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ABSTRACT: Efficiently detecting DNA sequences within a
limited time is vital for disease screening and public health
monitoring. This calls for a new method that combines high
sensitivity, fast read-out time, and easy manipulation of the
sample, avoiding the extensive steps of DNA amplification,
purification, or grafting to a surface. Here, we introduce photon
cross-correlation spectroscopy as a new method for specific
DNA sensing with high sensitivity in a single-step homoge-
neous solution phase. Our approach is based on confocal dual-
color illumination and detection of the scattering intensities
from individual silver nanoparticles and gold nanorods. In the
absence of the target DNA, the nanoparticles move
independently and their respective scattering signals are
uncorrelated. In the presence of the target DNA, the probe-functionalized gold and silver nanoparticles assemble via DNA
hybridization with the target, giving rise to temporal coincidence between the signals scattered by each nanoparticle. The degree
of coincidence accurately quantifies the amount of target DNA. To demonstrate the efficiency of our technique, we detect a
specific DNA sequence of sesame, an allergenic food ingredient, for a range of concentration from 5 pM to 1.5 nM with a limit of
detection of 1 pM. Our method is sensitive and specific enough to detect single nucleotide deletion and mismatch. With the dual-
color scattering signals being much brighter than fluorescence-based analogs, the analysis is fast, quantitative, and simple to
operate, making it valuable for biosensing applications.
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Polymerase chain reaction (PCR) has made a significant
stride for DNA sensing in bioanalysis and molecular

biology.1,2 However, due to the several steps involved in the
process, PCR is time-consuming and requires experienced
personnel.3,4 Fluorescence-based devices5−7 (microarrays and
molecular beacons) offer an alternative method to reach
quantitative DNA detection, down to the single molecule level,
and without the need for PCR amplification. Unfortunately,
single molecule fluorescence-based techniques are limited by
the weak signals and the poor photostability of typical
fluorescent dyes. Fluorescent microbeads provide one approach
to obtain an intense fluorescence signal, and are particularly
relevant when the microbeads are color-coded and combined to
a flow cytometry device for multiplexed detection as in
Luminex assays.8 However, meeting the needs of future
point-of-care biosensors still requires further simplification in
the assay format, sample manipulation, and optical signal
analysis.9

Noble metal nanoparticles (NPs) are another approach to
obtain an intense optical signal thanks to their large absorption
and scattering cross sections. Typically, the scattered intensity
from a single metal NP can be 106 times higher than a bright
fluorescent dye,10−13 and still feature a perfect photostability.

Metal NPs have thus attracted much attention for molecular
biosensing, leading to DNA colorimetric assays that are
detectable with the naked eye, although with a limited 10 nM
sensitivity.14−16 Their ease of use involving a single mixing step
makes them especially attractive.17−21 As another technique
using metal NPs, local surface plasmon resonance (LSPR)
monitors the spectral shift induced on the scattering or
absorption spectrum induced by the presence of the
analyte.22,23 However, the sensitivity and applicability of
LSPR are limited by the small spectral shifts respective to the
broad width of the plasmon resonance peaks. Recently,
dynamic light scattering (DLS) and two photon photo-
luminescence (TPPL) have been introduced as detection
techniques for NP-based DNA assays.24−26 In DLS, the
presence of target DNA is revealed by an increase in the
apparent average size of the nanoparticles.24,27−30 In TPPL, the
target DNA reduces the distance between nanoparticles,
increasing the plasmon coupling strength and enhancing the
TPPL signal.26 Colorimetric, LSPR, DLS, and TPPL take
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advantage of the bright optical response of metal NP to detect
DNA in a simple single-step workflow. However, all these
techniques are based on ensemble averaging over a large
number of nanoparticles and depend on the distance and the
plasmon coupling between nanoparticles. To improve the
sensitivity toward the picomolar regime and increase the
detection speed, a flow cytometry approach interrogating each
NP individually would be a preferable alternative to detect
scarce NP aggregates and avoid ensemble averaging.
Here, we introduce a novel technique for one-step detection

of specific DNA sequences in homogeneous solution. Our
approach is based on detecting the light intensity scattered by
individual metal NP aggregates at two different wavelengths; we

therefore call it photon cross-correlation spectroscopy
(PhoCCS). Our results achieve a sensitivity of 1 pM without
any DNA amplification by PCR, the detection is specific to a
single nucleotide mismatch or deletion, and only a single
mixing step is required in the process to put together the
solution containing the DNA target and the NPs.
Our approach is schematically represented in Figure 1. The

detection of DNA relies on the self-assembly of two distinct
scattering NPs (silver nanoparticles AgNPs and gold nanorods
AuNRs) mediated via specific based pair recognition between
single strand ss-DNA target and ss-DNA probes anchored to
the NPs surfaces. Two focused laser beams with distinct
wavelengths illuminate the sample solution containing the

Figure 1. Principle of dual-color photon cross-correlation spectroscopy: the sample containing the probe metal nanoparticles is illuminated by two
lasers at different wavelengths (blue and red). The resulting scattering signal is collected for both colors and compared to detect temporal
coincidences between the detection channels. In the presence of the target DNA, nanoparticle probes A and B associate, yielding temporal
coincidence between the detection channels as individual nanoparticle-DNA constructs are sampled across the femtoliter detection volume.

Figure 2. (A) Scanning electron microscope images of the AgNPs and AuNRs. (B) Scattering spectra of AgNPs (blue) and AuNRs (red) showing
the local surface plasmon resonance. The 488 and 633 nm illumination and detection channels are also represented and are optimized to minimize
cross-talk between channels. (C) Intensity time traces recorded for both detection channels on a solution containing only AgNPs (left) or AuNRs
(right). The temporal coincidence K is strictly zero in this case after burst threshold detection has been applied. The horizontal dashed lines
correspond to threshold of 80 counts per ms to remove the background noise and the small crosstalk between channels.
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nanoparticles. The nanoparticles have been carefully chosen so
that each nanoparticle probe predominantly scatters lights at its
respective wavelength. The scattered signal for each wavelength
is measured by a photodetector after passing through a confocal
pinhole to filter the off-focus scattered light. This dual-color
confocal configuration allows monitoring the temporal
evolution of the scattering intensities stemming from individual
nanoparticles and their aggregates within a small 5 fL probe
volume. In the absence of target, the NPs are moving
independently and thus their respective scattering signals are
uncorrelated on the two detectors. Upon addition of target
DNA, AgNPs and AuNRs will become linked to each other,
forming an aggregate.24 Therefore, AgNPs and AuNRs will
diffuse simultaneously across the analysis volume, giving rise to
temporal coincidences between the scattered signals. The level
of correlation between channels then allows specific quantifi-
cation of the amount of target DNA.
We demonstrate the efficiency of PhoCCS by detecting a

specific DNA sequence of sesame, an allergenic food ingredient,
for a range of concentration from 5 pM to 1.5 nM with a limit
of detection of 1 pM and a specificity to single nucleotide
deletion or mismatch. Food allergies are considered by the
WHO among the five most important public health concerns,31

and sesame (Sesamum indicum) allergens have been associated
with particularly severe reactions with a high risk of
anaphylaxis.32 The use of DNA markers to detect the presence
of allergenic ingredients in food is advantageous due to their
higher thermal stability and lower susceptibility to seasonal and
geographical impacts than proteins.33,34

■ MATERIALS AND METHODS
Metal Nanoparticles. Silver nanoparticles and gold nanorods have

been selected,12 and their synthesis is described in the Supporting
Information. The silver nanoparticles AgNPs have a spherical shape
with a diameter of 44 nm ± 5 nm, while the gold nanorods AuNRs
have an average length of 47 nm ± 4 nm and an aspect ratio of 2.2
(Figures 2A and S1). The scattering spectra for pure solutions of each
NP show that AgNPs scatter predominantly blue light (λmax = 430
nm), while AuNRs scatter red light (λmax = 630 nm) with negligible
crosstalk between the 488 and 633 nm detection channels (Figure 2B).
The aspect ratio for the gold nanorods is chosen so as to maximize the
response at 633 nm while minimizing the cross-talk at 488 nm. The

UV−visible extinction spectra confirm that the synthesized NPs are
well-dispersed with a plasmon band around 430 nm for AgNPs and a
longitudinal plasmon band located at 630 nm for AuNRs (Figure S2).

Nanoparticle Modification with DNA. Thiol-functionalized
single-stranded oligonucleotides (probe A and probe B, 100 nmol)
were reduced in 0.3 mL of 100 mM dithiolthreitol (DTT) solution in
10 mM of phosphate buffer (PB) (pH = 7.4), followed by 30 min
incubation. The samples then were loaded onto a freshly purified
sephadex column (NAP-5, GE Healthcare), and eluted with 2.5 mL 10
mM PB. The DNA was quantified by UV−vis spectrometry. The
synthesized nanoparticles were functionalized with DNA. For each
sample, an excess of 3000 purified DNA per nanoparticles was added
to 1 mL of a purified water solution of nanoparticles (∼2 nM), and the
mixture incubated in an unbuffered solution for at least 12 h. Then,
0.1% w/v sodium dodecyl sulfate and 10 mM concentration of PB
were added to the mixtures, and left for 1 h at room temperature.
Afterward, the salt concentration was stepwise increased to 0.01 M of
NaCl, and the samples were incubated overnight. The solutions were
freed of excess DNA by two consecutive centrifugations at 7000 rpm
for 15 min and supernatant exchange. The DNA-NPs were well
dispersed in 10 mM of phosphate buffer, pH = 7.4, and 0.1 M NaCl,
and remained stable for at least one month. Before the DNA detection
method, the salt concentration of both solutions was increased up to
0.5 M NaCl.

Detection Assay. DNA detection was carried out at by adding
0.09 nM of each probe solution and different target DNA
concentrations from 0.005 to 1.5 nM in a final volume of 100 μL of
buffer containing 10 mM phosphate buffer, 0.5 M NaCl, pH = 7.4. All
the hybridization assays were performed after 5 min heating at 95 °C
followed by 30 min of incubation at 65 °C (a discussion about the
effect of temperature and incubation time is presented in the
Supporting Information Figure S3). A 10 μL drop was deposited on
the surface of a glass substrate for analysis. Three separate experiments
were performed for each concentration (n = 3).

Optical Setup. Two-color illumination is obtained by combining
the 488 nm laser beam of a Sapphire 488LP (Coherent) with the 633
nm beam of a helium−neon laser (Melles Griot 25LHP991) using
broadband 50/50 cube beamsplitters (Figure S4). The beams are
focused by a 16×/NA 0.5 objective (Zeiss Plan Neofluar) into the 10
μL droplet containing the sample. The scattered light is collected by
the same objective and focused on 20 μm confocal pinholes optically
conjugated to the focus spot. The detection on each channel is
performed by two avalanche photodiodes (PerkinElmer SPCM-AQR-
13) after a 10 nm bandpass filter centered on the laser line (Thorlabs).
The time trace is recorded with a ALV6000 acquisition card (ALV

Figure 3. Representative intensity time traces and coincidence parameter K on AgNPs−AuNRs mixtures for three different concentrations of DNA
target. The full trace duration is 200 s. Black dashed lines represent the threshold of 80 counts per ms to remove the background noise and the small
crosstalk between channels. Only detection events above this level are considered in the computation of the coincidence parameter.
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GmbH) with 40 ms binning time. The laser powers are set to get
comparable signals on each channel; we use 200 nW at 488 nm and
700 nW at 633 nm.
Coincidence Analysis. We define the coincidence parameter K as

the ratio of the total number of simultaneous detection events on both
channels to the total number of detection events (falling on either
detector). As K is a ratio of the number of binary detection events, it is
independent of the detected intensity and the size of the aggregate.
With this definition, K is always between 0 and 1, and will be 1 for
perfectly correlated signals and 0 for totally uncorrelated. The
coincidence coefficient K is measured over a 200 s trace duration.
We consider only the counts above about a threshold of 80 counts per
ms to remove the background noise and the small crosstalk between
channels.

■ RESULTS AND DISCUSSION

DNA Detection Assay. The concentration of NPs is set to
90 pM as evaluated by UV−visible spectrometry,35 to ensure
that about 0.2 NPs are present in the detection volume on
average. With this low number of particles inside the sampling
volume, the scattering signal from individual NPs can be
monitored as they cross the observation volume, giving rise to
temporal bursts in the scattered intensity (Figure 2C). These
traces again confirm that AgNPs respond predominantly in the
blue detection channel, while AuNRs respond in the red
channel. Importantly, the nearly negligible crosstalk (scattering
of AgNPs into red channel and scattering of AuNRs into blue
channel) can be totally suppressed after applying a threshold
for burst detection, so that strictly no coincidence between
channels is found for pure (AgNPs or AuNRs) samples.
To validate the DNA detection assay, we focus on the

detection of a specific fragment of sesame, an allergenic food
ingredient. The sequences of the 68-mer ss-DNA target and 30-
mer ssDNA probes are given in the Supporting Information
Table S1.
Figure 3 shows representative intensity time traces recorded

on both detection channels for a mixture of AgNPs and AuNRs,
respectively, with no target (control), 0.1 nM and 1 nM of
target. In the absence of target (control), the detected signals
are only weakly correlated, with a residual coincidence
parameter K = (9.7 ± 0.2) × 10−2 stemming from the spurious
simultaneous presence of AgNPs and AuNRs in the confocal
detection volume. The presence of the target allows the
assembly of AgNPs and AuNRs through 25 base pairs
hybridization between the recognition part of the probes and
the target. The signals become correlated and the coincidence
parameter K significantly increases above the background level.

The assembly between AgNPs and AuNRs upon mixing with
target DNA is confirmed by three different independent
methods, using scattering spectroscopy (Figure S5), scanning
electron microscopy (Figure S6), and temporal cross-
correlation analysis (Figure S7). The signal loss when the
temperature for DNA hybridization is elevated above 75 °C is
another additional confirmation (Figure S3A).
To quantify the amount of sesame DNA from the measured

coincidence parameter, we perform a series of experiments with
different known concentrations of target DNA from 5 pM to
1.5 nM (Figure 4). The measurements are taken after DNA
hybridization at 65 °C for 30 min, which appeared to be
optimum in our case (Figure S3). The temporal coincidence
increased gradually with the DNA concentration (Figure 4A),
empirically following a power law with 0.4 exponent in this
concentration range. The limit of detection (LOD) is estimated
by the intercept between this curve and the background level K
= 0.097 plus three times the 0.002 standard deviation estimated
from n = 11 separated experiments (dashed gray line in Figure
4B).36 We obtain a LOD of 1 pM for this work, and many
parameters (NPs concentration, integration time) can be
further optimized to reduce the LOD.

Specificity of the DNA Detection. To examine the
selectivity of the PhoCCS assay, we perform experiments using
base-pairing defects targeting DNA:single base mismatches,
single base deletions, and noncomplementary DNA sequences.
Each single defect (mismatch and deletion) is located at the
center of the specific recognition part of the target with probe
A. The sequences of the targets are summarized in Table S2.
100 pM DNA is analyzed under the same conditions as above.
Figure 5 compares the coincidence parameter K for each defect
sequence with the results obtained for the control (no target)
and for perfectly matched DNA. Without adding any
supplementary preparation step, our data already show a clear
decrease of the temporal coincidence when a single base defect
is considered. The significant 8-fold drop of the standard
deviation demonstrates the capability to detect single base
mismatch or single base deletion. Additionally, noncomple-
mentary DNA strands lead to K values similar to the control,
since no hybridization to the probes occurred.
As metal nanoparticles are used as scatterers, the optical

signal in PhoCCS is bright and perfectly photostable, as
opposed to fluorescence. Moreover, as we rely on coincidence
events above a detection threshold, our approach is
independent of the scattering intensity and the distance and
orientation between nanoparticles. PhoCCS bears some

Figure 4. (A) Evolution of the measured coincidence parameter K (red dots) as a function of the target DNA concentration. All results are expressed
as average ± standard deviation of 3 separated experiments (n = 3). (B) Determination of the limit of detection. The solid gray line indicates the
level for the mean coincidence K in the absence of target DNA (K = 0.097), and the dashed line corresponds to this level plus 3 times the standard
deviation (3 × 0.002 from n = 11 separated experiments).
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conceptual similarity with fluorescence cross-correlation spec-
troscopy (FCCS),37−39 but with a much brighter and
photostable signal enabling to improve both the signal-to-
noise ratio and the sensitivity. The read-out is fast and can be
done in a few seconds. Our detection is based only on the
individual scattering responses of the NPs, and we have
checked that the weak plasmonic coupling between the
nanoparticles to shift the resonance has a negligible influence
on our detection process (Figure S5). This is a strength of our
method over LSPR or TPPL techniques as the readout is
independent of the distance between nanoparticles. Addition-
ally, the scattering spectra in Figure S5 show that the LOD for
LSPR sensing using our constructs would be in the hundreds of
picomolar.
The use of two distinct color channels for illumination and

detection and the confocal detection volume allows one to
efficiently discriminate detection events to reach picomolar
sensitivities even in the presence of a large number of
nonaggregated NPs as an improvement over conventional
DLS approach.24,29 Moreover, as we screen for the occurrence
of temporal coincidence between bursts above a certain
intensity threshold, our approach is not affected by the
absolute scattered intensity and can accommodate a com-
paratively higher background and tolerance for size and shape
dispersion among the nanoparticles.
Importantly, the whole assay is performed in a single mixing

step in solution phase. It does not require any washing or
purification cycle. The readout can be performed immediately
after DNA hybridization without further processing. Moreover,
the hybridization is more efficient in the solution phase than on
a planar surface. In addition, our approach works with very
small sample volumes (10 μL used here). Much lower volumes
can be used as the system is straightforward to integrate with
microfluidic channels. This is a key advantage allowing
reduction of the consumption of reagents and sample, which
is highly valuable in the case of low and rare sample amounts.
The detection can also be performed while a flux is applied to
the solution so as to speed up the diffusion of the probes and
accelerate the measurement acquisition time.

■ CONCLUSION

We have introduced a novel dual-color technique for one-step
detection of specific DNA sequences in homogeneous assay,
with a sensitivity of 1 pM and specificity to single nucleotide
defects. The analysis of the light scattered by the solution is fast,
quantitative, and simple to operate, making it valuable for
bioapplications. The technique is straightforward to integrate
toward point-of-care biosensors, and shows promising pros-
pects for quantitative DNA detection and single nucleotide
polymorphism analysis without requiring DNA amplification.
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