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Abstract

We introduce and study the uniform infinite planar quadrangulation (UIPQ)
with a boundary via an extension of the construction of [14]. We then relate this
object to its simple boundary analog using a pruning procedure. This enables us
to study the aperture of these maps, that is, the maximal graph distance between
two points on the boundary, which in turn sheds new light on the geometry of the
UIPQ. In particular we prove that the self-avoiding walk on the UIPQ is at most
diffusive.

Introduction

Motivated by the theory of 2D quantum gravity, the probabilistic theory of random planar
maps has been considerably growing over the last few years. In this paper we continue
the study of the geometry of random maps and focus in particular on random quadran-
gulations with a boundary.

Recall that a planar map is a proper embedding of a finite connected planar graph into
the two-dimensional sphere seen up to orientation-preserving homeomorphisms. The faces
are the connected components of the complement of the union of the edges, and the degree
of a face is the number of edges that are incident to it, where it should be understood
that an edge is counted twice if it lies entirely in the face. A map is a quadrangulation if
all its faces have degree 4. All the maps considered in this work are rooted, meaning that
an oriented edge is distinguished and called the root edge. The face lying to the right of
the root edge is called the root face.

Figure 1: A quadrangulation with a simple boundary and a quadrangulation with
a general boundary.

A planar map q is a quadrangulation with a boundary if all its faces have degree four
except possibly the root face, which can have an arbitrary even degree. This face is called
the external face although it is sometimes represented “inside” the map. The degree of
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the external face is called the perimeter of the map, and the boundary is said to be
simple if during the contour of the external face all the vertices on the boundary are
visited only once (i.e. there is no cut vertex on the boundary). By contrast, we speak
of quadrangulation with a general boundary when we do not require the boundary to be
simple. The size of q is its number of faces minus one.

Uniform quadrangulations of size n with a boundary of perimeter p have recently been
studied from a combinatorial and a probabilistic point of view [8, 11]. Three different
regimes have been exhibited for the large scale structure: if p � n1/2, then these maps
converge, in the scaling limit, towards the Brownian map introduced in [21, 25]. If p �
n1/2, then the boundary becomes macroscopic and Bettinelli [8] introduced the natural
candidate for the scaling limit of these objects, which is a sort of Brownian map with
a hole. When p � n1/2 these random quadrangulations fold on themselves and become
tree-like [8, 11]. In this work, we shall take a different approach and study infinite local
limits of quadrangulations with a boundary as the size tends to infinity. Let us specify
the setting.

In a pioneering work [7], Benjamini & Schramm initiated the study of local limits of
maps. If m,m′ are two rooted maps, the local distance between m and m′ is

dmap(m,m′) =
(
1 + sup{r > 0 : Br(m) = Br(m

′)}
)−1

,

where Br(m) denotes the map formed by the edges of m whose incident vertices are all
at graph distance smaller than or equal to r from the origin of the root edge. Let Qn be
uniformly distributed over the set of all rooted quadrangulations with n faces. Krikun
[19] proved that

Qn
(d)−−−→

n→∞
Q∞, (1)

in distribution in the sense of dmap. The object Q∞ is a random infinite rooted quad-
rangulation called the Uniform Infinite Planar Quadrangulation (UIPQ) (see also [2, 4]
for previous works concerning triangulations). The UIPQ (and its related triangulation
analog) has been the subject of active research in recent years, see [13, 14, 15, 19, 20, 22].
Despite these progresses, the geometry of the UIPQ remains quite mysterious. The pur-
pose of this article is to provide some new geometric understanding of the UIPQ via the
study of the UIPQ with a boundary.

We will show that the convergence (1) can be extended to quadrangulations with a

boundary. More precisely, for any p > 1, we let Qn,p (resp. Q̃n,p) be a uniform quadran-
gulation with a general (resp. simple) boundary, of size n and with perimeter 2p, then we
have

Q̃n,p
(d)−−−→

n→∞
Q̃∞,p,

Qn,p
(d)−−−→

n→∞
Q∞,p,

in distribution for the metric dmap. The random map Q∞,p (resp. Q̃∞,p) is called the Uni-
form Infinite Planar Quadrangulation with a general (resp. simple) boundary of perimeter
2p. The first convergence is an easy consequence of (1) (see the discussion around (7)
below) whereas the second convergence requires an adaptation of the techniques of [14]: in
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Theorem 2, we construct Q∞,p from a labeled “treed bridge” and extend the main result of
[14] to our setting. This construction is yet another example of the power of the bijective
technique triggered by Schaeffer [27], which has been one of the key tool for studying
random planar maps [10, 12, 13, 24].

We then turn to the study of the UIPQ’s with a boundary and their relationships. Al-
though well-suited for the definition and the study of Q∞,p, the techniques “à la Schaeffer”
seem much harder to develop in the case of simple boundary because of the topologi-
cal constraint imposed on the external face. In order to bypass this difficulty we use a
pruning decomposition to go from general to simple boundaries. More precisely, we prove
that Q∞,p has a unique infinite irreducible component, that is, a core made of an infinite
quadrangulation with a simple boundary together with finite quadrangulations hanging
off from this core, see Fig. 2.

∞ ∞

Q∞,p Core(Q∞,p)

Figure 2: Pruning Q∞,p.

We show that if we remove these finite components then the core of Q∞,p has a
(random) perimeter |∂Core(Q∞,p)|, which is roughly a third of the original one. More
precisely we prove in Proposition 4 the following convergence in distribution

|∂Core(Q∞,p)| − 2p/3

p2/3

(d)−−−→
p→∞

Z,

where Z is a spectrally negative stable random variable of parameter 3/2. Furthermore,
conditionally on its perimeter, the core of Q∞,p is distributed as a UIPQ with a simple
boundary (Theorem 4). This confirms and sharpens a phenomenon already observed in a
slightly different context by Bouttier & Guitter, see [11, Section 5]

As an application of our techniques we study the aperture of these maps: if q is a
quadrangulation with a boundary, we denote the maximal graph distance between two
vertices on the boundary of q by aper(q) and call it the aperture of q. We prove that the
aperture of the UIPQ with a simple boundary of perimeter p cannot exceed the order

√
p,

in the sense of the following statement.

Theorem 1. There exists c, c′ > 0 such that for all p > 1 and λ > 0 the aperture of the
uniform infinite planar quadrangulation with a simple boundary of perimeter 2p satisfies

P
(

aper(Q̃∞,p) > λ
√
p
)

6 c p2/3 exp
(
− c′λ2/3

)
.

This result is first established for the UIPQ with a general boundary using the con-
struction from a treed bridge (Theorem 3) and then transferred to the simple boundary
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case using the pruning procedure. This theorem provides a new tool for studying the
UIPQ itself via the technique of peeling, see [2, 6]. In particular, Theorem 1 is one of the
key estimates of [6] used to prove that the simple random walk on the UIPQ is subdiffusive
with exponent less than 1/3, that is, the graph distance after n steps of the walk is less
than n1/3+o(1).

Let us finish this introduction with one more motivation. There is an obvious bijective
correspondence between, on the one hand, quadrangulations of size n with a self-avoiding
path of length p starting at the root edge and, on the other hand, quadrangulations with
a simple boundary of perimeter 2p and size n: simply consider the self-avoiding walk as a
zipper. See Fig. 3. Hence, the UIPQ with a simple boundary of perimeter 2p can be seen
as an annealed model of UIPQ endowed with a self-avoiding path of length p.

Figure 3: Zip the external face and unzip the self-avoiding walk.

With this correspondence, the aperture of the map obviously bounds from above the
maximal graph distance of any point of the self-avoiding walk to the origin of the map.
The estimates of Theorem 1 then show that, when p is large, the maximal graph distance
displacement of the self-avoiding walk with respect to the root of the map is at most of
order

√
p. This contrasts with the Euclidean case where a displacement of order p3/4 is

conjectured.
Let us remark, however, that the aperture of a quadrangulation with a boundary only

gives an upper bound on the maximal displacement of the self-avoiding walk obtained
after zipping. We plan to study the lower bound in a future work.

The paper is organized as follows: the first section contains some background on quad-
rangulations with a boundary. In the second section, we present the bijective techniques
adapted from [11] that we apply in Section 3 to define the UIPQ with a general boundary
and study its aperture. The fourth section is devoted to the pruning decomposition and
its applications and contains the proof of Theorem 1. Finally, the last section is devoted
to extensions and comments. In particular, we define the UIPQ of the half-plane (with an
infinite boundary) with a general and a simple boundary and propose some open questions.

Acknowledgments: We are grateful to Jérémie Bettinelli for a careful reading and
numerous comments on a first version of this article.
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1 Quadrangulations with a boundary

1.1 Definitions

Recall that all the maps we consider here are rooted, that is, given with one distinguished
oriented edge ~e.

A planar map q is a quadrangulation with a boundary if all its faces have degree four,
with the possible exception of the root face (also called external face). Since the number
of odd-degree faces in a map is necessarily even, the degree of the external face has to be
even. The boundary of the external face is denoted by ∂q and its degree by |∂q|. We say
that q has a perimeter |∂q| and its size |q| is the number of faces minus 1.

A quadrangulation has a simple boundary if there is no cut vertex on the boundary,
that is, if ∂q is a cycle with no self-intersection. By convention, all the notation involving a
quadrangulation with a simple boundary will be decorated with a “∼” to avoid confusion.

We denote by Qn,p (resp. Q̃n,p) the set of all rooted quadrangulations with a general
(resp. simple) boundary with n+1 faces and such that the external face has degree 2p, and

by qn,p (resp. q̃n,p) its cardinality. By convention, the set Q0,0 = Q̃0,0 contains a unique

“vertex” map denoted by †. Note also that Q0,1 = Q̃0,1 is composed of the map with
one oriented edge (which has a simple boundary). Note that any quadrangulation with
a boundary of perimeter 2 can be seen as a rooted quadrangulation without a boundary,
by contracting the external face of degree two.

1.2 Enumeration

We gather here a few enumeration results that will be useful. We refer to [11] for the
derivations of these formulas. We start with some simple combinatorial decompositions.

Let q be a quadrangulation with a boundary. If the boundary of q is not simple (if it
has some cut vertices) we can decompose q unambiguously into quadrangulations with a
simple boundary attached by the cut vertices of the boundary of q: these quadrangulations
are called the irreducible components of q. The root edge is carried by a unique irreducible
component, and all the other irreducible components have a unique boundary vertex that
is closest to the component of the root. By convention, we root each component at the
oriented edge that immediately precedes this particular vertex in counterclockwise order.
See Fig. 4.

Figure 4: Decomposition of a quadrangulation with a boundary into irreducible
components.

If q is a quadrangulation with a general boundary we can also decompose q according
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to the irreducible component that contains the root edge and other quadrangulations a
with general boundary attached to it. This decomposition yields an identity relating the
bi-variate generating functions of quadrangulations with a simple and a general boundary:
for g, z > 0, let W (resp. W̃ ) be the bi-variate generating function of Qn,p (resp. Q̃n,p)
with weight g per internal face and

√
z per oriented edge on the boundary, that is

W (g, z) :=
∑
n,p>0

qn,pg
nzp, and W̃ (g, z) :=

∑
n,p>0

q̃n,pg
nzp.

The last decomposition translates into the identity

W̃
(
g, zW 2(g, z)

)
= W (g, z). (2)

The exact expression of W can be found in [11] and reads

W (g, z) = ω(1− gR2(ω − 1)), where ω =
1−
√

1− 4zR

2zR
and R =

1−√1− 12g

6g
. (3)

From this we can deduce

qn,p =
(2p)!

p!(p− 1)!
3n

(2n+ p− 1)!

n!(n+ p+ 1)!
,

for n > 0 and p > 1. Note the asymptotics

qn,p ∼
n→∞

Cp12nn−5/2, (4)

Cp =
(2p)!

p!(p− 1)!
2p−1π−1/2 ∼

p→∞
(2π)−18p

√
p.

Moreover (2) enables us to find the expressions for q̃n,p (see [11] for more details):

q̃n,p = 3−p
(3p)!

p!(2p− 1)!
3n

(2n+ p− 1)!

(n− p+ 1)!(n+ 2p)!
, for n > 1 and p > 1,

q̃n,p ∼
n→∞

C̃p12nn−5/2, (5)

C̃p =
(3p)!

p!(2p− 1)!
3−p2p−1π−1/2 ∼

p→∞

√
3p

2π

(
9

2

)p
.

To simplify notation we introduce Wc(z) = W (12−1, z) (resp. W̃c(z) = W̃ (12−1, z)) the
generating function of quadrangulations with a general (resp. simple) boundary taken at
the critical point g = 1

12
for the size. From (3) we get that

Wc(z) =
(1− 8z)3/2 − 1 + 12z

24z2
. (6)

Remark 1. The n−5/2 and
√
p polynomial corrections in the asymptotics of qn,p and q̃n,p

are common features in planar structures with a boundary, in particular it holds for other
“reasonable” classes of maps with a boundary such as triangulations, see [4].

For all n, p > 0, we denote by Qn,p and Q̃n,p random variables with uniform distribu-

tions over Qn,p and Q̃n,p respectively. In the next section we recall the definition of the
UIPQ and construct the UIPQ with a simple boundary from it.
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1.3 The UIPQ with a simple boundary

Recall the metric dmap presented in the Introduction. The set of all finite rooted planar
quadrangulations with a boundary is not complete for this metric and we will have to work
in its completion Q. The additional elements of this set are called infinite quadrangula-
tions with a boundary. Formally they can be seen as sequences (q1, . . . , qn, . . .) of finite
rooted quadrangulations with a boundary such that for any r > 0, Br(qn) is eventually
constant. See [14] for more details. Recall from (1) that the UIPQ is the weak limit in
the sense of dmap of uniform rooted quadrangulations whose size tends to infinity.

We can already use (1) to deduce a similar convergence result for rooted quadrangula-
tions with a simple boundary. Indeed, notice that a rooted quadrangulation with n faces
and perimeter 2p can be turned into a rooted quadrangulation with n+p faces that has a
special neighborhood around the origin. More precisely, if qn+p is a rooted quadrangula-
tion with n+p faces and no boundary, and such that the neighborhood of the root edge is
composed of p squares arranged like a star around the origin of the root edge as depicted
in Fig. 5 (note that the vertices on the boundary of the star must be pairwise distinct),
then we can remove this star from qn+p and move the root edge in a deterministic way
to obtain a quadrangulation with a boundary of perimeter 2p with n internal faces. This
operation is reversible.

Figure 5: A fragment of a rooted quadrangulation with a special neighborhood
of the root and the rooted quadrangulation with a simple boundary obtained by
removing this neighborhood and transferring the root edge.

Hence the uniform distribution over Q̃n,p can be seen as the uniform distribution over
Qn+p,1 conditioned on having a “starred neighborhood” of the root composed of p squares.
For p > 1, we condition a uniform infinite planar quadrangulation Q∞ to have a “starred
neighborhood” with p squares (which is an event of positive probability) and denote by

Q̃∞,p the complement of this neighborhood, which is an infinite quadrangulation with a
simple boundary of perimeter 2p rooted as explained before. The convergence (1) together
with the preceding remarks then yields

Q̃n,p −−−→
n→∞

Q̃∞,p, (7)

in distribution in the sense of dmap. The random variable Q̃∞,p is called the uniform
infinite planar quadrangulation (UIPQ) with a simple boundary of perimeter 2p.

Remark 2. It is not easy to deduce from (1) a similar convergence result for quadran-
gulations with a general boundary: this is due to the fact that quadrangulations with a
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general boundary are not rigid in the sense of [4, Definition 4.7] and thus not well suited
for this type of surgery. We shall take a different approach to define the UIPQ with a
general boundary in the next sections.

2 Bijective representation

In this section we extend the bijective approach of the UIPQ developed in [14] to the case
of quadrangulations with a boundary using the tools of [11]. For technical reasons, we will
have to consider pointed quadrangulations: a (rooted) quadrangulation with a boundary
is pointed if it is given with a distinguished vertex, which we denote by ρ. We let Q•n,p
(resp. Q̃•n,p) be the set of all rooted pointed quadrangulations with a general (resp. simple)
boundary and q•n,p (resp. q̃•n,p) its cardinality.

2.1 Trees

We use the same notation as in [14]. Let U = ∪∞n=0Nn, where N = {1, 2, . . .} and N0 = {∅}
by convention. An element u of U is thus a finite sequence of positive integers. If u, v ∈ U ,
uv denotes the concatenation of u and v. If v is of the form uj with j ∈ N, we say that
u is the parent of v or that v is a child of u. More generally, if v is of the form uw for
u,w ∈ U , we say that u is an ancestor of v or that v is a descendant of u. A plane tree τ
is a (finite or infinite) subset of U such that

1. ∅ ∈ τ (∅ is called the root of τ),

2. if v ∈ τ and v 6= ∅, the parent of v belongs to τ ,

3. for every u ∈ U there exists ku(τ) > 0 such that uj ∈ τ if and only if j 6 ku(τ).

A plane tree can be seen as a graph, in which an edge links two vertices u, v such that
u is the parent of v or vice-versa. This graph is of course a tree in the graph-theoretic
sense, and has a natural embedding in the plane, in which the edges from a vertex u to its
children u1, . . . , uku(τ) are drawn from left to right. We let |u| be the length of the word
u. The integer |τ | denotes the number of edges of τ and is called the size of τ . A corner
of a tree is an angular sector formed by two consecutive edges in the clockwise contour.
A spine in a tree τ is an infinite sequence u0, u1, u2, . . . in τ such that u0 = ∅ and ui is
the parent of ui+1 for every i > 0. In this work, unless explicitly mentioned, all the trees
considered are plane trees.

The uniform infinite plane tree. For any plane tree τ and any h > 0 we define the
tree [τ ]h = {u ∈ τ : |u| 6 h} as the tree τ restricted to the first h + 1 generations. If τ
and τ ′ are two plane trees, we set

dtree(τ, τ
′) =

(
1 + sup{h > 0 : [τ ]h = [τ ′]h}

)−1
.

Obviously, dtree is a distance on the set of all plane trees. In the following, for every n > 0,
we denote by Tn a random variable uniformly distributed over the set of all rooted plane
trees with n edges. It is standard (see [17, 23]) that there exists a random infinite plane
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tree T∞ with one spine called the uniform infinite plane tree, or critical geometric Galton–
Watson tree conditioned to survive, such that we have the convergence in distribution for
dtree

Tn
(d)−−−→

n→∞
T∞. (8)

The tree T∞ can be informally described as follows. Start with a semi-infinite line of
vertices (which will be the unique spine of the tree), then on the left and right hand sides
of each vertex of the spine, graft independent critical geometric Galton–Watson trees with
parameter 1/2. The resulting plane tree has the same distribution as T∞. See [5, 14] for
more details.

Labeled trees. A rooted labeled tree (or spatial tree) is a pair θ = (τ, (`(u))u∈τ ) that
consists of a plane tree τ and a collection of integer labels assigned to the vertices of τ ,
such that if u, v ∈ τ are neighbors then |`(u) − `(v)| 6 1. Unless otherwise mentioned,
the label of the root vertex is 0. If θ = (τ, `) is a labeled tree, |θ| = |τ | is the size of θ.
Obviously, the distance dtree can be extended to labeled trees by taking into account the
labels, and we keep the notation dtree for this distance.

Let τ be a random plane tree and, conditionally on τ , consider a sequence of inde-
pendent random variables uniformly distributed over {−1, 0, 1} carried by each edge of τ .
For any vertex u of τ , we define the label of u as being the sum of the variables carried
by the edges along the unique path from the root ∅ to u. This labeling is called the
uniform labeling of τ . When the tree τ is uniform infinite plane tree, we will speak of the
uniform infinite labeled plane tree. Using the notation of [14], we denote by S the set of
all labeled infinite trees with only one spine such that the infimum of the labels along the
spine is −∞. Note that if τ is an infinite tree with one spine and θ = (τ, `) is a uniform
labeling of τ then θ ∈ S almost surely.

2.2 Treed bridges

A bridge of length 2p is a sequence of integers x0, x1, . . . , x2p−1 such that x0 = 0 and for
every i ∈ {0, . . . , 2p−1} we have |xi−xi+1| = 1, where by convention we let x2p = x0 = 0.
Note that in any bridge of length 2p, there are exactly p down-steps, which are the indices
i ∈ {0, 1, . . . , 2p− 1} such that xi+1 = xi − 1. A labeled treed bridge of size n and length
2p is a bridge bp = (x0, . . . , x2p−1) together with p labeled plane trees θ1, . . . , θp (with root
label 0) such that the sum of the sizes of the trees θ1, . . . , θp is n. We denote by Bp the
union set of all labeled finite treed bridges of length 2p and of all infinite labeled treed
bridges (bp; θ1, . . . , θp) such that one and only one of the labeled trees θi belongs to S , all
others being finite. In the following, unless explicitly mentioned, all labeled treed bridges
considered belong to Bp for some p > 1.

Representation. Let b = (bp; θ1, . . . , θp) be a treed bridge of Bp. If bp = (x0, . . . , x2p−1)
we denote by (xi1 , xi1+1), . . . , (xip , xip+1) its p down-steps. We construct a representation
of b in the plane as follows. Let C be a proper embedding in the plane of a cycle of length
2p. We label the vertices of C starting from a distinguished vertex in the clockwise order
by the values of the bridge bp. Now we graft (proper embeddings of) the trees θ1, . . . , θp in
the infinite component of R2\C in such a way that the tree θk is grafted on the ikth point
of C and we shift all the labels of this tree by xik . This representation can be constructed
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in such a way that the embedding is proper (no edges are crossing except possibly at their
endpoints) and such that the set of vertices of the embedding has no accumulation point
in R2. See Fig. 6 below.

bp = (0, 1, 0,−1,−2,−1, 0, 1)

0

1

0

−1−2

−1

0

1

0

1

10

2

0 0

1

0

−1

−2

−3 −2 2

1
3

2

0

0−1

−2

−1

θ1 θ2 θ3 θ4

Figure 6: A labeled finite treed bridge and a representation of it. The black dots
represent the vertices of the trees of the treed bridge.

The vertex set of this representation is thus formed by the union of the vertices of the
trees θ1, . . . , θp and of the vertices of the cycle that are not down-steps. The labeling of
these vertices, which is given by the bridge on the cycle and the shifted labelings of the
trees is denoted by `b. We will often abuse notation and write u ∈ θi for a vertex in the
representation that belongs to the embedding of the tree θi.
Recall that a corner of a proper embedding of a graph in the plane is an angular sector
formed by two consecutive edges in clockwise order. In the case of a representation of a
labeled treed bridge we can consider the set of corners of the infinite component of the
plane minus the embedding. This set, although possibly infinite, inherits a cyclic order
from the clockwise order of the plane. The label of a corner is that of its attached vertex.

The uniform infinite labeled treed bridge. Let p > 1. We say that a sequence
of labeled treed bridges (b

(n)
p ; θ

(n)
1 , . . . , θ

(n)
p ) of length 2p converges to (bp; θ1, . . . , θp), if

eventually b
(n)
p = bp and θ

(n)
i converges towards θi for any i ∈ {1, . . . , p} with respect to

dtree. This convergence is obviously metrizable by the metric

dbridge

(
(bp; θ1, . . . , θp), (b

′
p; θ
′
1, . . . , θ

′
p)
)

= 1bp=b′p sup
16i6p

dtree(θi, θ
′
i) + 1bp 6=bp′

.

In the rest of this work, Bn,p = (Bp; Θ
(n)
1 , . . . ,Θ

(n)
p ) is a uniform labeled treed bridge of size

n and length 2p. Note that Bp is uniformly distributed over the set of bridges of length 2p.
We introduce the analog of the uniform infinite labeled plane tree in the setting of treed
bridges. The uniform infinite labeled treed bridge denoted by B∞,p = (Bp,Θ1, . . . ,Θp)
is constructed as follows. Firstly, Bp is a uniform bridge of length 2p. Then choose
i0 ∈ {1, . . . , p} uniformly and independently of Bp. Conditionally on Bp and i0, the trees
Θ1, . . . ,Θp are independent, Θi0 being a uniform infinite labeled plane tree and all other
Θj for j 6= i are uniformly labeled critical geometric Galton–Watson trees. Notice that
B∞,p almost surely belongs to Bp. Then the analog of (8) becomes

Proposition 1. We have the following convergence in distribution for dbridge

Bn,p
(d)−−−→

n→∞
B∞,p. (9)
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Proof. Since conditionally on the structure of the trees, the bridge and the labels are
uniform they do not play any crucial role in the convergence. We just have to prove that
if τ

(n)
1 , . . . , τ

(n)
p are p plane trees chosen uniformly among all p-uples of plane trees such

that |τ (n)
1 |+ . . .+ |τ (n)

p | = n then we have the following weak convergence

(τ
(n)
1 , . . . , τ (n)

p ) −−−→
n→∞

(τ1, . . . , τp),

where the distribution of (τ1, . . . , τp) is described as follows: choose i0 uniformly among
{1, . . . , p}, then conditionally on i0, let the τks be independent, with τi0 = T∞ in dis-
tribution and the other trees being critical geometric Galton–Watson trees. This fact is
standard and could be derived directly from (8) but we include a pedestrian proof, which
serves as a warmup for the manipulations of Section 4. For p > 1 and n > 0, we let
Cat(n, p) be the number of finite sequences (“forests”) of p trees with n edges in total, so
that by a well-known formula (see e.g. [26])

Cat(n, p) =
p

2n+ p

(
2n+ p

n

)
∼

n→∞
4nn−3/2 2p−1p√

π
. (10)

We also let Cat(n) = Cat(n, 1). Let f1, . . . , fp be bounded continuous functions for dtree.

By definition of the distribution of (τ
(n)
1 , . . . , τ

(n)
p ) we have

E

[
p∏
i=1

fi(τ
(n)
i )

]
=

1

Cat(n, p)

∑
n1+...+np=n

p∏
i=1

Cat(ni)E[fi(Tni
)], (11)

where Tni
denotes a uniform plane tree on ni edges. We first estimate the probability that

two of the trees τ
(n)
1 , . . . , τ

(n)
p have a size larger than some large constant a > 0. For that

purpose we recall a classical lemma whose proof is very similar to [4, Lemma 2.5] and is
left to the reader.

Lemma 1. For any β > 1, and any p > 0 there exists a constant c(β, p) such that for
any a > 0 and any n > 0 we have

∑
n1+...+np=n
n1,n2>a

(
p∏
i=1

(ni + 1)−β

)
6 c(β, p)n−βa−β+1.

Using the asymptotic (10) with p = 1, we deduce that there exists a constant c1 such
that for any n > 1 we have Cat(n) 6 c14n(n + 1)−3/2. We can thus use Lemma 1 with
β = 3/2 to deduce that there exists a constant c2 > 0 such that for every n > 1, the

probability that two of the trees τ
(n)
1 , . . . , τ

(n)
p have size larger than a > 0 is less than

c2a
−1/2. Hence, for large n’s the right-hand side of (11) becomes

εn,a +

p∑
i=1

 ∑
06n1,...,n̂i,...,np6a

Cat
(
n−∑j 6=i nj

)
Cat(n, p)

E[fi(Tn−∑j 6=i nj
)]
∏
j 6=i

Cat(nj)E[fj(Tnj
)]

 ,

where εn,a 6 c3a
−1/2 uniformly in n > 1, for some finite constant c3 depending on the

functions fi. Moreover, (8) implies that E[f(Tn)]→ E[f(T∞)] for any bounded continuous
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functional for dtree as n→∞. So, using once more the asymptotic (10), we can let n→∞
followed by a→∞ in the last display and obtain

E

[
p∏
i=1

fi(τ
(n)
i )

]
−−−→
n→∞

p∑
i=1

1

p
E[fi(T∞)]

∏
j 6=i

∞∑
nj=0

Cat(nj)

2 · 4nj
E[fj(Tnj

)]. (12)

The sum over indices nj is E[fj(T )], where T is a critical geometric Galton–Watson tree,
which proves the desired result.

2.3 Quadrangulations with a boundary from treed bridges

2.3.1 Finite bijection

The bijection presented in this section is taken from [11] with minor adaptations. This
is a one-to-one correspondence between, on the one hand, the set Q•n,p of all rooted and
pointed quadrangulations with a boundary of perimeter 2p and size n and, on the other
hand, the set of all labeled treed bridges of length 2p and size n. We only present the
mapping from labeled treed bridges to quadrangulations, the reverse direction can be
found in [11].

Let b = (bp; θ1, . . . , θp) be a labeled treed bridge of size n and perimeter 2p. We
consider a representation E of this treed bridge in the plane. Recall that the labeling
of the vertices of this representation is denoted by `b. Let C be the set of corners of
the infinite component of R2\E that are also incident to vertices belonging to the grafted
trees, that is, we erase the corners coming from angular sectors around the vertices of
the cycle that are not down-steps of the bridge (see Fig. 7). This set inherits a clockwise
cyclic order.

We now associate a quadrangulation with b by the following device: we start by
putting an extra vertex denoted by ρ in the infinite component of R2 \ E . Then for each
corner c ∈ C , we draw an edge between c and the first corner c′ ∈ C for the clockwise
order such that the label `b(c′) of c′ equals `b(c)− 1: this corner is called the successor of
c. If there is no such corner (this happens only if the corner c has minimal label) then we
draw an edge between c and ρ. This construction can be done in such a way that the edges
are non-crossing. After erasing the representation E of b we obtain a quadrangulation q
of size n with a boundary, whose vertex set is the union of the vertices of (the embeddings
of) θi for i ∈ {1, . . . , p} plus the extra vertex ρ.

Note that there is a one-to-one order-preserving correspondence between the edges of
the cycle of E and the edges of the external face of q, see Fig. 7 where the external face
is inside the drawing. The distinguished oriented edge ~e of q is the edge that corresponds
to the first step of the bridge oriented in such a way that the external face is on the
right-hand side of ~e. We denote the rooted quadrangulation (q,~e) pointed at ρ by Φ(b).
Furthermore, using the identification of the vertices of the map Φ(b) with ∪iθi ∪ {ρ}, for
every u ∈ ∪iθi we have

`b(x)− `b(ρ) = dgr(x, ρ), (13)

where dgr is the graph distance in Φ(b).

12
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0

−1−2

−1
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1 3
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0

0−1

−2

−1

ρ

Figure 7: Construction of the rooted and pointed quadrangulation with a bound-
ary associated with a treed bridge. The treed bridge is represented in dotted lines,
the quadrangulation in solid lines, its boundary in thick lines and finally the corre-
spondence between the embedded cycle and the boundary of the map is highlighted
with dashed lines.

2.3.2 Extended construction

We can extend the preceding mapping Φ to the case when the treed bridge b is infinite but
still belongs to Bp. The extension is very similar to that of [14]. Almost all the steps of the
construction of Φ remain the same, the only exception being that every corner attached
to a tree in the infinite component of the embedding will find a successor, that is, there
is no need to add an extra vertex ρ. The extended mapping, which we still denote Φ,
associates with every infinite labeled treed bridge in Bp an infinite rooted quadrangulation
q with a boundary of perimeter 2p (this quadrangulation is not pointed anymore) whose
vertex set is the union of the vertices of the trees of the bridge. The correspondence
between the cycle of the representation and the boundary of the map is still preserved.
The shifted labels lose their interpretation (13) (see (15) in Theorem 2). However, since
any neighboring vertices in the quadrangulation q have labels that differ in absolute value
by exactly 1, we deduce that for any vertices u, v in the resulting quadrangulation we have
(with the identification of the vertices of the quadrangulation with those of the trees of
b)

dgr(u, v) > |`b(u)− `b(v)|. (14)

Proposition 2. The extended Schaeffer mapping Φ : Bp −→ Q is continuous with respect
to the metrics dbridge and dmap.

Proof. The proof is similar to that of [14, Proposition 2.5] and is left to the reader.
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3 The UIPQ with a general boundary

3.1 Construction

The following theorem in an extension of the main result of [14] to the case of quadran-
gulations with a general boundary. Recall that Qn,p is uniformly distributed over Qn,p.
Theorem 2. (i) For any p ∈ {1, 2, 3, . . .} we have the following convergence in distribution
for dmap

Qn,p
(d)−−−→

n→∞
Q∞,p,

where Q∞,p is called the uniform infinite planar quadrangulation with a boundary of
perimeter 2p. If B∞,p is a uniform infinite labeled treed bridge of length 2p then Q∞,p =
Φ(B∞,p) in distribution.

(ii) If Q∞,p = Φ(B∞,p) then, with the identification of the vertices of Q∞,p with those
of the trees of B∞,p, we have for any u, v ∈ Q∞,p

lim
z→∞

(
dgr(u, z)− dgr(v, z)

)
= `B∞,p(u)− `B∞,p(v), (15)

where z →∞ means that the graph distance between z and the origin tends to infinity.

Proof of the first part of Theorem 2. An application of Euler’s formula shows that every
quadrangulation with a boundary of perimeter 2p and size n has exactly n+p+1 vertices.
We deduce from the preceding section that after forgetting the distinguished point, the
rooted quadrangulation Φ(Bn,p) is uniform over Qn,p. The first part of the theorem then
follows from Proposition 1 and Proposition 2.
For the second part of the theorem, notice that the case p = 1 is proved in [14]. The
general case will follow from this case using a surgical operation that we present in Section
4 below.

Remark 3. In the construction Q∞,p = Φ(B∞,p), since the origin of the root edge of Q∞
automatically has label 0, the formula (15) can be used to recover `B∞,p as a measurable
function of Q∞,p. Using an extension of the reversed construction “Φ−1” (see [11]) it can
be proved following the lines of [14] that the treed bridge B∞,p itself can be recovered as
a measurable function of Q∞,p. We leave details to the interested reader.

Remark 4. Recall that the UIPQ with a simple boundary was defined from the standard
UIPQ in Section 1.3. It is also possible to define the UIPQ with a simple boundary Q̃∞,p
as the variable Q∞,p conditioned on having a simple boundary. However, thanks to the
asymptotics (4) and (5) the probability that the boundary of Q∞,p is simple is easily seen
to be

P (∂Q∞,p is simple) =
C̃p
Cp

∼
p→∞

√
3

(
9

16

)p
.

This exponential decay is not useful if we want to derive properties of Q̃∞,p from properties
of Q∞,p for large p’s. For that purpose we develop in Section 4 another link between these
objects based on a pruning procedure.
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3.2 Aperture of the UIPQ with a general boundary

Recall that if q is a quadrangulation with a boundary, the aperture of q is the maximal
graph distance between any two points of the boundary

aper(q) = max{dgr(u, v) : u, v ∈ ∂q}.

The main result of this section provides bounds on the aperture of Q∞,p for large p’s. It
is based on the construction Q∞,p = Φ(B∞,p) of Theorem 2 and on properties of some
specific geodesics in Q∞,p.

Theorem 3. The aperture of Q∞,p is exponentially concentrated around the order of
magnitude

√
p. More precisely, there exist c1, c2 > 0 such that for all λ > 0 and every

p ∈ {1, 2, 3, . . .} we have

P
(
aper(Q∞,p) /∈ [λ−1√p, λ√p]

)
6 c1 exp(−c2λ

2/3).

Fix p ∈ {1, 2, 3, . . .}. To simplify notation, we write B = (Bp; Θ1, . . . ,Θp) ∈ Bp for
the uniform infinite labeled treed bridge of length 2p and assume that Q∞,p = Φ(B). We
will always use a representation E of B and identify the trees Θ1, . . . ,Θp and the bridge
Bp with their embeddings in the representation, see Fig. 6. Recall that the shifted labels
of the trees are denoted by `B. We denote by C the set of corners of E that are associated
with some vertex of ∪iΘi. If c, c′ ∈ C we denote by [c, c′] the set of corners of C that are
in-between c and c′ for the clockwise order. For 1 6 i 6 p, the set of corners attached
to the tree Θi is [cL,i, cR,i] where cL,i and cR,i respectively denote the left and right most
corner of the root vertex of Θi in E , see Fig. 8.

Θ1

cL,1

cR,1

cR,2

cL,2

cL,3cR,3

cL,4 = cR,4

cL,5

cR,5

cL,6

cR,6

Θ2

Θ3

Θ4

Θ5

Θ6

γcR,1

γcL,1

Figure 8: Left and right most corners of the trees Θ1, . . . ,Θ6 and the geodesics
γcL,1

and γcR,1
.
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Simple geodesic. We recall the notion of simple (or maximal) geodesic, see [14, Defi-
nition 3.5]. Let c ∈ C . We can construct a path in the quadrangulation Φ(B) by starting
with the corner c and following iteratively its successors. This path is called the simple
geodesic starting from c and is denoted by γc, see Fig. 8 for examples. It is easy to see,
thanks to (14), that this path is actually a geodesic in the quadrangulation. If B were
finite, this path would eventually end at ρ. In general, if c, c′ ∈ C , then γc and γc′ merge
at a corner c′′ of label

`B(c′′) = max

{
min
[c,c′]

`B,min
[c′,c]

`B

}
− 1. (16)

Proof of Theorem 3. We will suppose, without loss of generality, that Θ1 is the uniform
infinite labeled tree so that Θ2, . . . ,Θp are uniformly labeled critical geometric Galton–
Watson trees. Let us start with a preliminary observation.

Warm-up. Imagine that we construct the two simple geodesics γcL,1
and γcR,1

starting
from the extreme corners of the root of Θ1 and denote by C the cycle they form until their
meeting point, see Fig. 8. We let M = max{`B(u) : u ∈ ∪pi=2Θi or u = root(Θ1)} and
m = min{`B(u) : u ∈ ∪pi=2Θi or u = root(Θ1)}. By the remark made on simple geodesics,
one sees that the length of C is less than 2(M − m + 1) and that every vertex in the
external face of Q∞,p is linked to C by a simple geodesic of length less than M −m + 1.
We deduce that

aper(Q∞,p) 6 3(M −m+ 1). (17)

Although M and m are typically of order
√
p, yet it is possible that with a probability of

order p−2, a specific tree, say Θ2, has a height larger than p2 and thus contains labels of
order ±p. If that happens then M −m becomes of order p and not

√
p anymore. Thus

the exponential concentration presented in Theorem 3 cannot follow directly from (17).
The idea is to modify the cycle C in order to bypass the large trees among Θ2, . . . ,Θp.

Bridge. Since Q∞,p is constructed from B, we know that the edges of its boundary
are in correspondence with the edges of the cycle of E , in particular the `B-labeling of the
vertices of ∂Q∞,p corresponds to the values (X0, . . . , X2p−1) of the bridge Bp. From the
lower bound (14) we deduce that if ∆p = maxXi −minXi we have

aper(Q∞,p) > ∆p. (18)

Since Bp is a uniform bridge with 2p steps, classical results (which easily follow from the
arguments of [18]) show that there exist positive constants c1 and c2 such that for all
p > 0 we have

P
(
∆p /∈ [λ−1√p, λ√p]

)
6 c1 exp(−c2λ

2). (19)

Shortcut. As we said, the strategy is to build a simple path surrounding the external
face in a very similar fashion as in the warmup but that shortcuts large trees. Let us
be more precise. For every i ∈ {1, . . . , p}, declare the tree Θi “good” if the maximal
displacement of the labels in Θi is in absolute value less than

√
p, that is if

sup
u,v∈Θi

|`B(u)− `B(v)| 6 √p.
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Call Θi “bad” otherwise. For any i ∈ {2, . . . , p}, the probability that Θi is bad is less than
c3p
−1, for some c3 > 0 (see e.g. [14, Lemma 3.9]). Hence, if K is the number of bad trees

among {Θ2, . . . ,Θp}, then for any 1 6 k 6 p we have

P (K > k) 6

(
p

k

)(
c3

p

)k
6

ck3
k!
. (20)

We now construct the path shortcutting these trees. Recall that for 1 6 i 6 p, we denote
cL,i, cR,i respectively the left-most and right-most corners of the root vertex of Θi in E . We
start our journey with γcR,1

and move along it. As soon as γcR,1
meets a bad tree Θi, we

proceed as follows. From cL,i we start the simple geodesic γcL,i
. We know that it requires

less than
√
p+ ∆p + 1 steps for γcL,i

to merge with γcR,1
(which happens in Θi), then we

bypass Θi by going backwards along γcL,i
to reach the root of Θi and finally continue the

process with γcR,i
. Since Θ1 is obviously bad we also shortcut it. See Fig. 9 below.

γcR,1

γcL,i1

γcR,i1

∞

Figure 9: An illustration of the proof, the bad trees are represented in gray and
the cycle constructed out of simple geodesics shortcutting them by a fat black line.

At the end of the process we get a simple cycle denoted by Cshort, which surrounds the
external face of Q∞,p and whose length is at most

Length(Cshort) 6 2(K + 1)(
√
p+ ∆p + 1). (21)

Furthermore, similarly as in the warm-up part, it is easy to see that every vertex of the
external face of Q∞,p can be connected to Cshort via a simple geodesic of length less than√
p+∆p+1, thus the aperture of Q∞,p is less than (K+3) · (√p+∆p+1), which together

with (18) gives

∆p 6 aper(Q∞,p) 6 (K + 3)(
√
p+ ∆p + 1). (22)

Now, for λ > 1 and p > 1, noticing that we have 12λ > (λ2/3 + 3)(2 + λ1/3) we get from
the previous display that

P (aper(Q∞,p) 6 λ−1√p) 6 P (∆p 6 λ−1√p)
P (aper(Q∞,p) > 12λ

√
p) 6 P (∆p > λ1/3√p) + P (K > λ2/3).

We use (19) and (20) to see that the probabilities of the right hand side are bounded by
c4 exp(−c5λ

2/3) for some constants c4, c5 > 0, which completes the proof of the theorem.

17



4 Pruning

4.1 Pruning of Q∞,p

Recall from Section 1.2 that we can decompose a quadrangulation with a general boundary
into the irreducible component containing the root edge on which quadrangulations with
a general boundary are attached. We now aim at a decomposition with respect to a “big”
irreducible component, which is not necessarily the one designated by the root edge. We
call this operation pruning.

Let q be a rooted quadrangulation with a boundary. Suppose that there is a unique
irreducible component in q with maximal size. We call this irreducible component the
core of q and denote it by Core(q). The core is either rooted at the original root edge
of the map if it lies on the boundary of the core, or on the oriented edge preceding the
component carrying the root edge (in that case this component is not reduced to the
vertex map). Attached to this core we find quadrangulations with a general boundary
denoted by Part0(q),Part1(q), . . . ,Part2r−1(q), ordered starting from the root of the core,
where 2r is the perimeter of the core. Note that some of these components can be reduced
to the vertex map †. The components attached to the core are rooted at their last oriented
edge visited during a clockwise contour of the external face (keeping the external face on
the right). See Fig. 10 below.

q

Part1(q)

Part2(q)

original root

Part3(q)

Core(q)

†

†

†

†

†

†

†

Figure 10: Illustration of the pruning.

The quadrangulation q can be recovered from Core(q),Part0(q),Part1(q), . . . ,Part2r−1(q)
if we are given a number R(q) ∈ {1, . . . , |∂Part0(q)| + 1} to specify the location of the
original root edge of the initial quadrangulation: on the first, second, . . . , |∂Part0(q)|-th
oriented edge of Part0(q) if R(q) ∈ {1, . . . , |∂Part0(q)|}, or on the core just before Part0(q)
if R(q) = |∂Part0(q)|+ 1.

If there are several irreducible components with maximal size, we set Core(q) and
all the components to be equal to † and R(q) = 0 by convention. The pruning is still
possible when dealing with a rooted quadrangulation with a boundary that contains a
unique infinite irreducible component, which is automatically the core.
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Let Bp be the set of (possibly infinite) quadrangulations with a boundary of a fixed
perimeter 2p and at most one infinite irreducible component. We claim that every q ∈ Bp
is a continuity point for the functions Core,Parti and R with respect to dmap (here we
make a slight abuse of notation: since the set of indices i for which Parti is defined depends
on q, this means that for q′ close enough to q this set of indices will be the same). We
only sketch the proof, leaving details to the reader.

Let qn converge to q in Bp. If q is finite then there is nothing to prove since we
have qn = q for all n large enough. So assume that q has a unique infinite irreducible
component. Let D = max{diam(Parti(q)) : 0 6 i 6 2r − 1} and fix r′ > D + p + 1.
Fix n large enough so that Br′(qn) = Br′(q). Note that Br′(q) contains all the edges of
the boundary of q and qn, as well as the vertices of the irreducible components of these
two quadrangulations that are at distance less than D + 1 from the boundary. Hence
knowing this ball is enough to deduce that qn admits a unique irreducible component
of maximal size (necessarily contained in Core(q)), which is thus Core(qn), and that the
smaller irreducible components of qn are the same as those of q. Moreover, Core(qn) and
Core(q) must coincide within the ball of radius r′−p centered at their root vertices, which
implies that dmap(Core(qn),Core(q))→ 0 as n→∞ since r′ was arbitrary. For the same
reason, the components of qn attached to its core by a cut vertex are the same as those
of q, and connect through the same cut vertices, and R(qn) coincides with R(q), entailing
the claimed continuity property.

On the other hand, if q has at least two irreducible components of maximal size, then
it is necessarily finite by definition of Bp, and thus qn = q for every n large enough.

Proposition 3. For every p ∈ {1, 2, 3, . . .}, Q∞,p is in Bp almost surely.

Proof. We suppose that Q∞,p = Φ(B) as in the proof of Theorem 3. Recall that in the
warmup part of the proof of Theorem 3 we built a cycle C using the two simple geodesics
starting from the extreme left and right corners of the infinite tree in B. Since this
cycle is a simple path it must be contained in a single irreducible component of Q∞,p.
Furthermore, it is easy to see that only finitely many vertices are in-between the external
face of Q∞,p and C, see Fig. 8. This shows that the irreducible component containing C
is the unique infinite component of Q∞,p.

In the following theorem, Zi are i.i.d. random variables distributed according to

P (Z = k) =

∑∞
n=0 12−n8−kqn,k
Wc(8−1)

, k ∈ {0, 1, 2, . . .}.

Theorem 4 (Pruning with fixed perimeter). For every p > r > 1, conditionally on the
event {|∂Core(Q∞,p)| = 2r} of probability

P (|∂Core(Q∞,p)| = 2r) =
r−1(9/2)−rC̃r
p−18−pCp

P (Z1 + . . .+ Z2r = p− r),

the core of Q∞,p is distributed as a UIPQ with a simple boundary of perimeter 2r.

Proof. Recall that Qn,p (resp. Q̃n,p) denotes a random variable, uniformly distributed over

Qn,p (resp. Q̃n,p). We also denote by Uk a uniform variable over {1, 2, . . . , k}. Fix p > 1
and r > 1, and let g, f1, . . . , f2r be positive bounded continuous functions for the distance
dmap and e : R → R+ be a bounded positive continuous function with e(0) = 0. As an
immediate consequence of Proposition 3 and part (i) in Theorem 2, we deduce that Qn,p

19



has a unique irreducible component with maximal size with a probability tending to 1 as
n → ∞. Thus we have, by the continuity properties of Core,Parti and R on the set Bp
that supports the law of Q∞,p by Proposition 3,

E

[
g
(
Core(Qn,p)

)
e(R(Qn,p))

2r−1∏
i=0

fi
(
Parti(Qn,p)

)
1|∂Core(Qn,p)|=2r

]

−−−→
n→∞

E

[
g
(
Core(Q∞,p)

)
e(R(Q∞,p))

2r−1∏
i=0

fi
(
Parti(Q∞,p)

)
1|∂Core(Q∞,p)|=2r

]
. (23)

Moreover, the pruning decomposition leads to

E

[
g
(
Core(Qn,p)

)
e(R(Qn,p))

2r−1∏
i=0

fi
(
Parti(Qn,p)

)
1|∂Core(Qn,p)|=2r

]
=

1

qn,p

∑
n>m>0

q̃m,rE
[
g(Q̃m,r)

]
×

∑
p0+...+p2r−1=p−r
m>n0,...,n2r−1>0
n0+...+n2r−1=n−m

(2p0 + 1)E [e(U2p0+1)]
2r−1∏
i=0

qni,piE
[
fi(Qni,pi)

]
. (24)

Similarly as in the proof of Proposition 1, one can use the asymptotics (4), (5) and
Lemma 1 with β = 5/2 to deduce that the probability that one of the components
Part0(Qn,p),Part1(Qn,p), . . . has a size larger than a > 0 is bounded above by ca−3/2 for
some constant c > 0 uniformly in n. So we can let n → ∞ followed by a → ∞ in the
formula (24) and obtain by (7), (23) and asymptotics (4) and (5) that

E

[
g
(
Core(Q∞,p)

)
e(R(Q∞,p))

2r−1∏
i=0

fi
(
Parti(Q∞,p)

)
1|∂Core(Q∞,p)|=2r

]

=
C̃r
Cp
E
[
g(Q̃∞,r)

] ∑
p1+...+p2r=p−r

(2p1 + 1)E [e(U2p1+1)]

×
2r∏
i=1

∞∑
ni=0

12−niqni,piE
[
fi(Qni,pi)

]
. (25)

The last expression is the fundamental “pruning formula”. It can be used to derive the
distribution of the core and the components of Q∞,p for a fixed p. Let us proceed. Fix
p > r > 1, so that (25) specializes when e = f1 = . . . = f2r = 1 to

E[g(Core(Q∞,p))1|∂Core(Q∞,p)|=2r] =
C̃r
Cp
E[g(Q̃∞,r)]

∑
p1+...+p2r=p−r

(2p1 + 1)
2r∏
i=1

∞∑
ni=0

12−niqni,pi

=
p

r

C̃r
Cp
E[g(Q̃∞,r)]

∑
p1+...+p2r=p−r

2r∏
i=1

∞∑
ni=0

12−niqni,pi ,

where we got rid of the term (2p1 + 1) by an obvious symmetry argument, to the cost of
adding the prefactor (2r)−1

∑2r
i=1(2pi + 1) = p/r. Recalling the definition of the bivariate
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function W (g, z) and Wc(z) = W (12−1, z), we can further re-write the last expression as

p

r

C̃r
Cp
E[g(Q̃∞,r)]8

p−rWc(8
−1)2r

∑
p1+...+p2r=p−r

2r∏
i=1

∑∞
ni=0 12−ni8−piqni,pi

Wc(8−1)

=
p

r

(9/2)−rC̃r
8−pCp

E[g(Q̃∞,r)]
∑

p1+...+p2r=p−r

2r∏
i=1

∑∞
ni=0 12−ni8−piqni,pi

Wc(8−1)
,

where we used the fact that Wc(8
−1) = 4/3, see (3). We interpret the last sum as

P (Z1+Z2+. . .+Z2r = p−r), where Z1, . . . , Z2r are as in the statement of the theorem.

4.2 Proof of Theorem 1

As a first application of Theorem 4, let us now prove Theorem 1. To this end, we first
make some preliminary observations. By definition of W (g, z), the generating function of
Z1 is given by

E[sZ1 ] =
Wc(s8

−1)

Wc(8−1)
=

(1−
√

1− s)(2s− 1 +
√

1− s)
s2

=
s↑1

s+ 2(1− s)3/2 + o((1− s)3/2) .

By standard results on stable domains of attraction [9], this expression entails that the
random variable Z1 is in the domain of attraction of a stable random variable with ex-
ponent 3/2. More precisely, since moreover E[Z1] = 1 by differentiating the previous
expression, it holds that

Z1 + . . .+ Zn − n
n2/3

(d)−−−→
n→∞

Z ′ ,

where the Laplace transform of Z ′ is given by E[exp(−λZ ′)] = exp(2λ3/2) for every λ > 0.
More precisely, if h denotes the density of the law of Z ′, then the Gnedenko-Kolmogorov
local limit theorem for lattice variables (see [16, Theorem 4.2.1]) entails that

sup
k∈Z

∣∣∣∣n2/3P (Z1 + Z2 + . . .+ Zn = n+ k)− h
( k

n2/3

)∣∣∣∣ −→n→∞ 0 . (26)

Now, for a given r > 1, set p = 3r in the display of Theorem 4. By using (26) with
n = 2r and k = 0, we obtain P (Z1 + . . . + Z2r = 2r) ∼ h(0)(2r)−2/3 as r → ∞. On the

other hand, the asymptotic behavior for Cp, C̃r entails that (still when p = 3r)

r−1(9/2)−rC̃r
p−18−pCp

−−−→
r→∞

3 . (27)

From this and Theorem 4, we conclude that

P (|∂Core(Q∞,3r)| = 2r) ∼ Ar−2/3 ,

where A = 3 · 2−2/3 · h(0) ∈ (0,∞). Using Theorem 4, we deduce that there exists
A′ ∈ (0,∞) such that for any non-negative measurable function g,

E[g(Q̃∞,r)] = E
[
g(Core(Q∞,3r))

∣∣ |∂Core(Q∞,3r)| = 2r
]
6 A′r2/3E[g(Core(Q∞,3r))] .
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From this, Theorem 3, and the obvious fact that aper(Core(Q∞,3r)) 6 aper(Q∞,3r), we
conclude that

P (aper(Q̃∞,r) > λ
√
r) 6 A′r2/3P (aper(Core(Q∞,3r)) > λ

√
r)

6 A′r2/3P (aper(Q∞,3r) > λ
√
r)

6 A′c1r
2/3 exp(−3−1/3c2λ

2/3) .

This yields Theorem 1.

Remark 5. Since the aperture decreases through the pruning, we can only provide an upper
bound on the aperture of quadrangulations with a simple boundary using our method.
Secondly, although Theorem 3 entails that (p−1/2aper(Q∞,p))p>0 is tight, our results do

not imply a similar property for (p−1/2aper(Q̃∞,p))p>0 due to the additional factor p2/3.

However, we believe that (p−1/2aper(Q∞,p))p>0 and ((3p)−1/2aper(Q̃∞,p))p>0 converge in
distribution to the same non-degenerate random variable.

4.3 Asymptotics of the perimeters

As a second application of Theorem 4, we will see that as p → ∞ the core of Q∞,p
has a perimeter which is roughly a third of the original quadrangulation. This supports
[11, Section 5] where the authors proved that quadrangulations with a simple boundary
of perimeter p have the same large scale structure as quadrangulations with a general
boundary of perimeter 3p.

Proposition 4. We have the following convergence in probability

|∂Core(Q∞,p)|
2p

(P )−−−→
p→∞

1

3
.

More precisely, it holds that

|∂Core(Q∞,p)| − 2p/3

p2/3

(d)−−−→
p→∞

Z ,

where Z is a spectrally negative stable random variable with exponent 3/2, with Laplace
transform given by

E[exp(λZ)] = exp

((2

3

)5/2

λ3/2

)
, λ > 0 .

Proof. Let p > 1 and x ∈ R, and let r = bp/3c + bxp2/3c. We again use the local
limit theorem (26) by specializing it to n = 2r and k = p − 3r, and use the asymptotic

equivalents for Cp, C̃r with the same limit as in (27). Together with Theorem 4 this implies

p2/3P
(1

2
|∂Core(Q∞,p)| − bp/3c = bxp2/3c

)
−−−→
p→∞

35/3

22/3
h
(
− 35/3

22/3
x
)
.

By Scheffé’s lemma and elementary computations using the Laplace transform of h, this
implies the second claim in the statement. The first claim on convergence in probability
is a simple consequence of the latter.
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4.4 Randomizing the perimeters

In this section, we argue that (25) gives a particularly nice probabilistic interpretation
of the pruning operation, to the cost of randomizing the perimeters of the maps under
consideration. Let us introduce some notation. Let C(z) =

∑
Cpz

p be the generating

function of the Cp’s (with C0 = 0) and set ~Wc(z) := Wc(z) + 2z∂zWc(z). Notice that∑
n>0 qn,p(2p+1)12−n = [zp](Wc(z)+2z∂zWc(z)) = [zp] ~Wc(z). From the exact expressions

of Cp(.) (4) and (6) we get that

C(z) =
2z√

π(1− 8z)3/2
,

~Wc(z) =
1− 4z −

√
1− 8z

8z2
. (28)

For 0 6 z 6 1/8, we denote by Qf,z (resp. ~Qf,z) a random finite quadrangulation with a
general boundary such that the size of Qf,z equals n and its perimeter 2p with probability

12−nzpWc(z)−1 (resp. (2p + 1)12−nzp ~Wc(z)−1). In particular, conditionally on n and p,

both Qf,z and ~Qf,z are uniform over Qn,p, and the r.v. ~Qf,z has the law of Qf,z biased

by its perimeter plus 1. Since Wc(1/8) and ~Wc(1/8) are finite, both Qf,z and ~Qf,z make
sense for z = 1/8. We call these random quadrangulations “free critical Boltzmann (extra

rooted) quadrangulations with parameter z”. Finally, for 0 < z < 1/8, let Pz and P̃z be
random variables distributed according to

P (Pz = p) =
zpCp
C(z)

, and P (P̃z = r) = C̃r
(
zW 2

c (z)
)r ~Wc(z)

C(z)Wc(z)
. (29)

We recall that C0 = C̃0 = 0. The lines leading to (25) (or a direct calculation) show that

C̃(zW 2
c (z)) ~Wc(z) = C(z)Wc(z) for every 0 6 z < 1/8 (where C̃ is the generating function

of the C̃r’s) so that P̃z is well defined.
In the remaining of this work if P is an integer-valued random variable, we denote by

Q∞,P a random variable such that conditionally on {P = p}, Q∞,P is distributed as Q∞,p
(and similarly for Q̃∞,P).

Theorem 5 (Pruning with random perimeter). For every z ∈ (0, 1/8), we have the
following equality in distribution

Core
(
Q∞,Pz

) (d)
= Q̃∞,P̃z

.

Furthermore, conditionally on |∂Core(Q∞,Pz)|, the core and the components of Q∞,Pz are
independent, the latter being distributed as follows: the first component is distributed ac-
cording to ~Qf,z (the location R(Q∞,Pz) of the root being uniform over {1, 2, . . . , |∂Part0(Q∞,Pz)|+
1}), and all the other |∂Core(Q∞,Pz)| − 1 components are distributed according to Qf,z.

Proof. Fix z ∈ (0, 1/8). We multiply both members of (25) by zpCp, sum over all p > 1
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and then divide by C(z) to deduce that

E

[
g
(
Core(Q∞,Pz)

)
e(R(Q∞,Pz))

2r−1∏
i=0

fi
(
Parti(Q∞,Pz)

)
1|∂Core(Q∞,Pz )|=2r

]

=
~Wc(z)

C(z)Wc(z)
C̃r
(
zW 2

c (z)
)r(

E
[
g(Q̃∞,r)

]
E
[
f1( ~Qf,z)E

[
e
(
U|∂ ~Qf,z |+1

)] ] 2r∏
i=2

E
[
fi(Qf,z)

])

= P (P̃z = r)

(
E
[
g(Q̃∞,r)

]
E
[
f1( ~Qf,z)E[e(U|∂ ~Qf,z |+1)]

] 2r∏
i=2

E
[
fi(Qf,z)

])
.

This implies the result.

4.5 Interpretation of the labels when Q∞,p = Φ(B∞,p)

In this section we finally prove how the pruning can be used to deduce the second part of
Theorem 2 from the results of [14]. Let us recall the setting. Fix p ∈ {1, 2, 3, . . .} and let
B be a uniform infinite labeled treed bridge of length 2p. We consider Q∞,p = Φ(B). We
aim at showing that, with the identification of the vertices of Q∞,p with those of B, a.s.
for every u, v ∈ Q∞,p we have

lim
z→∞

(
dgr(u, z)− dgr(v, z)

)
= `B(u)− `B(v).

Proof of the second part of Theorem 2. In order to prove the last display, it only suffices
to prove the property, denoted by (∗), that the left-hand side does have an a.s. limit as
z →∞. Indeed, assuming (∗), we can adapt the end of the proof of [14, Lemma 3.13]: for
u, v ∈ B we consider two simple geodesics γu and γv starting from any corners associated
with u and v in B (these are thus proper geodesics in the terminology of [14]). By (16),
these two paths eventually merge with a difference of steps equal to |`B(u)− `B(v)|. Since
γu and γv are geodesics, for any z on these paths after the merging point we have

dgr(u, z)− dgr(v, z) = `B(u)− `B(v),

so sending z →∞ along γu ∩ γv implies the claim by using property (∗).
It thus suffices to prove that (∗) holds for Q∞,p. In fact, it is easy to see that we can
restrict our attention to those u, v that belong to the Core of Q∞,p. Indeed, if u is inside
a finite irreducible component C and z is inside Core(Q∞,p) then if u◦ denotes the vertex
common to Core(Q∞,p) and C then we have

dgr(u, z) = dgr(u, u◦) + dgr(u◦, z).

Thanks to Theorem 4, for any 1 6 r 6 p, conditionally on {∂Core(Q∞,p) = 2r} we have

Core(Q∞,p) = Q̃∞,r in distribution. We are thus reduced to prove that Q̃∞,r satisfies (∗)
for all r > 1. To show this, we will make some plastic surgery with Q̃∞,p in order to come
back to the setup of [14], which deals with the full-plane UIPQ.

More precisely, let us consider the quadrangulation Q′∞,r obtained after filling the

external face of Q̃∞,r with a quadrangulation with a simple boundary of perimeter 2r
made of 2r + 1 “layers” of quadrangles such that the last layer is connected to the root
edge, see Fig. 11.
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Q̃∞,r Q′
∞,r

Figure 11: The filling operation.

This operation is reversible, that is, given Q′∞,r and the number r, we can recover

Q̃∞,r. Most importantly, the filling has been done in such a way that for any u, v ∈ Q̃∞,r
we have

d
Q′∞,r
gr (u, v) = dQ̃∞,r

gr (u, v). (30)

Indeed it is easy to see that for any u, v ∈ Q̃∞,r we can find a geodesic path between u
and v that does not enter the grafted region. Furthermore, the law of Q′∞,r is absolutely
continuous with respect to the law of the UIPQ (this can be seen, e.g. using the spatial
Markov property of the UIPQ, see [6]). Since the UIPQ satisfies property (∗) a.s. (see

[14]) we deduce that the same holds for Q′∞,r. By (30), the same also holds for Q̃∞,r.

5 Open boundary, open questions

5.1 UIPQ of the half-plane

In this section we let p → ∞ and define the UIPQ with an infinite general and simple
boundary of infinite perimeter. We then extend the pruning procedure to these infinite
quadrangulations. The proofs are only sketched or left to the reader.

5.1.1 General boundary

We start by introducing the limit of the uniform infinite labeled treed bridges as p→∞.

Let (Xn)n∈Z be a two-sided simple random walk with X0 = 0 and having uniform in-
crements in {+1,−1}. Independently of (Xn)n∈Z, let (Θi)i∈Z be a sequence of independent
uniformly labeled geometric critical Galton–Watson trees (all finite). The object B∞,∞ =
((Xn)n∈Z, (Θi)i∈Z) is the uniform infinite labeled treed bridge of infinite length. It obviously
appears as a limit of the uniform infinite labeled treed bridge B∞,p = (Bp; Θ1,p, . . . ,Θp,p)

of length 2p as p → ∞ in the following sense: if Bp = (X
(p)
0 , . . . , X

(p)
2p−1), then for any
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m > 1 we have

(X
(p)
[i] )−m6i6m

(d)−−−→
p→∞

(Xi)−m6i6m,

when [i] stands for the representative of i modulo 2p that belongs to {0, . . . , 2p − 1}.
Furthermore the trees grafted on the down-steps [i] such that −m 6 i 6 m are asymptot-
ically i.i.d. critical geometric Galton–Watson trees since the probability that one of these
trees is the infinite one tends to 0 as p→∞.

We can associate with the infinite treed bridge B∞,∞ a representation by grafting the
trees Θi to the down-steps of the walk (Xn) and shifting their labels, see Fig. 12. We
then (once again) extend the Schaeffer mapping Φ to this object in a straightforward
manner and define a random infinite quadrangulation with an infinite perimeter denoted
by Φ(B∞,∞), see Fig. 12.

0 - 1 0 - 1 - 2 - 3 - 2 - 3- 101210- 1

3

3

2

1

0

1

1 - 1 1

2 - 1

- 2 - 1

- 2 0 - 30

1

Figure 12: Second extension of Φ. The infinite labeled treed bridge is represented
with dashed lines, the map with solid lines and its boundary with thick lines.

Proposition 5. We have the following convergence

Q∞,p
(d)−−−→
p→∞

Q∞,∞,

in distribution for dmap, where Q∞,∞ is a random infinite rooted quadrangulation with an
infinite boundary that can be constructed from the uniform infinite treed bridge of infinite
perimeter via the extended Schaeffer mapping, that is, Q∞,∞ = Φ(B∞,∞) in distribution.

This is essentially an adaptation of the first part of Theorem 2 (and Proposition 2).
The proof is left to the interested reader.
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5.1.2 Simple boundary.

Recall the notation used in Theorem 5. Using the exact expression of C(.) we deduce that
for z ∈ (0, 1/8) we have

E[Pz] =
zC ′(z)

C(z)
=

1 + 4z

1− 8z
.

Thus the average perimeter of Q∞,Pz is asymptotically equivalent to 3(1−8z)−1 as z → 1/8
and it is easy to see from the singularity analysis of C(.) that Pz → ∞ in distribution

as z → 1/8. Using Proposition 4 (or by a direct analysis) we see that P̃z → ∞ as well
as z → 1/8. It follows from the last theorem that Q∞,Pz → Q∞,∞ as z → 1/8. Using

Theorem 5 we would like to deduce that Q̃∞,P̃z

(d)
= Core(Q∞,Pz) converges in distribution

as z → 1/8.
We have to be a bit careful at this point, because Core is not a continuous map-

ping on the full set of infinite quadrangulations with boundaries. However, suppose that
qn, n > 1 are quadrangulations with boundaries respectively of perimeter 2pn for some
sequence pn, n > 1, and assume that qn has a well-defined, infinite core. Recall that
Parti(qn), 0 6 i 6 2rn − 1 denote the components of qn pending from the core, which are
finite quadrangulations with boundaries, and that the extra number R(qn) allows one to
recover the root edge of qn. By convention, for i ∈ Z, let Parti(qn) be equal to Part[i](qn),
where [i] is the unique integer of the form i+2krn with k ∈ Z that lies in {0, 1, . . . , 2rn−1}.
We assume that as n→∞,

• qn converges to a limit q for the distance dmap,

• rn converges to ∞,

• for every i ∈ Z, Parti(qn) converges to a finite quadrangulation with a boundary
q(i).

(Note that the third point is not implied by the first point.) Under these hypotheses, it is
elementary to see that q also has a well-defined, infinite core, which is a quadrangulation
with an infinite simple boundary, and that dmap(Core(qn),Core(q)) → 0 as n → ∞.
Moreover, if we label the boundary vertices by Z in the natural way, the vertices with
labels 0 and 1 being the origin and end vertices of the root edge, then for i ∈ Z, the map
q(i), i ∈ Z is the component of q grafted by its root to the i-th vertex of the boundary of
Core(q). Finally, it holds that R(qn)→ R(q).

We apply this to the convergence of Q∞,Pz to Q∞,∞. Indeed, recall that Q∞,Pz has a
well-defined infinite core, and that the pending components are independent (and inde-

pendent of the core) with same distribution as Qf,z (or ~Qf,z for the root component).
Now as z → 1/8, these maps converge in distribution to random maps distributed

as Qf,1/8 (or ~Qf,1/8), which are a.s. finite. By Skorokhod’s representation theorem, we
may assume that these convergences, as well as the convergence of Q∞,Pz → Q∞,∞ and
|∂Core(Q∞,Pz)| → ∞, hold in the a.s. sense (the last convergence comes from the fact

that the perimeters under consideration have same distribution as 2P̃z). By applying
the observation of the preceding paragraph, we conclude that Q∞,∞ has a well-defined

core, which is the limit of Core(Q∞,Pz)
(d)
= Q̃∞,P̃z

. This core is a quadrangulation with an
infinite simple boundary, and the pending components are independent with same law as
Qf,1/8 (or ~Qf,1/8 for the root component), and independent of the core. We have obtained
the following proposition.
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Proposition 6. It holds that

Q̃∞,P̃z

(d)−−−−→
z→1/8

Q̃∞,∞ ,

where the limit is a random quadrangulation with an infinite simple boundary. Moreover,
the core and the components of Q∞,∞ are all independent, the core being distributed as

Q̃∞,∞, the first component as ~Qf,1/8, and the other components as Qf,1/8.

One can wonder whether the maps Q̃∞,p converge in distribution to the limit Q̃∞,∞.
This convergence is not implied by our approach, but is nonetheless true and can be
obtained by adapting techniques of [1] (where the analog of Q̃∞,∞ has been defined in the

triangular case). One of the advantages of working with objects such as Q̃∞,∞ is the very
simple form that takes the spatial Markov property, see [1, 3].

5.2 Comments, questions

Extending the techniques of this paper, it is possible to show that the graph distance
between the origin and the kth vertex on the boundary of Q∞,∞ is of order

√
|k| for

k ∈ Z and to translate this result to the simple boundary case via the pruning procedure
extended in Theorem 5. We present here a couple of open questions related to the models
Q∞,∞ and Q̃∞,∞.

Open Question 1. In the construction Q∞,∞ = Φ(B∞,∞), is it the case that the `B∞,∞-
labels have the same interpretation as in Theorem 2, that is, for every u, v ∈ Q∞,∞ we
have

lim
z→∞

(
dgr(z, u)− dgr(z, v)

)
= `B∞,∞(u)− `B∞,∞(v) ?

We next move to surgical considerations. Consider two independent copies of Q̃∞,∞
and glue them together along the boundary with coinciding roots to form a rooted quad-
rangulation of the plane denoted by Q∞ together with an two-sided infinite self-avoiding
path. Also, consider the“closing”operation that consists in zipping the boundary of Q̃∞,∞
to get an infinite rooted quadrangulation Q∞ with an infinite self-avoiding path on it.

Open Question 2. Are the laws of Q∞ and Q∞ absolutely continuous or singular with
respect to the law of Q∞? Study the self-avoiding walks obtained on them: in particular,
are they diffusive?
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