nonlinear primal-dual method for Total Variation-based image restoration, SIAM Journal on Scientific Computing, vol.20, issue.6, pp.1964-1977, 1999.

Z. Sathish-ramani, J. Liu, J. Rosen, J. Nielsen, and . Fessler, Regularization parameter selection for nonlinear iterative image restoration and MRI reconstruction using GCV and SURE-based methods, IEEE Transactions on Image Processing, vol.21, issue.8, pp.3659-3672, 2012.

P. Nikolas, A. Galatsanos, and . Katsaggelos, Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation, IEEE Transactions on Image Processing, vol.1, issue.3, pp.322-336, 1992.

L. Wang, A. Mohammad-djafari, N. Gac, and M. Dumitru, Computed tomography reconstruction based on a hierarchical model and variational Bayesian method, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.883-887, 2016.
DOI : 10.1109/icassp.2016.7471802

URL : https://hal.archives-ouvertes.fr/hal-01403784

J. Qi, . Richard, and . Leahy, Resolution and noise properties of MAP reconstruction for fully 3-D PET, IEEE Transactions on Medical Imaging, vol.19, issue.5, pp.493-506, 2000.

. Walter-r-gilks, Markov chain monte carlo

. Dimitris-g-tzikas, C. Aristidis, . Likas, and . Galatsanos, The variational approximation for Bayesian inference, IEEE Signal Processing Magazine, vol.25, issue.6, pp.131-146, 2008.

S. Boyd and L. Vandenberghe, Convex optimization, Cambridge university press, 2004.

J. Willem-jan-palenstijn, J. Batenburg, and . Sijbers, The ASTRA tomography toolbox, 13th International Conference on Computational and Mathematical Methods in Science and Engineering, 2013.