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Abstract. We study Vertex-Reinforced-Random-Walk (VRRW) on a complete
graph with weights of the form w(n) = nα, with α > 1. Unlike for the Edge-
Reinforced-Random-Walk, which in this case localizes a.s. on 2 sites, here we
observe various phase transitions, and in particular localization on arbitrary large
sets is possible, provided α is close enough to 1. Our proof relies on stochastic
approximation techniques. At the end of the paper, we also prove a general result
ensuring that any strongly reinforced VRRW on any bounded degree graph localizes
a.s. on a finite subgraph.

1. Introduction

This paper considers a Vertex-Reinforced Random Walk (VRRW) on a finite
complete graph with weights wα(n) := (n + 1)α in the strongly reinforced regime
α > 1.

Such a process is a discrete time random process (Xn)n≥0 living in E={1, . . . , N}
and such that for all n ≥ 0 and j ∈ E,

P(Xn+1 = j | Fn) =
wα(Zn(j))∑

k 6=Xn
wα(Zn(k))

1{Xn 6=j},

where Zn(j) :=
∑n

`=0 1{X`=j} is the number of jumps to site j before time n, and
Fn = σ(Xk; k ≤ n).
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The linear regime (i.e α = 1) has been initially introduced by Pemantle (1992) on
a finite graph and then extensively studied for different type of graphs by several
authors (Pemantle and Volkov (1999); Tarrès (2004); Volkov (2006); Limic and
Volkov (2010); Benaïm and Tarrès (2011)).

The main result of the present paper is the following:

Theorem 1.1. Let N ≥ 2 and α > 1 be given. Then the following properties hold.
(i) With probability one there exists 2 ≤ ` ≤ N , such that (Xn) visits exactly

` sites infinitely often, and the empirical occupation measure converges to-
wards the uniform measure on these ` sites.

(ii) Let 3 ≤ k ≤ N. If α > (k − 1)/(k − 2), then the probability to visit strictly
more than k − 1 sites infinitely often is zero.

If α < (k−1)/(k−2), then for any 2 ≤ ` ≤ k, the probability that exactly
` sites are visited infinitely often is positive.

This result has to be compared with the situation for Edge Reinforced Random
Walks (ERRW). Limic (2003) (see also Limic and Tarrès (2007)), proved that for
any α > 1, and for any free loops graph with bounded degree, the ERRW with
weight wα visits only 2 sites infinitely often. It has also to be compared to the
situation on the graph Z, where for any α > 1, the VRRW with weights (wα(n))
visits a.s. only 2 sites infinitely often.

It might be interesting to notice also that when we add one loop to each site, i.e.
when at each step, independently of the actual position of the walk, the probabil-
ity to jump to some site i is proportional to wα(Zn(i)), then Rubin’s construction
(see Davis (1990)) immediately shows that the walk visits a.s. only one site infin-
itely often. In fact with our techniques we can study a whole family of processes
which interpolate between these two examples: for c ≥ 0, consider the process with
transitions probabilities given by

P(Xn+1 = j | Fn) =
wα(Zn(j))1{Xn 6=j} + cwα(Zn(j))1{Xn=j}∑

k 6=Xn
wα(Zn(k)) + cwα(Zn(Xn))

,

with the same notation as above. The case c = 0 corresponds to the VRRW on a free
loop complete graph, and the case c = 1 corresponds to the VRRW on a complete
graph with loops. Then for any c ≥ 1, the process visits a.s. only 1 site infinitely
often, and when c ∈ (0, 1), various phase transitions occur, exactly as in Theorem
1.1, except that the critical values are this time equal to [k− (1− c)]/[k− 2(1− c)],
for 2 ≤ k ≤ N and localization on 1 site is always possible and occurs even a.s.
when α > (1+ c)/(2c). Since the proofs of these results are exactly similar as those
for Theorem 1.1, we will not give further details here.

Finally let us observe that similar phase transitions as in Theorem 1.1 have
been observed in some random graphs models, see for instance Chung et al. (2003);
Oliveira and Spencer (2005).

The paper is organised as follows. In the next two sections we prove some general
results for VRRW with weight wα, on arbitrary finite graphs, which show that in
the good cases a.s. the empirical occupation measure of the walk converges a.s.
to linearly stable equilibria of some ordinary differential equation. In section 4 we
study in detail the case of a complete graph, we describe precisely the set of linearly
stable equilibria in this case, and deduce our main result, Theorem 1.1. Finally in
the last section we prove a general result ensuring that strongly reinforced VRRWs
on arbitrary bounded degree graphs localize a.s. on a finite subset.
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2. A general formalism for VRRW

We present here a general and natural framework for studying VRRW based on
the formalism and results introduced in Benaïm (1997) and Benaïm and Raimond
(2010). Such a formalism heavily relies on stochastic approximation technics and
specifically the dynamical system approach developed in Benaïm (1999).

Let A = (Ai,j)i,j≤N be a N × N symmetric matrix with nonnegative entries.
We assume that Ai,j > 0 for i 6= j, and that

∑
j Ai,j does not depend on i. Let

α > 1 be given. We consider the process (Xn)n≥0 living in E = {1, . . . , N}, with
transition probabilities given by

P(Xn+1 = j | Fn) =
AXn,j(1 + Zn(j))

α∑
k≤N AXn,k(1 + Zn(k))α

,

where Zn is defined like in the introduction. The case of the VRRW on a complete
graph is obtained by taking

Ai,j = 1− δij . (2.1)
For i ≤ N , set vn(i) = Zn(i)/(n + 1). Note that if Ai,i = 0 and Xk = i then
Xk+1 6= i. In particular for any such i, and n ≥ 1, vn(i) ≤ (1/2+ 1/(n+1)) ≤ 3/4.
In other words, for all n ≥ 1, vn belongs to the reduced simplex

∆ :=

{
v ∈ RN

+ : vi ≤ 3/4 if Aii = 0 and
∑
i

vi = 1

}
.

In the following, we might sometimes view an element f = (fi)i≤N ∈ RN as a
function on E, and so we will also use the notation f(i) for fi.

Now for ε ∈ [0, 1] and v ∈ ∆ we let K(ε, v) denote the transition matrix defined
by

Ki,j(ε, v) :=
Ai,j(ε+ vj)

α∑
k Ai,k(ε+ vk)α

, (2.2)

for all i, j ≤ N. To shorten notation we let

K(v) := K(0, v). (2.3)

Two obvious, but key, observations are that

P(Xn+1 = j | Fn) = KXn,j((n+ 1)−1, vn)),

and
lim
n→∞

K((n+ 1)−1, v) = K(v).

Hence, relying on Benaïm (1997) and Benaïm and Raimond (2010), the behavior
of (vn) can be analyzed through the ordinary differential equation v̇ = −v + π(v),
where π(v) is the invariant probability measure of the Markov chain with transition
matrix K(v).

3. The limit set theorem

3.1. The limiting differential equation and its equilibria. For v ∈ ∆, set vα =
(vα1 , . . . , v

α
N ), and

H(v) :=
∑
i,j

Ai,jv
α
i v

α
j = 〈Avα, vα〉. (3.1)
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Note that H is positive on ∆. Hence one can define

πi(v) =
vαi (Av

α)i
H(v)

, i = 1, . . . , N.

From the relation
vαj (Av

α)iKi,j(v) = Ai,jv
α
i v

α
j ,

it follows that K(v) is reversible with respect to π(v).
For r = 0, 1 set Tr∆ =

{
v ∈ RN :

∑
i vi = r

}
and let ı : T1∆ → ∆ be the map

defined by ı(v) = argmin{‖y − v‖ : y ∈ ∆}. Since ∆ is convex ı is a Lipschitz
retraction from T1∆ onto ∆.

Let now F : T1∆ → T0∆ be the vector field defined as

F (v) = −v + π(ı(v)). (3.2)

Note that F is Lipschitz. Thus by standard results, F induces a global flow Φ :
R × T1∆ → T1∆ where for all x ∈ T1∆, t 7→ Φ(t, x) := Φt(x) is the solution to
v̇ = F (v) with initial condition v(0) = x.

For any subset I ⊂ {1, . . . , N}, we let

∆I := {v ∈ ∆ : vi = 0 ∀i ∈ E \ I},

denote the I-face of ∆. We let int∆I = {v ∈ ∆I : vi > 0 ∀i ∈ I} denote the
(relative) interior of ∆I . For v ∈ ∆ we let supp(v) = {i ∈ E : vi 6= 0}, so that v
always lies in the supp(v)-face of ∆.

Lemma 3.1. The flow Φ leaves ∆ positively invariant: ∀t ≥ 0, Φt(∆) ⊂ ∆; and
for each I ⊂ E, the face ∆I is locally invariant: ∀v ∈ ∆I , ∀t ∈ R, Φt(v) ∈ ∆ ⇔

Φt(v) ∈ ∆I .

Proof : For all v ∈ ∆, π(v) lies in ∆. Indeed for the Markov chain having transition
matrix K(v) the empirical occupation measure lies in ∆ and by the ergodic theorem
(for finite Markov chains) the same is true for π(v). Hence F (v) points inward ∆
for all v ∈ ∆, proving that ∆ is positively invariant. Since Fi(v) = 0 when vi = 0,
each face is locally invariant. �

Let
C = {v ∈ ∆ : F (v) = 0},

denote the equilibria set of F . Relying on stochastic approximation theory Benaïm
(1997, 1999); Benaïm and Raimond (2010) it will be shown below (Proposition 3.5)
that (vn, n ≥ 1) converges almost surely to C.

The next result is similar to the case α = 1 (see for instance Pemantle (1992)):

Lemma 3.2. The map H : ∆ → R is a strict Lyapunov function, meaning that
〈∇H(v), F (v)〉 is positive for all v ∈ ∆ \ C.

Proof : One has ∂iH(v) = 2αvα−1
i (Avα)i. Thus

〈∇H(v), F (v)〉 =
∑
i

2αvα−1
i (Avα)i

(
−vi +

vαi (Av
α)i

H(v)

)

=
2α

H(v)

(
−
(∑

i

vα−1
i (Avα)ivi

)2
+
∑
i

(
vα−1
i (Avα)i

)2
vi

)
≥ 0,
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with equality only when vα−1
i (Avα)i does not depend on i ∈ supp(v), i.e. only

when v is an equilibrium. �

Remark 3.3. The barycenter v = (1/N, . . . , 1/N) is always an equilibrium.

Lemma 3.4. H(C) has empty interior.

Proof : The computation of ∂iH(v) shows that

(∂i − ∂j)H(v) = 2α(vα−1
i (Avα)i − vα−1

j (Avα)j).

Hence, for all v in the relative interior of ∆, F (v) = 0 ⇔ ∇H(v) = 0. In other word
C ∩ int∆ = ∇H−1(0) ∩ int∆. By Sard’s theorem, it follows that H(C ∩ int∆) has
measure zero, hence empty interior. Similarly, for each face I, H(C ∩ int∆I) has
empty interior. This proves the lemma. �

Proposition 3.5. The set of limit points of (vn) is a connected subset of C.

Proof : By proposition 3.3 and Theorem 3.4 in Benaïm (1997) or Proposition 4.6
in Benaïm and Raimond (2010), we get that the limit set of (v(n)) is an internally
chain transitive set for Φ. Since H is a strict Lyapunov function and H(C) has
empty interior, it follows from Proposition 6.4 in Benaïm (1999) that such a limit
set is contained in C. �

In particular, when all the equilibria of F are isolated, then vn converges a.s.
toward one of them, as n→ ∞.

Remark 3.6. When A is not symmetric, the convergence result given by Proposition
3.5 fails to hold. Indeed, an example is constructed in Benaïm (1997) with N = 3
and α = 1 for which the limit set of (vn)n≥1 equals ∂∆. This behavior persists for
α = 1 + ε and ε > 0 small enough.

3.2. Stable and unstable equilibria. An equilibrium v is called linearly stable pro-
vided all the eigenvalues of DF (v), the differential of F at point v, have negative
real parts. It is called linearly unstable if one of its eigenvalues has a positive real
part.

Now we will see with the next result that to study the stability or instability of
the equilibria, it suffices in fact to consider only those which belong to the interior
of ∆. In the following we let (e1, . . . , eN ) denote the canonical basis of RN .

Lemma 3.7. Let v be an equilibrium. Then, for i, j ∈ supp(v), we have

Dei−ejF (v) = (α− 1)(ei − ej) + α
∑
`

vα` (A`,iv
α−1
i −A`,jv

α−1
j )

H(v)
e`,

and for i /∈ supp(v),
Dei−vF (v) = −(ei − v).

Furthermore, the eigenvalues of DF (v) are all reals.

Proof : For any i, j ≤ N , and v ∈ ∆,

∂j(Av
α)i = αAi,jv

α−1
j ,

and then by using that A is symmetric, we get

∂jH(v) = 2αvα−1
j (Avα)j .
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Thus

∂jπi(v) = δi,jα
vα−1
i (Avα)i
H(v)

+ α
vαi Ai,jv

α−1
j

H(v)

−2α
vαi (Av

α)i
H2(v)

vα−1
j (Avα)j .

Now assume that v is an equilibrium, and let i, j ∈ supp(v). We get with Lemma
3.2

∂jπi(v) = δi,jα+ α
vαi Ai,jv

α−1
j

H(v)
− 2αvi,

and then

∂jFi(v) = δi,j(α− 1) + α
vαi Ai,jv

α−1
j

H(v)
− 2αvi.

On the other hand if vi = 0 or vj = 0, then

∂jπi(v) = 0,

and thus
∂jFi(v) = −δi,j .

The first part of the lemma follows. To see that eigenvalues are real, we may
assume without loss of generality that v ∈ int(∆). Note that ∂jFi(v)vj = ∂iFj(v)vi.
Therefore, the transpose of DF (v) is self adjoint with respect to the dot product
(x, y) =

∑
i vixiyi, and this concludes the proof of the lemma. �

As announced above we deduce

Corollary 3.8. An equilibrium on a face is linearly stable (respectively unstable),
if and only if, it is so for the restriction of F to this face.

Proof : Indeed, assume that v is an equilibrium on a face ∆I associated to some
subset I. Then the previous lemma shows that for any i /∈ I, ei − v is a stable
direction. So the result of the corollary follows from our definitions of stable and
unstable equilibria. �

In other words to study the stability or instability of equilibria, and we will see
in the next two subsections why this question is important, it suffices to consider
those belonging to the interior of ∆.

3.3. Non convergence towards unstable equilibria. The purpose of this section is to
prove the following result.

Theorem 3.9. Let v∗ be a linearly unstable equilibrium. Then the probability that
vn converges towards v∗ is equal to 0.

Proof : Let us recall now that for g ∈ RN and i ∈ E, we use the notation g(i) = gi.
For u, v ∈ RN , we also set uv :=

∑
i uivi, and ‖u‖ = supi |ui|. Furthermore, C will

denote a non-random constant that may vary from lines to lines.
For v ∈ ∆, let Q(v) be the pseudo-inverse of K(v) defined by:

(I −K(v))Q(v)g = Q(v)(I −K(v))g = g − (π(v)g)1,



Strongly VRRW on a complete graph 773

for all g ∈ RN , with I is the identity matrix and 1(i) = 1 for all i ∈ E. Then by
a direct application of the implicit function theorems (see Lemma 5.1 in Benaïm
(1997)) one has

Lemma 3.10. For any v ∈ ∆ and i ∈ E, Q(v), K(v)Q(v), and (∂/∂vi
)(K(v)Q(v)),

are bounded operators on `∞(E), the space of bounded functions on E, and their
norms are uniformly bounded in v ∈ ∆.

Now for all n ≥ 1 and i ∈ E, we can write

vn+1(i)− vn(i) =
1

n+ 1

(
− vn(i) + ei(Xn+1)

)
.

Note that K
(
(n+ 1)−1, vn

)
= K(ṽn), where

ṽn(i) =
vn(i) + 1/(n+ 1)

1 +N/(n+ 1)
for 1 ≤ i ≤ N.

Note also that ‖ṽn − vn‖ ≤ C/n. Let next zn be defined by

zn(i) = vn(i) +
K(ṽn)Q(ṽn)ei(Xn)

n
for 1 ≤ i ≤ N.

Then Lemma 3.10 implies that ‖zn − vn‖ ≤ C/n. Moreover, we can write:

zn+1 − zn =
F (zn)

n+ 1
+
εn+1

n+ 1
+
rn+1

n+ 1
, (3.3)

where εn+1 and rn+1 are such that for all 1 ≤ i ≤ N ,

εn+1(i) := Q(ṽn)ei(Xn+1)−K(ṽn)Q(ṽn)ei(Xn),

and rn+1 =
∑4

k=1 rn+1,k, with

rn+1,1 = F (vn)− F (zn)

rn+1,2 = π(ṽn)− π(vn)

rn+1,3(i) = K(ṽn)Q(ṽn)ei(Xn)

(
1− n+ 1

n

)
rn+1,4(i) = K(ṽn+1)Q(ṽn+1)ei(Xn+1)−K(ṽn)Q(ṽn)ei(Xn+1),

for 1 ≤ i ≤ N .
By using the facts that F and π are Lipschitz functions on ∆, ‖vn− ṽn‖+ ‖vn−

zn‖ ≤ C/n, and by applying Lemma 3.10, we deduce that

‖rn+1‖ ≤ C/n.

Moreover, we have
E[εn+1 | Fn] = 0.

Since v∗ is linearly unstable there exists, by Lemma 3.7, f ∈ T0∆ and λ > 0 such
that

(i): DfF (v) = λf and,
(ii): fi = 0 for i ∈ E \ supp(v∗).

Such an f being fixed, we claim that on the event {vn → v∗},

lim inf
n→∞

{
E[(εn+2f)

2 | Fn+1] + E[(εn+1f)
2 | Fn]

}
> 0. (3.4)



774 Benaim et al.

To prove this claim, we first introduce some notation: for µ a probability measure
on E, and g ∈ RN , denote by Vµ(g) the variance of g with respect to µ

Vµ(g) :=
1

2

∑
1≤j,k≤N

µ(j)µ(k)
(
g(j)− g(k)

)2
.

Then for any n ≥ 0 and i ≤ N , let µn,i be the probability measure defined by
µn,i(j) = Ki,j(ṽn). Set also Vn(i) := Vµn,i(Q(ṽn)f). Then we have that

E[(εn+1f)
2 | Fn] = Vn(Xn).

Furthermore, when vn converges toward v∗, K(ṽn) and Q(ṽn) converge respectively
toward K(v∗) and Q(v∗). Thus, for any i ∈ E,

lim inf
n→∞

Vn(i) ≥ V ∗(i) := Vµ∗
i
(Q(v∗)f),

where µ∗
i (j) = Ki,j(v

∗), for all j ≤ N . Next by using the fact that when Xn = i
and Ai,i = 0, then Xn+1 6= Xn, we get that

lim inf
{
E[(εn+2f)

2 | Fn+1] + E[(εn+1f)
2 | Fn]

}
≥ min

i
c∗(i),

where

c∗(i) := min
j∈Ai

(V ∗(i) + V ∗(j)),

and

Ai :=

{
E if Ai,i 6= 0
E r {i} if Ai,i = 0.

Now by using that

Q(v∗)f −K(v∗)Q(v∗)f = f − (v∗f)1

(recall that π(v∗) = v∗), we see that Q(v∗)f has constant coordinates on supp(v∗),
if and only if, f has constant coordinates on supp(v∗). But since f ∈ T0∆ and
fi = 0 for i 6∈ supp(v∗); this cannot be the case. Since µ∗

i (j) > 0, when j 6= i
and j ∈ supp(v∗), it follows already that c∗(i) > 0, for all i /∈ supp(v∗). Now
let i ∈ supp(v∗) be given. If Ai,i 6= 0, then again we have V ∗(i) > 0, and thus
c∗(i) > 0. Now assume that Ai,i = 0. If #supp(v∗) ≥ 3, then there can be at
most one value of i, for which V ∗(i) = 0, and thus in this case we have c∗(i) > 0 as
well. Let us then consider the case when #supp(v∗) = 2, and say supp(v∗) = {i, j}.
Recall that if Ai,i 6= 0, then V ∗(i) > 0. However, we cannot have Ai,i = Aj,j = 0,
since otherwise v∗i = v∗j = 1/2 and by lemma 3.7 v∗ is linearly stable. Finally we
have proved that in any case mini c

∗(i) > 0. Theorem 3.9 is then a consequence of
(3.4) and Corollary 3.IV.15 p.126 in Duflo (1996). �

3.4. Convergence towards stable equilibria and localization.

Theorem 3.11. Let v∗ be a linearly stable equilibrium. Then the probability that
vn converges towards v∗ is positive.

Proof : follows from Corollary 6.5 in Benaïm (1997) since any linearly stable equi-
librium is a minimal attractor. �
Theorem 3.12. Let v∗ ∈ ∆ be a linearly stable equilibrium. Then a.s. on the
event {limn→∞ vn = v∗}, the set E \ supp(v∗) is visited only finitely many times.

The proof follows directly from the next two lemmas:
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Lemma 3.13. There exists ν > 0 such that on the event {limn→∞ vn = v∗},
lim

n→∞
nν‖vn − v∗‖ = 0.

Proof : This is similar to Lemma 8 in Benaïm and Tarrès (2011). We give here an
alternative and more direct proof relying on Benaïm (1999). Since v∗ is a linearly
stable equilibrium there exists a neighborhood B of v∗, a constant C > 0 and λ > 0,
such that ‖Φt(v) − v∗‖ ≤ Ce−λt, for all v ∈ B (see e.g Robinson (1999), Theorem
5.1). Let τn =

∑n
k=1 1/k and let V : R+ → ∆ denote the continuous time piecewise

affine process defined by a) V (τn) = zn and b) V is affine on [τn, τn+1]. By (3.3) and
Doob’s inequalities, the interpolated process V is almost surely a −1/2 asymptotic
pseudo trajectory of Φ, meaning that

lim sup
t→∞

1

t
log

(
sup

0≤h≤T
‖Φh(V (t)− V (t+ h)‖

)
≤ −1/2

for all T > 0. For a proof of this later assertion see Benaïm (1999), Proposition 8.3.
Now, by Lemma 8.7 in Benaïm (1999)

lim sup
t→∞

1

t
log(‖V (t)− v∗‖) ≤ −min(1/2, λ)

on the event {vn → v∗}. This proves that ‖zn − v∗‖ = O(n−min(1/2,λ)), which
concludes the proof of the lemma. �
Lemma 3.14. For any I ⊆ {1, . . . , N}, and ν ∈ (0, 1), a.s. on the event

Eν(I) := { lim
n→∞

vn(i)n
ν = 0 ∀i ∈ I},

the set I is visited only finitely many times.

Proof : For m ≥ 1, set

Em,ν(I) := {|vk(i)| ≤ k−ν ∀k ≥ m ∀i ∈ I}.
Note that on Em,ν(I), at each time k ≥ m, the probability to jump to some vertex
i ∈ I, is bounded above by pk := N1+α k−αν . Let now (ξk)k≥m denotes some
sequence of independent Bernoulli random variables with respective parameters
(pk)k≥m. Then for any n ≥ m, on Em,ν(I) the number of jumps on I between time
m and n is stochastically dominated by

Zn :=

n∑
k=m

ξk.

However, it is well known that a.s. lim supZn/n
1−ν′

<∞, for any ν′ < αν ∧ 1. We
deduce that a.s. for any ν′ < αν ∧ 1,

Em,ν(I) ⊆ Eν′(I).

Since Eν(I) ⊆ ∪mEm,ν(I), we deduce that a.s. for any ν′ < αν ∧ 1,

Eν(I) ⊆ Eν′(I).

Since α > 1, it follows by induction that a.s.

Eν(I) ⊆ Eβ(I),

for any β ∈ (1/α, 1). But a simple application of the Borel-Cantelli lemma shows
that for any such β, a.s. on Eβ(I), the set I is visited only finitely many times.
This concludes the proof of the lemma. �
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4. The case of the VRRW on a complete graph

In this section we study in detail the case of the VRRW on a complete graph
described in the introduction. In other words, A is given by (2.1).

Since the case N = 2 is trivial, we assume in all this section that N ≥ 3.

We first study the stability of the centers of the faces. As already explained, this
reduces to analyze the center of ∆.

Lemma 4.1. Let v = (1/N, . . . , 1/N) be the center of ∆. Then v is a linearly
stable (respectively unstable) equilibrium if α < (N − 1)/(N − 2), (respectively
α > (N − 1)/(N − 2)).

Proof : Lemma 3.7 shows that for all i 6= j,

Dei−ejF (v) =

(
−1 + α

(
N − 2

N − 1

))
(ei − ej).

The lemma follows immediately. �

By combining this lemma with Corollary 3.8, we get

Lemma 4.2. Let v be the center of the face ∆I associated with some subset I with
cardinality k ≤ N . Then v is a linearly stable (respectively unstable) equilibrium if
α < (k − 1)/(k − 2), (respectively α > (k − 1)/(k − 2)).

It remains to study the stability of the other equilibria. We will see that they
are all unstable, which will conclude the proof of Theorem 1.1.

First we need the following lemma, which shows that coordinates of equilibriums
take at most two different values.

Lemma 4.3. Let v be an equilibrium in the interior of ∆, which is different from
its center. Then #{vi : i ≤ N} = 2.

Proof : Let a =
∑

i v
α
i and b =

∑
i v

2α
i . Since v is an equilibrium, we have for all i,

vi = vαi
a− vαi
a2 − b

.

Since all coordinates of v are positive by hypothesis, this is equivalent to

f(vi) = a− b/a,

for all i, where f(x) = −x2α−1/a+ xα−1. Now observe that

f ′(x) = xα−2
(
− (2α− 1)xα/a+ (α− 1)

)
,

does not vanish on (0, 1) if a ≥ (2α− 1)/(α− 1), and vanishes in exactly one point
otherwise. Thus for any fixed λ ∈ R, the equation f(x) = λ, has at most one
solution in (0, 1), if a ≥ (2α − 1)/(α − 1), and at most two otherwise. The lemma
follows. �

Let v be an equilibrium in the interior of ∆, which is different from its center.
Lemma 4.3 shows that its coordinates take exactly two different values, say u1 and
u2. Since the action of permutation of the coordinates commutes with F , we can
always assume w.l.g. that vi = u1, for i ≤ k, and vi = u2, for i > k, for some
k ≤ N/2. Denote now by Ek the set of such equilibria (those in the interior of ∆,
not equal to the center of ∆, and having their first k coordinates equal as well as
their last N − k coordinates). For v ∈ Ek, we also set t(v) = vN/v1. We have the
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Lemma 4.4. Assume that α ≥ (N − 1)/(N − 2), and let v ∈ Ek, with k ≤ N/2. If
k > 1 or if t(v) < 1, then v is linearly unstable.

Proof : It follows from Lemma 3.7 that for any i < j ≤ k,

Dej−eiF (v) = λ1(ej − ei),

and for k + 1 ≤ i < j ≤ N ,

Dej−eiF (v) = λ2(ej − ei),

with

λm =

(
(α− 1)− α

u2α−1
m

H(v)

)
,

for m = 1, 2. Then it just suffice to observe that if u1 < u2, λ1 > 0, whereas if
u1 > u2, λ2 > 0. Thus if any of the hypotheses of the lemma is satisfied, there
DF (v) has at least one positive eigenvalue, and so v is linearly unstable. �
On the other hand we have the following:

Lemma 4.5. Let v ∈ Ek be given. If k = 1 and α ≥ (N−1)/(N−2), then t(v) < 1
and v is unstable. Similarly, if α < (N − 1)/(N − 2), then v is linearly unstable.

Proof : Following our previous notation, set u1 := v1 and u2 := vN , and recall that
u1 6= u2, since v is not equal to the center of ∆. Recall also that t(v) = u2/u1.
Note that since ku1 +(N − k)u2 = 1, we have u1 = 1/(k+(N − k)t). Now the fact
that v is an equilibrium means that F (v) = 0, which is equivalent to say that the
function ϕ defined by

ϕ(t) := −(N − k − 1)t2α−1 + (N − k)tα − ktα−1 + (k − 1),

vanishes at point t(v). We now study the function ϕ. First ϕ′(t) = tα−2ψ(t), with

ψ(t) = −(2α− 1)(N − k − 1)tα + α(N − k)t− (α− 1)k.

In particular ψ is strictly concave, ψ(0) < 0 and limt→∞ ψ(t) = −∞. Now two
cases may appear. Either ψ vanishes in at most one point, in which case ϕ is
nonincreasing, thus vanishes only in 1. But this case is excluded, since t(v) 6= 1
by hypothesis. In the other case ψ vanishes in exactly two points, which means
that there exist t1 < t2 such that ϕ is decreasing in (0, t1)∪ (t2,∞), and increasing
in (t1, t2). Now consider first the case when k = 1, which implies ϕ(0) = 0. If
α ≥ (N − 1)/(N − 2), then ϕ′(1) ≤ 0, thus ϕ has at most one zero in (0, 1) and no
zero in (0,∞). Together with Lemma 4.4 this proves the first part of the lemma. If
α > (N − 1)/(N − 2), then ϕ′(1) > 0, and thus ϕ has no zero in (0, 1) and exactly
one zero in (0,∞), in which the derivative of ϕ is negative. The fact that this zero
corresponds to an unstable equilibrium will then follow from (4.1) below. But before
we prove this fact, let us consider now the case k > 1 and α < (N − 1)/(N − 2),
which imply that ϕ(0) > 0 and ϕ′(1) > 0. Thus ϕ vanishes in exactly one point
in (0, 1) and another one in (1,∞), and again the derivative of ϕ in these points is
negative. So all that remains to do is to prove the following fact

If v ∈ Ek is such that ϕ′(t(v)) < 0, then v is unstable. (4.1)

Let us prove it now. For t ∈ (0,∞), set u1(t) = 1/(k+(N−k)t) and u2(t) = tu1(t).
Then let v(t) ∈ (0, 1)N , be the point whose first k coordinates are equal to u1(t)
and whose last N − k coordinates are equal to u2(t). Then we have

H(v(t)) = k(k − 1)u1(t)
2α + 2k(N − k)tαu1(t)

2α + (N − k)(N − k − 1)t2αu1(t)
2α,
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and after some computation we find that

F (v(t)) = − tu1(t)
2α+1

H(v(t))
ϕ(t) ek,

where ek is the vector, whose first k coordinates are equal to −(N−k) and whose last
N − k coordinates are equal to k. Then notice that DekF (v(t)) = c(d/dt)F (v(t)),
for some constant c > 0. But recall that when v(t) is an equilibrium, ϕ(t) = 0.
Thus

d

dt
F (v(t)) = − tu1(t)

2α+1

H(v(t))
ϕ′(t) ek.

So if ϕ′(t) < 0, ek is an unstable direction, proving (4.1). This concludes the proof
of the lemma. �

Lemma 4.6. The number of equilibriums in ∆ is finite.

Proof : Let v ∈ ∆, such that that vi = u1 > 0, for i ≤ k, and vi = u2 > 0, for i > k,
for some k ≤ N/2. Set t = u2/u1, so that u1 = (k + `t)−1 and u2 = tu1 and where
` = N −k. Recall (see the proof of Lemma 4.5) that v is an equilibrium if and only
if φ(t) = 0, where φ :]0,∞[→ R is defined by

φ(t) = (`− 1)t2α−1 − `tα + ktα−1 − (k − 1).

Studying φ, we show that two situations may occur: 1 is the only solution or there
exist two other solutions, distinct from 1. This proves that Ek contains at most 2
equilibriums. And therefore, one can check that the number of equilibriums in the
interior of ∆ is at most 2N − 1. �

Lemmas 4.4 and 4.5 show that any equilibrium in the interior of ∆, which is not
equal to the center of ∆ is linearly unstable. Together with Lemma 4.2, Lemma
4.6 and Theorems 3.9, 3.11 and 3.12 this concludes the proof of Theorem 1.1. �

5. Almost sure localization

In this section we prove a general result on the localization of strongly reinforced
VRRWs. First we recall that given a locally finite graph G, and w : N → (0,∞),
we can define the VRRW (Xn)n≥0 by

P(Xn+1 = y | Fn) =
w(Zn(y))∑

z∼Xn
w(Zn(z))

1{Xn∼y},

with Zn(·) as in the introduction, and where the symbol Xn ∼ y means that Xn

and y are neighbours in G. We say that the VRRW is strongly reinforced when
∞∑

n=0

1

w(n)
<∞. (5.1)

It is easy to see that under this hypothesis the walk can localize on two sites with
positive probability. But something more can be said:

Theorem 5.1. Let w : N → (0,∞) be a weight function satisfying (5.1), and let
G be a graph with bounded degree. Then a.s. the VRRW on G with weight w visits
only a finite number of sites.
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Proof : We adapt an argument of Volkov who proved the result when the graph is
a tree (see Volkov (2001)). Let d > 0 be such that any vertex in G has degree at
most d and let ε ∈ (0, 1) be such that εd3 < 1.

It will be convenient to introduce a Rubin’s construction of the walk. Similar
ones were introduced already by Sellke (2008) and Tarrès (2011), see also Basdevant
et al. (2014).

To each pair of neighbours x ∼ y of G we associate two oriented edges (x, y) and
(y, x), and denote by E the set of oriented edges obtained in this way. Then we
consider a sequence (ξe` )e∈E,`≥0 of independent exponential random variables, such
that for any e and `, the mean of ξe` equals 1/w(`). We will also use the notation:

ξx = (ξ
(x,y)
` )y∼x,`≥0,

for any vertex x of G. Then given the sequence (ξx)x∈G, and a vertex x0 of G, we
construct a continuous time process (X̃t)t≥0 as follows.

First X̃0 = x0. Then for each oriented edge (x0, y), we let a clock ring at time
ξ
(x0,y)
0 , and let the process jump along the edge corresponding to the clock which

rings first (at time miny∼x0 ξ
(x0,y)
0 ). At this time we also stop all clocks associated

to the edges going out of x.
Now assuming that (X̃t) has been constructed up to some jumping time t, and

that X̃t = x, we use the following rule. For any y ∼ x, if during the time between
the last visit to x before t (which we take to be 0 if t is the first time the walk
visits x) and t the walk has visited y, then start a new clock associated to the edge
(x, y) which will ring at time ξ(x,y)k , with k the number of visits to y before time t.
If not, then restart the clock associated to (x, y) which has been stopped after the
last visit of the walk in x, or start a new clock which will ring after a time ξ(x,y)0

if both x and y have never been visited yet before time t. Then the walk jumps
again along the edge associated to the clock which rings first at the time when it
rings, and then we stop all clocks associated to edges going out of x. Then it is a
basic and well known fact that a.s. two clocks never ring at the same time, so that
this construction is a.s. well defined, and that if (τk)k≥0 is the sequence of jumping
times (with τ0 = 0), then (X̃τk)k≥0 has the same law as the process X starting
from x0.

Now for any vertex x and integer N ≥ 1 we consider the following event

Ex(N) :=

∑
`≥N

ξ
(x,y)
` < min

z∼x
ξ
(x,z)
0 ∀y ∼ x

 .

Note that, denoting by dx the degree of x,

P(Ex(N)) =
∏
y∼x

E
[
e−dxw(0)

∑
`≥N ξ

(x,y)
`

]
=

∏
l≥N

(
1− dxw(0)

w(`)

)dx

≥
∏
l≥N

(
1− dw(0)

w(`)

)d

using in the last inequality that dx ≤ d. So that, when (5.1) is satisfied, we can fix
N such that P(Ex(N)) ≥ 1− ε, for all x.

To each vertex x, let τx be the first time the walk visits x. When τx < ∞, we
associate to x a type:
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• the type 1 if at time τx one of its neighbours has been visited more than N
times;

• the type 2 if x is not of type 1 and if every neighbour of x has at least one
of its neighbours which has been visited more than N times before τx;

• the type 3 otherwise.
We also associate two sets of vertices, C1

x and C2
x : when x is of type 1 and on

Ex(N), C1
x = ∅, otherwise C1

x is the set of all neighbours of x that have not been
visited by the walk at time τx. Thus C1

x contains all the vertices that may be visited
for the first time after a jump from x.

Define next C2
x := ∪y∈C1

x
C2

x,y, with C2
x,y as follows. When y has a neighbour that

has been visited more than N times at time τx and on Ey(N), C2
x,y = ∅, otherwise

C2
x,y is the set of all neighbours of y that have not been visited by the walk at time

τx. Thus C2
x contains all the vertices that may be visited for the first time after a

jump from a vertex in C1
x.

Observe that when x is of type 3, conditionally to Fτx , the walk has a proba-
bility bounded below by some constant p > 0, depending only on N , in particular
independent of x and Fτx , to be stuck on {x, y} for some y ∼ x forever after τx. So
the conditional Borel-Cantelli lemma ensures that only finitely many x’s can be of
type 3.

Now we define inductively a growing sequence of subgraphs (Gn)n≥0 ⊂ G, an
increasing sequence of random times (τn)n≥0 and a sequence of vertices (xn)n≥0

as follows. First G0 = {x0} ∪ C1
x0

and τ0 = 0. Note that C1
x0

= {y ∼ x0}. Now
assume that Gk, τk and xk have been defined for all k ≤ n, for some n ≥ 0. If the
walk never exists the set Gn, then set Gn+1 = Gn and τn+1 = ∞. Otherwise let
τn+1 be the first exit time of Gn, xn+1 be the position of the walk at time τn+1 and
set Gn+1 = Gn ∪ {xn+1} ∪ C1

xn+1
.

For all n ≥ 0 with τn < ∞, set On = ∪n
k=0C

2
xk

\ Gn, so that τn+1 is the first
entrance time of the walk in On. Observe that if for some n, On = ∅, then τn+1 = ∞
and thus the walk will visit only a finite number of sites. Note also conversely that
if the walk visits an infinite number of vertices, then τn <∞, for all n.

Define now a filtration (Gn)n≥0 by Gn = σ(ξx : x ∈ Gn). Then, we have that
σ(Xk : k ≤ τn+1) ⊂ Gn, and that xn+1 and its type are Gn measurable. Likewise
the number Rn of sites in On is also Gn-measurable. Moreover, since xn+1 ∈ On, we
have Rn+1 ≤ Rn−1+ |C2

xn+1
| (where if A is a set we denote by |A| its cardinality).

Set, for n ≥ 1, `n = −1 if xn is of type 1 and on Exn(N) or if xn is of type 2 and
on ∩y∈C1

xn
Ey(N), and set `n = d2− 1 otherwise. Thus `n is Gn-measurable and for

n ≥ 0, Rn+1 − Rn ≤ −1 + |C2
xn+1

| ≤ `n+1. Now it is easy to see that if xn+1 is of
type 1,

E[`n+1 | Gn] ≤ −1 + εd2 < 0.

Similarly if xn+1 is of type 2,

E[`n+1 | Gn] ≤ −1 + (1− (1− ε)d)d2 ≤ −1 + εd3 < 0.

Thus, setting An := {xn is of type 1 or 2}, we get that Ln :=
∑n

k=1 `k1Ak
is a

supermartingale. Therefore, a.s. on the event An occurs an infinite number of
times, lim infn→∞ Ln = −∞ (using that on this event, Ln cannot converge since
on An, |`n+1| ≥ 1).

Therefore a.s., if the walk visits an infinite number of vertices, then since xn is
of type 3 for only a finite number of n, a.s. on the event An occurs an infinite
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number of times, lim infn→∞Rn = −∞, which is absurd since, Rn is nonnegative
by definition. This proves the lemma. �
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