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A lattice formulation

of the noncommutative F4 procedure

Cyrille Chenavier ∗

Abstract

We introduce a new procedure for constructing noncommutative Gröbner bases using a

lattice formulation of completion. This leads to a lattice description of the noncommutative

F4 procedure. Our procedure is based on the lattice structure of reduction operators which

provides a lattice description of the con�uence property. We relate reduction operators

to noncommutative Gröbner bases, we show the Diamond Lemma for reduction operators

and we deduce the lattice interpretation of the F4 procedure. Finally, we illustrate our

procedure with a complete example.
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1 Introduction

The objective of the paper is to introduce a new procedure for constructing noncommutative
Gröbner bases which turns out to be a lattice formulation of the noncommutative F4 procedure.
This formulation is based on a description of the completion procedure using linear algebra
techniques and is motivated by the development of e�ective methods in homological algebra
using such techniques [1, 2, 9, 13, 14, 18].

The F4 procedure is an improvement of the Buchberger's one where several S-polynomials
are reduced into normal forms simultaneously. Improvements and optimisations of Buchberger's
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procedure were �rst introduced in the context of polynomial ideals, where selections strate-
gies [4, 5, 12] and criteria for avoiding useless critical pairs [6, 7, 11, 15, 16] were investigated.
The F4 completion procedure was also introduced for polynomial ideals [10], it is adapted to
the noncommutative case [19] and an implementation of this adaptation can be found in the
system MAGMA.

Our lattice formulation of F4 uses the approach due to Bergman [3] who described reduc-
tion systems over noncommutative algebras by reduction operators. The latter admit a lattice
structure inducing lattice formulations of con�uence and completion that we present now.

Lattice formulations of con�uence and completion. A reduction operator relative to
a well-ordered set (G, <) is an idempotent linear endomorphism T of the K-vector space KG
spanned by G such that for every g /∈ im (T ), T (g) is a linear combination of elements of
G strictly smaller than g. We denote by RO (G, <) the set of reduction operators relative to
(G, <).

From [8, Proposition 2.1.14], the kernel map induces a bijection between RO (G, <) and
subspaces of KG, so that RO (G, <) admits a lattice structure de�ned in terms of kernels:

i. T1 � T2 if ker (T2) ⊆ ker (T1),

ii. T1 ∧ T2 = ker−1 (ker (T1) + ker (T2)),

iii. T1 ∨ T2 = ker−1 (ker (T1) ∩ ker (T2)).

Given a subset F of RO (G, <), we denote by ∧F the lower-bound of F , that is the reduction
operator whose kernel is the sum of kernels of elements of F . We get the following lattice
formulation of con�uence: F is said to be con�uent if the image of ∧F is equal to the intersection
of images of elements of F . Recall from [8, Corollary 2.3.9] that F is con�uent if and only if
the reduction relation on KG de�ned by v −→ T (v) for every T ∈ F and every v /∈ im (T )
is con�uent. Moreover, recall from [8, Theorem 3.2.6] that the completion of F is done by the
operator CF = (∧F ) ∨

(
∨F
)
, where F is a subset of RO (G, <) de�ned from F and ∨F is

the upper-bound of F , that is F ∪ {CF } is a con�uent subset of RO (G, <).
In Section 3, the operator CF is used to reduce simultaneously several S-polynomials into

normal forms using a triangular process such as the F4 procedure does. For that, we introduce
presentations by operators which relate reduction operators to noncommutative Gröbner bases.

Reduction operators and presentations of algebras. A presentation by operator of an
associative A is a triple (X, <, S), where X is a set, < is a monomial order on the set of
noncommutative monomials X∗ and S is a reduction operator relative to (X∗, <) such that
A is isomorphic to the quotient of the free algebra over X by the two-sided ideal spanned by
ker (S).

In order to describe all the reductions induced by S we consider the "extensions" of S,
that is the operators which applied to a monomial w1w2w3 gives w1S(w2)w3. The presentation
(X, <, S) is said to be con�uent if the set of extensions of S is a con�uent subset ofRO (G, <).
From [8, Proposition 3.3.10], the presentation (X, <, S) is con�uent if and only if the set of
elements w − S(w) with w /∈ im (S) is a noncommutative Gröbner basis of I (ker (S)). This
link between reduction operators and noncommutative Gröbner bases enables us to show the
Diamond Lemma in terms of reduction operators in Proposition 2.2.8.
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Our procedure for constructing con�uent presentations by operators, and thus noncommu-
tative Gröbner bases, is given in Section 3.1. At the step number d of the procedure, we reduce
the S-polynomials of the current presentation

(
X, <, Sd

)
into normal forms using a set of

reduction operators Fd. The operator at the step d+1 is Sd+1 = Sd∧CFd . Denoting by S the
lower-bound of all the operators Sd, the triple

(
X, <, S

)
is called the completed presentation

of A. The main result of the paper is Theorem 3.2.5 which asserts that a completed presen-
tation is con�uent. In Section 3.3, we show how to implement our procedure with a complete
example as an illustration.

Organisation of the paper

Section 2.1 is a recollection of results from [8]: we recall the de�nitions and properties of re-
duction operators, their con�uence and completion used in the sequel. In Section 2.2, we de�ne
presentations by operators, the con�uence property of such presentations, we formulate and we
show the Diamond Lemma for reduction operators. In Section 3.1, we write our completion
procedure and de�ne completed presentations. In Section 3.2, we show that a completed pre-
sentation is con�uent. In Section 3.3, we illustrate our completion procedure with a complete
example based on the computation of lattice operations of reduction operators.

2 Reduction operators

2.1 Lattice structure of reduction operators

Throughout the paper, K denotes a commutative �eld. Given a set G, we denote by KG the
vector space spanned by G. Given a well-order < on G, the leading generator of a nonzero
element v ∈ KG is written lg (v). We extend the order < on G into a partial order on KG in
the following way: we have u < v if u = 0 and v 6= 0 or if lg(u) < lg(v).

De�nition 2.1.1. A reduction operator relative to (G, <) is an idempotent endomorphism T
of KG such that for every g ∈ G, we have T (g) ≤ g. We denote by RO (G, <) the set of
reduction operators relative to (G, <). Given T ∈ RO (G, <), a generator g ∈ G is said
to be a T-normal form or T-reducible according to T (g) = g or T (g) 6= g, respectively. We
denote by nf (T ) the set of T -normal forms and by red (T ) the set of T -reducible generators.

Lattice structure, con�uence and completion. Recall from [8, Proposition 2.1.14] that
the restriction of the kernel map T 7−→ ker (T ) to RO (G, <) is a bijection. Using the inverse
ker−1, the set RO (G, <) admits a lattice structure for the operations

i. T1 � T2 if ker (T2) ⊆ ker (T1),

ii. T1 ∧ T2 = ker−1 (ker (T1) + ker (T2)),

iii. T1 ∨ T2 = ker−1 (ker (T1) ∩ ker (T2)).

Recall from [8, Lemma 2.1.18] that we have the following implication

T1 � T2 =⇒ nf (T1) ⊆ nf (T2)
a. (1)

aIn [8], the notation red (T ) stands for reduced generators and correspond to nf (T ) in the present paper. The
notation red (T ) of the present paper corresponds to nred(T ) of [8] which means nonreduced generators.
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Given a nonempty subset F of RO (G, <), we denote by nf (F ) and ∧F the set of normal
forms for each T ∈ F and the lower-bound of F , respectively. From (1), nf (∧F ) is included
in nf (T ) for every T ∈ F , so that nf (∧F ) is included in nf (F ). We write

obs (F ) = nf (F ) \ nf (∧F ) . (2)

The set F is said to be con�uent if obs (F ) is the empty set. In Section 3.2, we use two char-
acterisations of the con�uence property in terms of reduction operators. First, recall from [8,
Theorem 2.2.5] that F is con�uent if and only if it has the Church-Rosser property, that is for
every v ∈ KG, there exist T1, · · · , Tr ∈ F such that (∧F ) (v) = (Tr ◦ · · · ◦ T1) (v). Moreover,
from [8, Proposition 2.2.12], F is con�uent if and only if it is locally con�uent, that is for every
v ∈ KG and for every (T, T ′) ∈ F×F , there exist v′ ∈ KG and T1, · · · , Tr, T ′1, · · · , T ′k ∈ F
such that v′ = (Tr ◦ · · · ◦ T1) (T (v)) and v′ = (T ′k ◦ · · · ◦ T ′1) (T ′(v)). Finally, we recall how a
set of reduction operators is completed into a con�uent one.

De�nition 2.1.2. A complement of F is an element C of RO (G, <) such that

i. (∧F ) ∧ C = ∧F ,

ii. obs (F ) ⊆ red (C).

The F-complement is the operator CF = (∧F )∨
(
∨F
)
, where ∨F is equal to ker−1 (Knf (F )).

Recall from [8, Proposition 3.2.2] that a reduction operator C satisfying (∧F )∧C = ∧F is
a complement of F if and only if F ∪ {C} is con�uent. Recall from [8, Theorem 3.2.6] that the
F -complement is a complement of F .

2.2 Presentations by operators

In this section, we relate the con�uence property for reduction operators to noncommutative
Gröbner bases and we prove the Diamond Lemma for reduction operators.

Given a set X, we denote by X∗ the set of noncommutative monomials over X and we
identify the free algebra over X with KX∗, equipped with the multiplication induced by con-
catenation of monomials. A monomial order over X∗ is a well-founded total strict order < on
X∗ such that the following conditions are ful�lled:

i. 1 < w for every monomial w di�erent from 1,

ii. for every w1, w2, w, w
′ ∈ X∗ such that w < w′, we have w1ww2 < w1w

′w2.

For any f ∈ KX∗, the leading monomial of f is written lm (f) instead of lg (f).

De�nition 2.2.1. A presentation by operator of an associative algebra A is a triple (X, <, S)
where

i. X is a set and < is a monomial order on X∗,

ii. S is a reduction operator relative to (X∗, <) such thatA is isomorphic toKX∗/I (ker(S)),
where I (ker(S)) is the two-sided ideal spanned by ker (S).
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We �x an algebra A together with a presentation by operator (X, <, S) of A. For every
integer n, we denote by X(n) and X(≤n) the set of monomials of length n and of length smaller
or equal to n, respectively. For every integers n and m such that (n, m) is di�erent from (0, 0),
we consider the reduction operator

Sn,m = IdKX(≤n+m−1) ⊕
(
IdKX(n) ⊗ S ⊗ IdKX(m)

)
.

Explicitly, for every w ∈ X∗, Sn,m(w) is de�ned by: if the length of w is strictly smaller than
n +m, then Sn,m(w) = w, else we let w = w1w2w3 where w1 and w3 have length n and m,
respectively and we have Sn,m(w) = w1S(w2)w3. We also let S0,0 = S.

De�nition 2.2.2. The set of all the operators Sn,m with (n, m) ∈ N2, is called the reduction
family of (X, <, S). The presentation (X, <, S) is said to be con�uent if its reduction family
is a con�uent subset of RO (X∗, <).

Recall from [8, Proposition 3.3.10] that (X, <, S) is con�uent if and only if the set of
elements w − S(w) with w ∈ red (S) is a noncommutative Gröbner basis of I (ker(S)), that
is red (S) spans leading monomials of I as a monomial ideal.

Example 2.2.3. Let X = {x, y, z} and let < be the deg-lex order induced by x < y < z.
Consider the algebra presented by (X, <, S) where S is de�ned on the basisX∗ by S(yz) = x,
S(zx) = xy and S(w) = w for every monomial w di�erent from yz and zx. We have

yxy − xx = (yxy − yzx) − (xx− yzx)
= (yS(zx)− yzx) − (S(yz)x− yzx)
= A + B

where A = (S1,0 − IdKX∗) (yzx) and B = (IdKX∗ − S0,1) (yzx). Hence, yxy − xx belongs
to ker (∧F ) where F is the reduction family of the presentation, so that yxy is ∧F -reducible.
Moreover, yxy belongs to nf (F ), so that yxy belongs to obs (F ) and F is not con�uent. Thus,
(X, <, S) is not a con�uent presentation of A.

In Section 3.1 we formulate our procedure for constructing con�uent presentations by op-
erators using critical branchings that we introduce in De�nition 2.2.4. These branchings are
analogous to ambiguities for Gröbner bases. An ambiguity with respect to < of a subset R of
KX∗ is a tuple b = (w1, w2, w3, f, g) where w1, w2, w3 are monomials such that w2 6= 1,
f, g belong to R and one of the following two conditions is ful�lled:

1. w1w2 = lm (f) and w2w3 = lm (g).

2. w1w2w3 = lm (f) and w2 = lm (g).

The S-polynomial of b is written sp (b), that is sp (b) = fw3 − w1g or sp (b) = f − w1gw3

according to b is of the form 1 or 2, respectively. The ambiguity b is said to be solvable relative
to < if there exists a decomposition

sp (b) =

n∑
i=1

λiwifiw
′
i, (3)

where, for every i ∈ {1, · · · , n}, λi is a non-zero scalar, wi, w
′
i are monomials and fi is an

element of R such that wilm (fi)w
′
i < w1w2w3. The Diamond Lemma [3, Theorem 1.2] asserts

5



that R is a noncommutative Gröbner basis of I(R) if and only if every critical branching of R
with respect to < is solvable relative to <.

Our purpose is to formulate and to prove the Diammond Lemma for reduction operators.
Until the end of the section, we �x some notations: A is an associative algebra and (X, <, S)
is a presentation by operator of A. For every pair of integers (n, m), we consider the operator
Sn,m de�ned such as the beginning of the section. We denote by R the set of elements w − S(w)
with w ∈ red (S).

De�nition 2.2.4. A critical branching of (X, <, S) is a triple b = (w, (n, m), (n′, m′))
where w is a monomial and (n, m) and (n′, m′) are couples of integers such that

i. w belongs to red (Sn,m) ∩ red
(
Sn′,m′

)
,

ii. n = 0 or n′ = 0,

iii. m = 0 or m′ = 0,

iv. n+ n′ +m+m′ is strictly smaller than the length of w.

The S-polynomial of b is SP(b) = Sn,m(w) − Sn′,m′(w) and the source of b is the monomial
w.

Remark 2.2.5. The roles of (n, m) and (n′, m′) being symmetric, we do not distinguish
(w, (n, m), (n′, m′)) and (w, (n′, m′), (n, m)).

De�nition 2.2.6. Let w ∈ X∗ and let f ∈ KX∗. We say that f admits a (S, w)-type
decomposition if it admits a decomposition

f =

n∑
i=1

λiw
1
i (wi − S(wi))w

2
i ,

where, for every i ∈ {1, · · · , n}, λi is a non-zero scalar, w1
i , w

2
i and wi are monomials such that

wi belongs to red (S) and w1
iwiw

2
i < w.

Lemma 2.2.7. There is a one-to-one correspondence b 7−→ b̃ between critical branchings of

(X, <, S) and ambiguities of R with respect to <. Moreover, a critical branching b of source

w admits a (S,w)-type decomposition if and only if b̃ is solvable relative to <.

Proof. Let us show the �rst part of the lemma. Let b = (w, (n, m), (n′, m′)) be a critical
branching of (X, <, S). In order to de�ne b̃, we distinguish four cases depending on the values
of n and m:

Case 1: (n, m) = (0, 0). We write w = w1w2w3, where the lengths of w1 and w3 are equal
to n′ and m′, respectively. By de�nition of a critical branching, w and w2 belong to red (S)

and we let b̃ =
(
w1, w2, w3, w − S(w), w1 (w2 − S(w2))w3

)
. By de�nition of a critical

branching, n+ n′ +m+m′ = n′ +m′ is strictly smaller than the length of w. In particular,
w2 is not the empty word, so that the tuple b̃ is an ambiguity of R with respect to < of the
form 2.
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Case 2: n = 0 and m 6= 0. By de�nition of a critical branching, m′ = 0. If n′ is
also equal to 0, we have (n′, m′) = (0, 0), so that we exchange the roles of (n, m) and
(n′, m′) and we recover the �rst case. If n′ 6= 0, we write w = w1w2w3, where the
lengths of w1 and w3 are equal to n′ and m, respectively. In particular, b being a critical
branching, the monomials w1w2 and w2w3 belong to red (S) and w2 is di�erent from 1. Hence,

b̃ =
(
w1, w2, w3, w1w2 − S(w1w2), w2w3 − S(w2w3)

)
, is an ambiguity of R with respect to

<.

Case 3: n 6= 0 andm = 0. By de�nition of a critical branching, n′ is equal to 0. Exchanging
the roles of (n, m) and (n′, m′), we recover the second case.

Case 4: n 6= 0 and m 6= 0. By de�nition of a critical branching, the pair (n′, m′) is equal
to (0, 0). Exchanging the roles of (n, m) and (n′, m′), we recover the �rst case.

We have a well-de�ned map b 7−→ b̃ between critical branchings of (X, <, S) and am-
biguities of R with respect to <. Now, we de�ne the inverse map b̃ 7−→ b. Let b̃ =
(w1, w2, w3, f, g) be an ambiguity of R with respect to < and let w = w1w2w3.

• If b̃ is an ambiguity of the form 1, let n and m′ be the lengths of w1 and w3, respectively.
The word w2 being non-empty, n +m′ is strictly smaller than the length of w, so that
b = (w, (n, 0), (0, m′)) is a critical branching of (X, <, S).

• If b̃ is of the form 2, let n and m be the lengths of n and m, respectively. Then, b =
(w, (n, m), (0, 0)) is a critical branching of (X, <, S).

Such de�ned, the two composites of b 7−→ b̃ and b̃ 7−→ b are identities.

Let us show the second part of the lemma. Given a critical branching b, sp (b) and sp
(
b̃
)

are equal. Letting w the source of w, a (S, w)-type decomposition of sp (b) is precisely a
decomposition of the from (3). That shows the second part of the lemma.

The Diamond Lemma for reduction operators is formulated as follows:

Proposition 2.2.8. The presentation (X, <, S) is con�uent if and only if for every critical

branching b of source w, SP(b) admits a (S, w)-type decomposition.

Proof. The two-sided ideal I(R) spanned by R is equal to I (ker(S)). Hence, from [8, Proposi-
tion 3.3.10], (X, <, S) is con�uent if and only if R is a noncommutative Gröbner basis of I(R).
From the Diamond Lemma, the presentation (X, <, S) is con�uent if and only if every ambi-
guity of R with respect to < is solvable relative to <. Thus, from Lemma 2.2.7, (X, <, S) is
con�uent if and only if for every critical branching b of source w the S-polynomial sp (b) admits
a (S, w)-type decomposition.

Example 2.2.9. Considering the presentation of Example 2.2.3, we have one critical branching
b1 = (yzx, (1, 0), (0, 1)) and we have sp (b1) = yxy − xx. This S-polynomial does not
admit a (S, yzx)-type decomposition so that we recover that the presentation is not con�uent.
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3 Completion procedure

In Section 3.1, we formulate our procedure for constructing con�uent presentations by operators
and we show the correctness of this procedure in Section 3.2. Throughout Section 3, we �x the
following notations:

i. A is an algebra and (X, <, S) is a presentation by operator of A.

ii. Given a reduction operator T ∈ RO (X∗, <) and a pair of integers (n, m), the operator
Tn,m is de�ned such as the beginning of Section 2.2.

iii. For every f ∈ KX∗, we write T (f) = ker−1 (Kf). Explicitly, (T (f)) (lm (f)) is equal
to lm (f) − 1/lc (f) f and all other monomial is a normal form for T (f). Moreover, we
write supp (f) the support of f , that is the set monomials occurring in the decomposition
of f with a nonzero coe�cient.

iv. Given a subset E ⊆ KX∗, we write lm (E) the set of leading monomials of elements of
E.

3.1 Formulation

Our procedure requires a function called normalisation with inputs a �nite set E ⊂ KX∗
and a reduction operator U ∈ RO (X∗, <) and with output a �nite set of reduction operators.
Then, normalisation(E, U) is de�ned as follows:

1. Let M =
(⋃

f∈E supp (f)
)
\ lm (E) and F = {T (f) | f ∈ E}.

2. while ∃ w1ww2 ∈ M such that w ∈ red (U),

i. we add T (w1(w − U(w))w2) to F ,

ii. we remove w1ww2 from M ,

iii. we add supp (w1U(w)w2) to M .

3. normalisation(E, U) is the set F obtained when the loop while is over.

The loop while is terminating beacause E is �nite and < is a monomial order.
We formulate our completion procedure. We assume that the presentation (X, <, S) is

�nite, that is X is �nite and ker(S) is �nite-dimensional. In particular, the set of critical
branchings of (X, <, S) is �nite.
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Algorithm 1 Completion procedure

Initialisation:

• d := 0,

• Sd := S,

• Qd := ∅ and Pd :=
{
critical branchings of

(
X, <, Sd

)}
,

• Ed :=
{
w − Sd

n,m(w) | (w, (n, m), (n′, m′)) ∈ Pd

}
.

1: while Qd 6= Pd do

2: Fd := normalisation(Ed, S
d);

3: Sd+1 := Sd ∧ CFd ;

4: Qd+1 := Pd;

5: d = d+ 1;

6: Pd :=
{
critical branchings of

(
X, <, Sd

)}
;

7: Ed :=
{
w − Sd

n,m(w) | (w, (n, m), (n′, m′)) ∈ Pd \ Qd

}
;

8: end while

This �rst and the last instruction of the loop while make sense because we have the fol-
lowing:

Lemma 3.1.1. Let d be an integer.

1. The kernels of Sd and CFd are �nite-dimensional.

2. The set Qd is included in Pd.

Proof. We show Point 1 by induction on d. The kernel of S0 = S is �nite-dimensional
by hypotheses. Let d ∈ N and assume that the kernel of Sd is �nite-dimensional. Let
Md =

⋃
f∈Ed

supp (f) be the union of words appearing in Ed. The elements of Fd are only
acting on Md, so that we have the inclusion

ker
(
CFd

)
⊂ KMd. (4)

The kernel of Sd being �nite-dimensional by induction hypothesis, the set of critical branchings
of
(
X, <, Sd

)
is �nite. Hence, Ed andMd are �nite sets, so that ker

(
CFd

)
is �nite-dimensional

from (4). Moreover, by de�nition of ∧, ker
(
Sd+1

)
is equal to ker

(
Sd
)

+ ker
(
CFd

)
, so that

ker
(
Sd+1

)
is �nite-dimensional.

Let us show Point 2. By construction, Qd is equal to Pd−1, that is Qd is the set of critical
branchings of

(
X, <, Sd−1). Let (w, (n, m), (n′, m′)) be such a critical branching, so that

we have

w ∈ red

((
Sd−1

)
n,m

)
∩ red

((
Sd−1

)
n′,m′

)
. (5)
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Moreover, by construction, we have Sd � Sd−1. Hence, from implication (1) (see page 3), we
have

red
(
Sd−1

)
⊂ red

(
Sd
)
. (6)

From (5) and (6), w belongs to red
(
Sd

n,m

)
∩ red

(
Sd

n′,m′
)
, so that (w, (n, m), (n′, m′)) is a

critical branching of
(
X, <, Sd+1

)
, that is it belongs to Pd. Thus, Qd is included in Pd.

Remark 3.1.2. Our procedure requires to compute lower-bound of reduction operators relative
to (X∗, <). In Section 3.3, we give the implementation of ker−1 for totally ordered �nite sets,
so that it cannot be used for a set of monomials. However, from Lemma 3.1.1, the kernels of Sd

and CFd are �nite-dimensional, so that these two operators can be computed by restrictions over
�nite-dimensional subspaces of KX∗. We illustrate how works such computations in Section 3.3.

Our procedure has no reason to terminate since there exist �nitely presented algebras with
no �nite Gröbner basis [17, Section 1.3]. If the procedure terminates after d iterations of the
loop while, we let Sn = Sd for every integer n ≥ d, so that the sequence

(
Sd
)
d∈N is

well-de�ned if the procedure terminates or not. We let

S =
∧
d∈N

Sd.

De�nition 3.1.3. The triple
(
X, <, S

)
is called the completed presentation of (X, <, S).

The purpose of the next section is to show that the completed presentation of (X, <, S)
is a con�uent presentation of A, that is our procedure computes a noncommutative Gröbner
basis.

3.2 Soundness

In this section, we say reduction operator instead of reduction operator relative to (X∗, <).

Lemma 3.2.1. Let w ∈ X∗ and let T and T ′ be two reduction operators such that T ′ � T .

1. Let (n, m) be a pair of integers such that w is Tn,m-reducible. Then,
(
Tn,m − T ′n,m

)
(w)

admits a (T ′, w)-type decomposition.

2. Let f ∈ KX∗ admitting a (T, w)-type decomposition. Then, f admits a (T ′, w)-type
decomposition.

Proof. Let us show Point 1. We let w = w(n)w′w(m), where w(n) and w(m) have length n and
m, respectively. Let

T (w′) =
k∑

i=1

λiwi, (7)

be the decomposition of T (w′) with respect to the basis X∗. By hypotheses, T ′ is smaller than
T , that is ker (T ) ⊆ ker (T ′), so that T ′ ◦ T is equal to T ′. Hence, we have(

Tn,m − T ′n,m
)
(w) = w(n)

(
T (w′)− T ′(w′)

)
w(m)

= w(n)
(
T (w′)− T ′

(
T (w′)

))
w(m).

10



From (7), we obtain

(
Tn,m − T ′n,m

)
(w) =

k∑
i=1

λiw
(n)
(
wi − T ′(wi)

)
w(m). (8)

By hypotheses, w is Tn,m-reducible, so that w′ is T -reducible and each wi is strictly smaller
than w′ for <. The strict order < being monomial, each w(n)wiw

(m) is strictly smaller than
w(n)w′w(m) = w, so that (8) is a (T ′, w)-type decomposition of

(
Tn,m − T ′n,m

)
(w).

Let us show Point 2. Let

f =

n∑
i=1

λiw
1
i (wi − T (wi))w

2
i , (9)

be a (T, w)-type decomposition of f . Letting

A =

n∑
i=1

λiw
1
i

(
wi − T ′(wi)

)
w2
i and B =

n∑
i=1

λiw
1
i

(
T (wi)− T ′(wi)

)
w2
i ,

f is equal to A − B. The decomposition (9) being (T, w)-type, each w′i = w1
iwiw

2
i is strictly

smaller than w, so that A is (T ′, w)-type. For every i ∈ {1, · · · , n}, let ni and mi be
the lengths of w1

i and w2
i , respectively, so that we have B =

∑n
i=1 λi

(
Tni,mi − T ′ni,mi

)
(w′i).

Each wi being T -reducible, each w
′
i is Tni,mi-reducible. Hence, from Point 1 of the lemma, each(

Tni,mi − T ′ni,mi

)
(w′i) admits a (T ′, w′i)-type decomposition, so that it admits a (T ′, w)-type

decomposition since w′i is strictly smaller than w. Hence, B admits a (T ′, w)-type decomposi-
tion, so that f also admits such a decomposition.

Notation. For every integer d, let Fd be the reduction family of
(
X, <, Sd

)
, that is Fd is

equal to
{(
Sd
)
n,m

| (n, m) ∈ N2
}
.

Lemma 3.2.2. Let d be an integer, let (w, (n, m), (n′, m′)) ∈ Pd \ Qd and let f be the

S-polynomial of (w, (n, m), (n′, m′)).

1. (∧Fd) (f) is equal to 0.

2. f admits a
(
Sd+1, w

)
-type decomposition.

Proof. Let us show Point 1. The two elements w −
(
Sd
)
n,m

(w) and w −
(
Sd
)
n′,m′

(w) belong
to Ed by construction of the latter. Hence, by de�nition of the function normalisation, the

operators T1 = T
(
w −

(
Sd
)
n,m

(w)
)
and T2 = T

(
w −

(
Sd
)
n′,m′

(w)
)
belong to Fd, so that

f = (w−Sd
n,m(w))− (w−Sd

n′,m′(w)) belongs to the kernel of T1∧T2. The latter is included
in the kernel of ∧Fd, which shows Point 1.

Let us show Point 2. The operator CFd being a complement of Fd, we have

∧
(
Fd ∪

{
CFd

})
= ∧Fd, (10)

and Fd∪
{
CFd

}
is con�uent (see the paragraph after De�nition 2.1.2), that is it has the Church-

Rosser property (see the paragraph before De�nition 2.1.2). Hence, from Point 1 of the lemma
and Relation (10), there exist T1, · · · , Tr ∈ Fd ∪

{
CFd

}
such that

(Tr ◦ · · · ◦ T1) (f) = 0. (11)
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We let f1 = (IdKX∗ − T1) (f) and for every k ∈ {2, · · · , r}, fk = (IdKX∗ − Tk) (Tk−1 ◦ · · · ◦ T1(f)).
From (11), we have

f =
r∑

k=1

fk. (12)

The tuple (w, (n, m), (n′, m′)) being a critical branching of
(
X, <, Sd

)
, w belongs to

red
((
Sd
)
n,m

)
∩ red

((
Sd
)
n′,m′

)
, so that the leading monomial of f is strictly smaller than w.

Moreover, each Ti is either of the form T
(
w1(w2 − Sd(w2))w3

)
, or is equal to CFd . Hence,

each fi admits a
(
Sd, w

)
-type decomposition or a

(
CFd , w

)
-type decomposition. The reduction

operators Sd and CFd being smaller than Sd+1, each fi admits a
(
Sd+1, w

)
-type decomposition

from Point 2 of Lemma 3.2.1, so that f admits a
(
Sd+1, w

)
-type decomposition from (12).

Proposition 3.2.3. Let d be an integer. For every (w, (n, m), (n′, m′)) ∈ Qd, the S-
polynomial

(
Sd
)
n,m

(w) −
(
Sd
)
n′,m′

(w) admits a
(
Sd, w

)
-type decomposition.

Proof. We show the proposition by induction on d. The set Q0 being empty, Proposition 3.2.3
holds for d = 0. Assume that for every (w, (n, m), (n′, m′)) ∈ Qd, S

d
n,m(w) − Sd

n′,m′(w)
admits a (Sd, w)-type decomposition. We let

A =
(
Sd
)
n′,m′

(w) −
(
Sd+1

)
n′,m′

(w) ,

B =
(
Sd
)
n,m

(w) −
(
Sd+1

)
n,m

(w),

C =
(
Sd
)
n,m

(w) −
(
Sd
)
n′,m′

(w).

We have (
Sd+1

)
n,m

(w) −
(
Sd+1

)
n′,m′

(w) = A−B + C.

By construction, Sd+1 is smaller than Sd. Moreover, (w, (n, m), (n′, m′)) being a critical

branching, w belongs to red
((
Sd
)
n,m

)
∩ red

((
Sd
)
n′,m′

)
. Hence, from Point 1 of Lemma 3.2.1,

A andB admit a
(
Sd+1, w

)
-type decomposition. It remains to show that C admits a

(
Sd+1, w

)
-

type decomposition. By construction, Qd+1 is equal to Pd, so that it contains Qd from Point 2
of Lemma 3.1.1. If (w, (n, m), (n′, m′)) does not belong to Qd, C admits a

(
Sd+1, w

)
-type

decomposition from Point 2 of Lemma 3.2.2. If (w , (n, m), (n′, m′)) belongs to Qd, C admits
a
(
Sd, w

)
-type decomposition by induction hypothesis. Hence, from Point 2 of Lemma 3.2.1,

C admits a
(
Sd+1, w

)
-type decomposition.

Recall that the lower-bound of the operators Sd is written S. The last lemma we need to
prove Theorem 3.2.5 is

Lemma 3.2.4. 1. The sequence (Id)d∈N of ideals spanned by ker
(
Sd
)
is constant.

2. Red
(
S
)
is equal to

⋃
d∈NRed

(
Sd
)
.
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Proof. Let us show Point 1. By de�nition of the function normalisation, the kernel of each
element of Fd is included in Id. In particular, ker (∧Fd) =

∑
T∈Fd

ker (T ) is also included

in Id. Moreover, CFd being a complement of Fd, it is smaller than ∧Fd, that is its kernel is
included in the one of ∧Fd. In particular, ker

(
CFd

)
is included in Id, so that ker

(
Sd+1

)
, which

by de�nition is equal to ker
(
Sd
)

+ ker
(
CFd

)
, is also included in Id. Hence, the sequence

(Id)d∈N is not increasing. Moreover, the sequence
(
Sd
)
d∈N is not increasing by construction,

which means that
(
ker
(
Sd
))

d∈N is not decreasing. Hence, (Id)d∈N constant.

Let us show Point 2. The equality we want to prove means that the set F =
{
Sd | d ∈ N

}
is con�uent. From Newman's Lemma (see the paragraph before De�nition 2.1.2) in terms of
reduction operators, it is su�cient to show that F is locally con�uent. Let f ∈ KX∗ and let
d and d′ be two integers which we assume to satisfy d ≥ d′. In particular, we have Sd′ � Sd,

so that Sd ◦Sd′ is equal to Sd′ . Hence,
(
Sd ◦ Sd′

)
(f) and Sd(f) are equal, so that F is locally

con�uent.

Theorem 3.2.5. Let A be an algebra and let (X, <, S) be a presentation by operator of A.

The completed presentation of (X, <, S) is a con�uent presentation of A.

Proof. Let S be the lower-bound of the operators Sd.
First, we show that

(
X, <, S

)
is a presentation of A. From Point 1 of Lemma 3.2.4, the

ideal spanned by the kernels of the operators Sd is equal to the ideal I spanned by the kernel of
S0 = S. In particular, the ideal spanned by ker

(
S
)

=
∑

d∈N ker
(
Sd
)
is equal to I. Hence,

(X, <, S) being a presentation of A,
(
X, <, S

)
is also a presentation of A.

Let us show that this presentation is con�uent. From the Diamond Lemma, it is su�cient
to show that for each critical branching b = (w, (n, m), (n′, m′)) of

(
X, <, S

)
, the S-

polynomial sp (b) admits a
(
S, w

)
-type decomposition. From Point 2 of Lemma 3.2.4, there

exist integers d and d′ such that w ∈ red
((
Sd
)
n,m

)
∩ red

((
Sd′
n′,m′

))
. Without lost of

generalities, we may assume that d is greater or equal to d′, so that b is a critical branching of(
X, <, Sd

)
, that is it belongs to Pd = Qd+1. We let

Ad =
(
Sd+1

)
n′,m′

(w) − Sn′,m′(w),

Bd =
(
Sd+1

)
n,m

(w) − Sn,m(w),

Cd =
(
Sd+1

)
n,m

(w) −
(
Sd+1

)
n′,m′

(w).

We have
sp (b) = Ad − Bd + Cd. (13)

From Proposition 3.2.3, b being an element ofQd+1, Cd admits a
(
Sd+1, w

)
-type decomposition,

so that it admits a
(
S, w

)
-type decomposition from Point 2 of Lemma 3.2.1. Moreover, Sd+1

being smaller than Sd, w belongs to red
((
Sd+1

)
n,m

)
∩ red

((
Sd+1

)
n′,m′

)
. The operator S

being smaller than Sd+1, Ad and Bd also admit a
(
S, w

)
-type decomposition from Point 1 of

Lemma 3.2.1. Hence, from (13), sp (b) admits a
(
S, w

)
-type decomposition.
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Example 3.2.6. In Section 3.3, we compute the completed presentation of Example 2.2.3. It
is given by the operator de�ned by S(yz) = x, S(zx) = xy, S(yxy) = xx, S(yxx) = xxz,
S(yxxx) = xxxy and S(w) = w for all other monomial w.

3.3 Example

In this section, we compute the completed presentation of Example 3.2.6. Before that, we show
how to use Gaussian elimination to compute lattice operations and completion for reduction
operators relative to totally ordered �nite sets. We use the SageMath software, written in
Python.

Lattice operations and completion. Let (G, <) be a totally ordered �nite set. The set
G being �nite, the Gaussian elimination provides a unique basis B of any suspace V ⊆ KG
such that for every e ∈ B, lc (e) is equal to 1 and, given two di�erent elements e and e′ of
B, lg (e′) does not belong to the decomposition of e. The operator T = ker−1 (V ) satis�es
T (lg (e)) = lg (e) − e for every e ∈ B and T (g) = g if g is not a leading generator of B.
Moreover, we represent the subspaces of KG by lists of generating vectors and for any list of
vectors L, let reducedBasis(L) be the basis of KL obtained by Gaussian elimination.

First, we de�ne the function operator which takes as input a list of vectors L and returns
ker−1 (KL). We deduce the functions which compute the lattice operations of RO (G, <).

1 def operator(G):

L=reducedBasis(G)

3 n=len(L[0])

V=VectorSpace(QQ ,n)

5 v=V.zero()

G=(lg(L[0]) -1)*[v]+[L[0]]

7 k=len(L)

for i in [1..k-1]:

9 G=G+(lg(L[i])-lg(L[i-1]) -1)*[v]+[L[i]]

G=G+(n-lg(L[k -1]))*[v]

11 return identity_matrix(QQ,n)-matrix(G). transpose ()

13 def lowerBound(T_1 ,T_2):

V_1 ,V_2=kernel(T_1.transpose ()), kernel(T_2.transpose ())

15 G_1 ,G_2=basis(V_1),basis(V_2)

L_1 ,L_2=reducedBasis(G_1),reducedBasis(G_2)

17 G=L_1+L_2

L=reducedBasis(G)

19 return operator(L)

21 def upperBound(T_1 ,T_2):

V_1 ,V_2=kernel(T_1.transpose ()), kernel(T_2.transpose ())

23 V=V_1.intersection(V_2)

G=basis(V)

25 L=reducedBasis(G)

return operator(L)

By de�nition of the F -complement, we need an intermediate function with input a reduction
operator T and output ker−1 (Knf (T )). We de�ne this function before de�ning the one of the
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F -complement.

def tilde(T):

2 n,L=T.nrows (),[]

for i in [0..n-1]:

4 j,k=i,n-i-1

if T[i,i]==1: L=L+[ vector(j*[0]+[1]+k*[0])]

6 return operator(L)

8 def complement(L):

n,C,T=len(L),L[0],tilde(L[0])

10 for i in [1..n-1]: C=lowerBound(C,L[i])

for j in [1..n-1]: T=upperBound(T,tilde(L[j]))

12 return lowerBound(C,T)

Example. Now, we use our implementation to compute the completed presentation of Ex-
ample 2.2.3: we consider the algebra A presented by (X, <, S) where X = {x, y, z}, < is
the deg-lex order induced by x < y < z and S(yz) = x, S(zx) = xy and S(w) = w for
every monomial w di�erent from yz and zx.

Recall that Sd denotes the operator of the presentation at the beginning of step d of the

procedure, Pd is the set of critical branchings of
(
X, <, Sd

)
, Qd = Pd−1, Ed =

{
w −

Sd
n,m(w) | (w, (n, m), (n′, m′)) ∈ Pd \ Qd

}
and Fd = normalisation(Ed, S

d).

Moreover, we represent reduction operators by matrices. For that, we use that the operators
appearing in the procedure act nontrivially on �nite-dimensional subspaces of KX∗ spanned
by an ordered set of monomials w1 < w2 < · · · < wn.

At the �rst step, we have d = 0. The presentation
(
X, <, S0

)
has one critical branching

b1 = (yzx, (1, 0), (0, 1)) and we have P0 = {b1} and E0 =
{
yzx − xx, yzx − yxy

}
.

We have F0 =
{
T1, T2

}
where the matrices of the restrictions of T1 and T2 to the subspace

spanned by xx < yxy < yzx are

T1 =

1 0 1
0 1 0
0 0 0

 and T2 =

1 0 0
0 1 1
0 0 0

 .

that is T1(yzx) = xx and T2(yzx) = yxy. The matrice of CF0 = complement ([T1, T2])
restricted to K{xx, yxy, yzx} is 1 1 0

0 0 0
0 0 1

 ,

The operator S1 = S ∧ CF0 can be computed by restriction to the subspace spanned by
x < xx < xy < yz < zx < yxy and the matrices of the restrictions of S0 and CF0 to
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this subspace are

S0 =



1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 and CF0 =



1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 .

We obtain that S1 is the operator de�ned by S1(yz) = x, S1(zx) = xy, S1(yxy) = xx and
S1(w) = w for every monomial w di�erent from yz, zx and yxy.

The presentation
(
X, <, S1

)
has two new critical branchings b2 and b3 equal to (yxyz, (2, 0), (0, 1))

and (yxyxy, (2, 0), (0, 2)), respectively. We have P1 = {b1, b2, b3}, P1 \ Q1 = {b2, b3}
and E1 =

{
yxyz − xxz, yxyz − yxx, yxyxy − xxxy, yxyxy − yxxx

}
. Moreover,

F1 = normalisation
(
E1, S

1
)
is equal to{

T3 = T (yxyz − xxz) , T4 = T (yxyz − yxx)
T5 = T (yxyxy − xxxy) , T6 = T (yxyxy − yxxx)

}
,

where T (f) = ker−1 (Kf). The restriction of CF1 toK{xxz, yxx, xxxy, yxxx, yxyz, yxyxy}
is

CF1 =



1 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

and we obtain that S2 = S1 ∧CF1 is de�ned by S2(yz) = x, S2(zx) = xy, S2(yxy) = xx,
S2(yxx) = xxz, S2(yxxx) = xxxy and all other monomial is a normal form for S2.

The computation of the operator CF2 gives the identity operator of size 11, which corre-
sponds to the monomials x4 < x3y < x2zx < yx3 < x5 < x3yz < yx3z < yxyx2 <
x3yxyx < yx4y < yxyx3. Hence, no new critical branching is created at this step and the
procedure stops.
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