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Many relational data result from the aggregation of several individual be-
haviors described by some characteristics. For instance, a bike-sharing system
may be modeled as a graph where vertices stand for bike-share stations and
connections represent bike trips made by users from one station to another.
Stations and trips are described by additional information such as the descrip-
tion of the geographical environment of the stations (business vs. residential
area, closeness to POI, elevation, urbanization density, etc.), or properties
of the bike trips (timestamp, user profile, weather, events and other special
conditions about the trip). Identifying highly connected components (such as
communities or quasi-cliques) in this graph provides interesting insights into
global usages but does not capture mobility profiles that characterize a sub-
population. To tackle this problem we propose an approach rooted in excep-
tional model mining to find exceptional contextual subgraphs, i.e., subgraphs
generated from a context or a description of the individual behaviors that is
exceptional (behaves in a different way) compared to the whole augmented
graph. The dependency between a context and an edge is assessed by a χ2

test and the weighted relative accuracy measure is used to only retain con-
texts that strongly characterize connected subgraphs. We present an original
algorithm that uses sophisticated pruning techniques to restrict the search
space of vertices, context refinements, and edges to be considered. An exper-
imental evaluation on synthetic data and two real-life datasets demonstrates
the effectiveness of the proposed pruning mechanisms, as well as the relevance
of the discovered patterns.
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1 Introduction

Providing tools and methods to discover new actionable insights into hetero-
geneous data is widely considered to be one of the most important challenges
of data science, especially in the data mining and machine learning communi-
ties. A natural way to handle and understand such complex data is to model
them as graphs, a powerful mathematical abstraction that makes it possible
to support a large variety of analyses in a generic way. This partially explains
why graph mining has generated considerable interests in terms of both fun-
damental and applied research. A striking feature is its ability to allow better
understanding of social interactions and to provide support for many tasks
such as social recommendations [23], community discovery [18], social influ-
ence propagation [19], and link prediction [10].

In real-world phenomena, vertices and edges are often characterized by
attributes. It is also very common that these graphs are dynamic, with ver-
tex and edge attributes evolving through time. The design of effective graph
mining methods to discover actionable insights in such graphs is therefore a
current challenge, to derive new knowledge about the underlying rules that
govern networks [46]. The last decade has witnessed intense growth in the
analysis of dynamic graphs, especially from two main research tracks: (a) the
study of the properties that describe the topology of the graph [13,48], and
(b) the extraction of specific subgraphs to describe the graph evolution [4,42,
53]. Surprisingly, the simultaneous consideration of the dynamics of the graph
structure and the additional vertex and edge properties has not been given
much attention. In this paper, we move towards this new direction.

We consider the challenge of mining graph data that result from the aggre-
gation of individual behaviors. This type of data has become ubiquitous, for
example with the advent of social networks that record connections between
various entities made by users, but also with the availability of mobility data
(behavioral data, urban data, etc). As an illustration, Table 1(d) presents a
graph of co-visitation sites built from the aggregation of bike trips of individ-
ual users (described in Table 1) that travel from one station to another one.
Such a graph reflects the most general relationships among stations but the
information about the users themselves is completely lost. Population specific
behaviors are hidden inside this macroscopic view (i.e., the graph resulting
from the aggregation of individual travels), whereas this information is highly
interesting in many applications, such as recommender systems. It makes it
possible to answer the following questions: For a given population, what are the
most strongly related subgraphs (i.e., behavior)?, For a given subgraph, what is
the most strongly related population (i.e. representative users)? Fig. 1(b) and
(c) present two examples of contextual and exceptional contextual subgraphs
whose description is given in the caption of the figure. Finding these kinds
of relations has attracted much interest for unstructured data over the years,
for instance finding the descriptions of users that consistently rate items in a
certain way [11]. Such unstructured settings can be challenging, for instance,
when describing consistent behavior with respect to several target values [12].
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More generally, finding descriptions that define subgroups of objects/entities
for which the target variables exhibit unusual behavior compared to the entire
data has been intensively studied in the field of subgroup discovery (SD) and
Exceptional Model Mining (EMM) [29,16]. SD considers that a subgroup is
interesting by focusing on a chosen measure of a single target variable’s dis-
tribution, while EMM allows to search for subgroups that induce a complex
model that fits to multiple target variables in a better way than when con-
sidering the whole dataset. The model may be of various types (regression,
clustering, etc.): We investigate models with a graph structure of the data in
this article.

The considered data are made of a collection of connections between nodes
characterized by a set of attributes. This rich dataset is a multigraph, which
can be envisaged as a transactional database anchored to a graph. In other
words, each connection is recorded as a transaction containing attributes and
associated to the edge along which the connection occurred. A context, i.e., a
set of conditions on the transaction attributes, is used as a selection operator
that identifies the subgroup of supporting transactions. A so-called contextual
subgraph is derived from this subgroup of connections as the graph weighted
by the number of transactions that for each edge support the context. We
propose to use a generalization mechanism on the contexts and to exploit it to
identify exceptional contextual subgraphs, that is, contextual subgraphs whose
weights are abnormally large in comparison to the most general contextual
graph (the one containing all connections). Such exceptional subgraphs are of
interest as most of the transactions that are associated to their edges in the
whole graph support the context. For example, on the data of Table 1, the
proposed method identifies connected stations that are travelled in the same
context. Fig. 1 (b) represents the contextual subgraph that corresponds to
the stations that are visited by young people (age in [20; 23]) at night. The
number of trips that satisfy the context on each edge can be used as a support
measure (see the weights on the edges) but this measure is not sufficient to
evaluate how strongly the context is related to these edges, in contrast to all
other movements occurring in this context. To that end, we use the Weighted
Relative Accuracy measure (WRAcc) to only retain contexts whose accuracy
on the edge is markedly higher than the one obtained by the most general
context on this edge. Fig. 1 (c) represents the subgraph of locations visited
by young people at night whose edges have a positive WRAcc value. The
most specific context associated to this graph also includes the attribute Type

of area = {bars}. The affinity of a context to an edge is also statistically
assessed by a χ2 test

Discovering exceptional contextual subgraph patterns is challenging because
of the size of the search space: All possible contexts and subgraphs have to
be considered simultaneously. Their computation is feasible thanks to clever
pruning techniques. Our contributions are:

– The definition of exceptional contextual subgraph patterns in dynamic at-
tributed graphs as an instance of the EMM framework.
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MID Departure Arrival UID Time Weather

m1 A B u1 Day Rainy
m2 A B u2 Night Windy
m3 A B u3 Night Cloudy
m4 A B u4 Day Windy
m5 A B u5 Night Rainy
m6 B C u1 Night Cloudy
m7 B C u1 Night Windy
m8 B C u1 Night Rainy
m9 B D u2 Night Cloudy
m10 B D u1 Night Windy
m11 B D u1 Night Cloudy
m12 C D u1 Night Rainy
m13 C D u2 Night Rainy
m14 D E u1 Night Cloudy
m15 D E u2 Night Windy
m16 D E u3 Day Rainy
m17 D E u3 Night Windy
m18 D E u4 Night Rainy

Station Type of area

A Bars
B Bars
C Bars
D Bars
E Residential

(a) Bike-share stations

UID Gender Age

u1 F 20
u2 M 23
u3 F 45
u4 M 50
u5 F 30

(b) User characteristics

(c) Bike trip characteristics

A

B

C

D

E

m 1,
m 2,

m 3,

m 4,
m 5

m6,m7,m8

m9,m10,
m11

m12,m13
m14 ,m15, m16,
m17, m18

(d) Augmented graph

Table 1 Example of data: (a) Bike-share station attributes, (b) Users attributes, (c) Bike
trip attributes and (d) Augmented graph corresponding to those data.
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3

3

2

5
A

B

C

D

E
2

3

3

2

2

B

C

D

3

3

2

(a) (b) (c)

Fig. 1 Example of contextual subgraph and exceptional contextual subgraph:
(a) Contextual graph associated to the most general context (?, ?, ?, ?, ?) =
(Age ∈ [20, 50], Gender ∈ {F,M}, T ime ∈ {Day, Night}, Weather ∈
{Sunny,Cloudy,Windy,Rainy}, type of area ∈ {Bars,Residential}); (b) A contex-
tual subgraph of bike trips made by young people at night (Age ∈ [20, 23], ?, T ime ∈
{Night}, ?, ?); (c) An exceptional contextual subgraph with context (Age ∈
[20, 23], ?, T ime ∈ {Night}, ?, type of area ∈ {Bars}).

– The design of an efficient algorithm COSMIc that exploits several con-
straints, even those that are neither monotonic nor anti-monotonic, to
identify such subgraphs.

– A quantitative and qualitative empirical study. We report on the evaluation
of the efficiency and the effectiveness of the algorithm on two real-world
dynamic attributed graphs.

The rest of this paper is organized as follows. We review the related work
in Section 2. We then formally define the notions of augmented graph and
contextual subgraphs and introduce the exceptional contextual subgraph prob-
lem as an instance of EMM in Section 3. Section 4 describes an exhaustive
algorithm, COSMIc, that differs from beam-search usually employed in EMM
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methods. We report a thorough empirical study of the algorithm COSMIc
with synthetic data in Section 5 before comparing it to concurrent approaches
(Section 6) and showing the usefulness of our approach with two real-world
scenarios (Section 7). Section 8 concludes.

2 Related Work

Finding descriptions of subpopulations for which the distribution of a single
pre-defined target value is significantly different from the distribution in the
whole data is a problem that has been widely studied in subgroup discovery
(SD) [28,36]. Finding subgroups of objects for which a more accurate and
robust model of multiple target values can be learned/built, instead of consid-
ering the whole data, has then been introduced as Exceptional Model Mining
(EMM) [29,16]. In this framework, depicted in Fig. 2, there are two types of
attributes, those used to characterize the subgroups (i.e., the object descrip-
tion), and others employed to evaluate the subgroup quality (i.e., the targets).
Subgroups of interest are selected based on the quality of a model evaluated
on the targets (e.g., classifier [29], Bayesian Networks [17], encoding based
on Minimum Description Length [49]). The combination of large description
and target spaces, as well as the use of non-monotonic measures require the
adoption of heuristic search methods such as beam search.

The exceptional contextual subgraph mining problem that we propose here
belongs to this “exceptional subgroups” framework together with EMM and
SD. In our case, the data consist of a collection of transactions anchored to a
graph, the subgroups are then sets of transactions described by queries over
the attributes. These subgroups can be naturally projected onto the edges of
the graph, and we look for those that exhibit particular distributions, that is,
those that induce a subgraph where they are particularly heavily represented.
Specifically, the exceptionality of a subgroup depends on the existence of a sub-
graph where transactions from the subgroup are over-represented compared
to the remaining transactions and the remaining edges. By exploiting the con-
nectivity of the subgraph, we are able to dynamically reduce the target search
space, and propose an exact algorithm that performs successful extractions
where heuristic techniques fail, as demonstrated in Section 6. To the best of
our knowledge, the only EMM approach that uses exhaustive search has been
proposed in [30], which adapts FP-trees to handle a number of counting-based
measures for unstructured targets. Our approach can be viewed as an exten-
sion of such works.

Exceptional contextual subgraph mining problem is also related to aug-
mented graph mining, where graphs have additional information on vertices
or edges. Several settings have been considered so far, as detailed in the next
paragraphs.

Vertex-attributed graphs In a pioneering work, Moser et al. [34] propose a
method to find dense homogeneous subgraphs, i.e., subgraphs whose vertices
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target 
variable(s) model

Object description

modeling

target concept

Subgroup Discovery

search strategies:
beam search, 

exhaustive search, ...
quality measures: 

pairwise correlation,
 entropy, WKL,

 MDL-based  measures,
 Cook's distance, ...

models:
classifier,

 Bayesian network,
encoding, ...

Fig. 2 The Exceptional Model Mining framework (diagram adapted from [15]).

context edges contextual  
graph

Object description

modeling

target concept

Subgroup Discovery

branch and bound
exploration

WRAcc,

Chi2 test

augmented graph

Fig. 3 Exceptional contextual subgraph mining problem as an instance of EMM.

share a large set of attributes. Similar to that work, Günnemann et al. [20]
present a method based on subspace clustering and dense subgraph mining to
extract non redundant subgraphs that are homogeneous with respect to ver-
tex attributes. Silva et al. [44] extract pairs of dense subgraphs and Boolean
attribute sets such that the Boolean attributes are strongly associated with
the dense subgraphs. Similarly, Mougel et al. [35] introduce the problem of
mining maximal homogeneous clique sets. Khan et al. [26] design a probabilis-
tic approach to both construct the neighborhood of a vertex and propagate
information into this neighborhood. Following the same motivation, Sese et
al. [43] extract (not necessarily dense) subgraph with common itemsets. Prado
et al. [40] propose to mine the graph topology of a large attributed graph by
finding regularities among vertex descriptors. Interestingly, in a recent work
Atzmueller et al. [2] use a subgroup discovery approach to mine descriptions
of communities, treating the communities as an (aggregated) target.

Edge-attributed graphs Existing approaches use edge information to define a
similarity measure on edges in order to identify subgraphs or communities. In
the proposal by Qi et al. [41], edges are considered similar according to their
associated collections of labels. Similarly, Bonchi et al. [8] find clusters of edges
such that edges of a cluster have the same labels. Berlingerio et al. [5] propose
multidimensional network analysis, where connections between vertices belong
to different dimensions (e.g. cities can have both train and plane connections)
and extend a number of network measures to multi-dimensional graphs. In
this approach, two vertices connected by edges from different dimension are
considered to be more strongly connected, whereas in our exceptional con-
textual subgraphs framework, dimensions are not presupposed but inferred
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based on high weighted relative accuracy. In the multi-layer coherent subgraph
approach called MiMag, Boden et al. [7] use numerical labels on vertices to
assess edges’ similarity in different layers of the graph. Vertices connected by
edges with similar weights induce quasi-cliques. There is again a conceptual
shift with our proposal: MiMag might consider similar edges that are not very
typical for a context/layer. There is also the semantic difference that all edges
in a exceptional contextual subgraph match the associated context while being
typical, whereas MiMag may group very different contexts – misled by some
similar behaviors of distinct subgroups. We found evidence of both effects in
experiments reported in Section 6.

Dynamic graphs Various approaches have been proposed to characterize either
the graph evolution by focusing on some topological properties [48], or the
graph evolution by means of patterns/rules that are much more meaningful,
identifying local interpretable sub-structures of interest. Borgwardt et al. [9]
introduce the problem of mining frequent subgraphs in dynamic graphs, i.e.
isomorphic graphs that appear in consecutive timestamps. In [27], Lahiri and
Berger-Wolf also extract frequent subgraphs but at periodic or near-periodic
timestamps. Inokuchi and Washio [22] define frequent induced subgraph sub-
sequences, i.e. subgraph sub-sequences whose isomorphic occurrences appear
frequently in a graph sequence collection. Prado et al. [39] extract spatio-
temporal patterns in a sequence of planar graphs. Robardet [42] proposes an
algorithm to extract evolving patterns, i.e. pseudo-cliques which appear in
consecutive timestamps with slight evolutions. Ahmed and Karypis [1] mine
the evolution of conserved relational states, i.e. sequences of time-conserved
patterns on consecutive time. Yang et al. [52] devise an algorithm to identify
the most frequently changing component. You and Cook [53] compute graph
rewriting rules that describe the evolution between consecutive graphs. These
rules are then abstracted into patterns representing the dynamics of graphs.
Berlingerio et al. [4] extract patterns based on frequency and derive evolution
rules to solve prediction problems in [10]. All these works only focus on the
graph structure and do not consider attributes related to the vertices and/or
the edges.

Dynamic attributed graphs In [14], Desmier et al. define a new pattern domain
that relies on the graph structure and the temporal evolution of the attribute
values. It makes it possible to discover subgraphs of small diameter whose
vertex attributes follow the same trends. Kaytoue et al. [24] devise an algo-
rithm to characterize local structure changes in a sequence of vertex-attributes
trends. While considering attributes on vertices and edges, exceptional contex-
tual subgraphs also offer the opportunity to analyse the dynamics of relational
data, when transactions associated to edges are timestamped.
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3 The Problem of Exceptional Contextual Subgraph Mining

In the following, we present the notion of augmented graph in which Excep-
tional Contextual Graphs are looked for. We describe the pattern domain in-
crementally: First contexts are introduced and different mappings/derivation
operators allow to introduce contextual graphs. After, we introduced two eval-
uation measures used to filter uninteresting edges from such graphs. Finally,
the problem of mining Exceptional Contextual Subgraphs is properly given.

3.1 Deriving Contextual Subgraphs

3.1.1 Augmented Graphs

The data we are interested in consist of a set of entities and a collection of
connections between pairs of these entities, augmented with rich heteroge-
neous data about the entities and the circumstances of the connections. For
instance, in Table 1, the entities can represent bike-share stations in a city
with connections corresponding to bike trips made by users from one station
to another. Additional details are available: The entities, i.e. stations, are ge-
olocated and can be associated to additional information, characterizing their
location (business vs. residential area, closeness to POI, elevation, urbanisation
density, etc.) (see Table 1(a)). The connections, i.e. bike trips, are timestamped
and can be augmented with the profile of the user, weather, events and other
special conditions about the trip (see Tables 1(b) and (c)). This rich dataset
is a multigraph, which can be viewed as a transactional database anchored to
a graph (which is called augmented graph as explained afterwards). In other
words, each connection is recorded as a transaction containing attributes (the
join of tables 1(a), (b) and (c)) and associated to a source and a target entity
that form the directed edge1 along which the connection occurred. This type
of data is called augmented graph and is formally defined below.

Definition 1 (Augmented graph) Let R be a relation whose schema is
denoted SR = [R1, . . . , Rp]. Each attribute Ri takes values in dom(Ri) that
is either nominal, if there is no order relation among attribute modalities, or
numerical. A transaction t ∈ R of this relation is a tuple (t1, . . . , tp) with
ti ∈ dom(Ri). An augmented graph G = (V,E, T,Edge) consists of a set V
of vertices, a set E ⊆ V × V of edges, a set T of transactions, and a function
that maps a transaction to its edge: Edge : T → E.

Table 1(d) illustrates the augmented graph that corresponds to the data
of Table 1. On such data, we aim to identify subgraphs that are typical for a
context, as the one of Fig. 1 (c) whose bike trips mainly correspond to users
of Age ∈ [20, 23], and realized at Night between stations having many Bars

1 For sake of simplicity, we use the term edge to refer indifferently to directed or undirected
edges without loss of generality.
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in their neighborhood. This is what we define below as exceptional contextual
subgraph mining, a problem rooted in the Exceptional Model Mining frame-
work [16,29] (see Fig. 2).

EMM extends classical subgroup discovery – the discovery of subgroups
described by a few conditions on their attributes and whose target attribute
somehow deviates from the norm – to the case where several target attributes
are considered and used to derive a model. A subgroup is thus deemed inter-
esting when its associated model is substantially different from the model on
the whole dataset. In such a framework, our problem, which is illustrated in
Fig. 3, can be depicted as follows: The data (i.e., the augmented graph) consist
of a collection of transactions (or records) composed of attributes and asso-
ciated to an edge of the graph. A description, which is here called a context,
is used to select transactions that support it. This set of transactions is then
projected onto a so-called contextual graph, on which the interestingness or
exceptionality of the context is evaluated. Hence, edges correspond to multiple
targets and the contextual graph plays the same role as the model in EMM.

3.1.2 Contextual Graphs

Let us first define a context, that is, the description of a set of transactions.

Definition 2 (Context) Given a set of transactions S ⊆ T , we define the
function MT→C(S) that maps S to the context (C1, · · · , Cp) as

– Ci = a, with a ∈ dom(Ri), iff Ri is nominal and ∀(t1, · · · , ti, · · · , tp) ∈
S, ti = a

– Ci = ?i, with ?i a new symbol representing the whole set dom(Ri), iff Ri
is nominal and there exists two transactions t, t′ ∈ S such that ti 6= t′i.

– Ci = [a, b], with a = min{ti | (t1, · · · , ti, · · · , tp) ∈ S} and b = max{ti |
(t1, · · · , ti, · · · , tp) ∈ S} iff Ri is numerical.

Analogously, a transaction t = (t1, . . . , tp) satisfies or supports a context C =
(C1, · · · , Cp), noted t � C, if and only if ∀i = 1 . . . p

– ti = Ci = a, with a ∈ dom(Ri) and Ri nominal
– ti is any of dom(Ri), with Ci = ?i and Ri nominal
– a ≤ ti ≤ b, with Ci = [a, b] and Ri numerical.

It is important to note that a context is covered by a set of transactions.
Each transaction is attached to an edge, so a set of transactions induces a
subgraph. In a dual way, given an arbitrary subgraph, one can retrieve the set
of transactions attached to its edges, and the most specific context that covers
all these transactions. For convenience, we will use the following mappings
between the different views of an augmented graph (illustrated on Fig. 4).

Definition 3 (Basic mappings of an augmented graph) We associate
the six following mappings to an augmented graph:
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Context C Transactions T Contextual
Sub-graphs G

MC→G

MG→C

MC→T MT→G

MG→TMT→C

Fig. 4 Mappings between the different data views of an augmented graph G

– The mapping MC→T takes a context C as argument and returns the set
of transactions that are covered by C, MC→T (C) = {t ∈ T | t � C} ⊆ T .
With arguments C and S this mapping returns the subset of transactions
of S ⊆ T that are covered by C: MC→T (C, S) = {t ∈ S | t � C} ⊆ S.
For example, MC→T (Age ∈ [23, 45], ?, T ime ∈ {Night}, ?, type of area ∈
{Bars}) = {m2,m3,m9,m13}.

– The mapping MT→G takes a set of transactions S ⊆ T and returns the
subgraph consisting of the edges to which these transactions are attached:
MT→G(S) =

⋃
t∈S Edge(t).

– MC→G = MT→G ◦ MC→T is the composition of the two operators intro-
duced above.

– The mapping MT→C is the counterpart of MC→T . It takes a set of trans-
actions S ⊆ T and returns the most specific context that covers all trans-
actions in S. For example, MC→T ({m2,m3}) = (Age ∈ [23, 45], ?, T ime ∈
{Night}, ?, type of area ∈ {Bars})

– The mapping MG→T associates a set of transactions to an edge, that is the
transactions that are attached to this(these) edge(s). It is the counterpart
of MT→G.

– MG→C = MT→C ◦ MG→T is the composition of the two operators intro-
duced above.

By coupling these notions of augmented graph and context, we define a
contextual subgraph as the projection of an augmented graph on a context,
i.e. a graph whose edges are weighted by the number of their associated trans-
actions that satisfy C:

Definition 4 (Contextual Subgraph) Given an augmented graph G =
(V,E, T,Edge) and a context C, the contextual subgraph generated by C is
the weighted graph GC = (V,EC ,WC) defined by:

– WC : EC → R with WC(e) = |MC→T (C,MG→T (e))|, the number of
transactions associated to e that satisfy C,

– EC = {e ∈ E |WC(e) > 0}.

For example, Fig. 1(b) shows the contextual subgraph of the context (Age ∈
[20, 23], ?, T ime ∈ {Night}, ?, ?).



Exceptional Contextual Subgraph Mining 11

3.1.3 Closed Contexts

It may happen that some contexts map exactly to the same set of transac-
tions: for C1 and C2 two different contexts, it is possible that MC→T (C1) =
MC→T (C2) which implies that MC→G(C1) = MC→G(C2). By using an ap-
propriate order relation, it is possible to avoid this redundancy by considering
only closed contexts.

Definition 5 (Partial order on context set) We say that a context C1 is
more specific than a context C2, denoted C1 � C2, iff

– C2
i = ?i or C1

i = C2
i = a ∈ dom(Ri), for Ri a nominal attribute,

– [a1i , b
1
i ] ⊆ [a2i , b

2
i ] with C1

i = [a1i , b
1
i ] and C2

i = [a2i , b
2
i ], for all numerical

attributes Ri.

The set of all possible contexts embedded with the relation � forms a semi-
lattice where the most general context C is such that Ci = ?i for all nominal
attributes Ri, and Ci = [min(dom(Ri)),max(dom(Ri))] for all numerical at-
tributes Ri.

As such, instead of enumerating all contexts, it is enough to only enumerate
the closed ones: The closure operator maps any context to the unique most
specific one with the same image MC→T .

Definition 6 (Closed context) A context C is closed iff ∀C ′ such that
MC→T (C)=MC→T (C ′), C � C ′. Thus, MT→C(MC→T (C ′)) returns the closed
pattern of C ′ and is called the closure operator.

The proof that MT→C ◦ MC→T is a closure operator is omitted as it is a
well-known notion in the pattern mining and formal concept analysis fields.

3.2 Deriving Exceptional Contextual Graphs

In pattern mining, it is usual to evaluate the interestingness of a pattern by
well-chosen measures. To judge the strength of the dependency between a
context and a derived graph (or each edge), we propose to use two evalua-
tion measures: The Pearson’s chi-squared test of independence [38] and the
Weighted Relative Accuracy measure.

3.2.1 χ2 Test of Independence

To evaluate the dependency between a context C and an edge e, we consider
the proportion of transactions associated to e that satisfy the context and
propose to statistically assess this value by means of a Pearson’s chi-squared
test of independence [38]. This test determines whether or not the context
appears significantly more often in the transactions of e than in all the whole
set of transactions of the augmented graph.
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A transaction satisfies or not a context C, and is associated or not to an
edge e. These four possible outcomes are denoted C and C, e and e. Table 2(a)
is the contingency tableO(C, e) that collects the observed outcomes of e and C.
The null hypothesis states that e and C are statistically independent. Under
the hypothesis that C is uniformly satisfied by the edges of the augmented

graph, there are W?(e)
∑

x∈E WC(x)∑
x∈E W?(x)

= E(C, e) chances that a transaction that

satisfies the context C is associated to the edge e. The three others outcomes
under the null hypothesis are constructed on the same principle and are given
in the contingency table E presented in Table 2(b). The value of the statistical
test is thus

X2(C, e) =
∑

i∈{C,C}

∑
j∈{e,e}

(O(i, j)− E(i, j))2

E(i, j)

The null distribution of the statistic is approximated by the χ2 distribution
with 1 degree of freedom, and for a significance level of 5%, the critical value
is equal to χ2

0.05 = 3.84. Consequently, X2(C, e) has to be greater than 3.84
to establish that the weight related to a context on a given edge deviates
sufficiently to reject the null hypothesis and conclude that the edge weight is
biased at 95% significance level.

e e

C WC(e)
∑
x∈EWC(x)−WC(e)

∑
x∈EWC(x)

C W?(e)−WC(e)

∑
x∈EW?(x) − W?(e) −∑
x∈EWC(x) +WC(e)

∑
x∈EW?(x)−

∑
x∈EWC(x)

W?(e)
∑
x∈EW?(x)−W?(e)

∑
x∈EW?(x) = |T |

(a) Contingency table O of events C and e.
e e

C W?(e)
∑

x∈E WC(x)∑
x∈E W?(x)

(∑
x∈EW?(x)−W?(e)

)
×∑

x∈E WC(x)∑
x∈E W?(x)

∑
x∈EWC(x)

C
W?(e) ×(

1−
∑

xWC(x)∑
x∈E W?(x)

) (∑
x∈EW?(x)−W?(e)

)
×(

1−
∑

x∈E WC(x)∑
x∈E W?(x)

) ∑
x∈EW?(x)−

∑
x∈EWC(x)

W?(e)
∑
x∈EW?(x)−W?(e)

∑
x∈EW?(x) = |T |

(b) Contingency table E under the null hypothesis.

Table 2 Contingency tables O and E.
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3.2.2 The Weighted Relative Accuracy Measure

In the χ2 test of independence, the rejection of the null hypothesis can be
due to either a very large or a very low value of |MC→T (C,MG→T (e))|. We
distinguish these two cases thanks to an additional measure, based on the
Weighted Relative Accuracy measure.

For a given context C, we aim to identify the edges for which the number
of transactions satisfying the context C is greater than what is observed for
all the edges of the augmented graph. The relative accuracy is based on the
subtraction of the relative weight of the edge e in the whole augmented graph
G? from its relative weight in the contextual graph. We choose to normalize
edge weights by the maximal weight of any edge matching the context:

WC(e)

maxx∈EWC(x)
− W?(e)

maxx∈EW?(x)

If this term is larger than 0 then the edge weight is greater than expected from
the marginal distribution over the whole graph. This means that this edge is of
relatively greater importance for the context than it is for the full augmented
graph. However, it is easy to obtain high relative accuracy with highly spe-

cific contexts. Such contexts have a low value on maxx∈E WC(x)
maxx∈E W?(x)

, the specificity

weight. Therefore, to obtain interesting contexts, we use the WRACC measure
that trades off the relative accuracy with the specificity weight:

WRAcc(C, e) =
maxx∈EWC(x)

maxx∈EW?(x)
×
(

WC(e)

maxx∈EWC(x)
− W?(e)

maxx∈EW?(x)

)
We consider that an edge e depends on a context C if WRAcc(C, e) > 0.

3.2.3 Exceptional Contextual Graphs

Until now, we presented how to derive contextual subgraphs of an augmented
graphs and introduced two measures to asses the significance of its edges. It
remains to filter out the insignificant edges to obtain so called Exceptional
contextual subgraphs. We formalize this with the following definition.

Definition 7 (Exceptional edges with respect to a context) An edge
e is considered to be exceptional with respect to a context C, denoted Ex-
cept(C,e), iff

Except(C, e) ≡ e ∈MC→G(e) (1)

and |MC→T (C,MG→T )| > min weight (2)

and X2(C, e) > χ2
0.05 (3)

and WRAcc(C, e) > 0 (4)
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3.3 Deriving Exceptional Contextual Connected Components

We have defined the notion of the Exceptional Contextual Graph and how to
derive instances of it and evaluate the affinity of a (closed) context to an edge
(with χ2 test and WRAcc measure). Taking into account the topology of the
subgraph associated to a context is also of interest. Its connectivity can be
understood by examining its connected components. As numerical measures
describing these connected components, we use the number of vertices and the
number of edges. We also evaluate the global quality of the edges of each con-
nected component by the sum of the individual WRAcc measures. We can
now define precisely the kind of patterns that we are looking for, called Excep-
tional Contextual Connected Components, or simply Exceptional Contextual
(Sub-)Graphs for sake of simplicity.

Problem 1 (The Exceptional Contextual Graph Mining Problem)
Extracting meaningful patterns from an augmented graphG = (V,E, T,Edge)
is achieved by computing the theory:

{(C,CCC) | CCC = (VCC , ECC) is a maximal connected components of GC

with GC = (V, {e ∈ E | Except(C, e) is true})
and C is closed (5)

and |VCC | ≥ min vertex size (6)

and |ECC | ≥ min edge size (7)

and
∑

e∈ECC

(WRAcc(C, e)) ≥ min sum wracc (8)

}

As such, computing the whole collection of patterns requires one to enumer-
ate the closed contexts and apply the different filtering and pruning operations
as explained in the next section.

4 Algorithm

The theoretical search space of exceptional contextual subgraph patterns con-
tains all possible combinations of contexts and subgraphs. Considering that
contexts are ordered by � and subgraphs by the inclusion of their set of edges,
the pattern set is structured as a semi-lattice bounded by {?,G?}. As contexts
and subgraphs are linked by the mappings MC→T , MT→G, MG→T and MT→C ,
we can enumerate one and derive the other one. In our proposed algorithm,
named COSMIc2, contexts are enumerated first and the associated subgraph
is updated all along the enumeration process. Upper bounds and other prun-
ing techniques are used to reduce the search space size, as explained in the
following.

2 COSMIc stands for COntextual Subgraph MIning.



Exceptional Contextual Subgraph Mining 15

4.1 COSMIc principle

COSMIc enumerates contexts in a depth-first search manner. Its pseudo-
code is given in Algorithm 1. Given the pattern (C,GC) that is currently
explored, the algorithm returns all the specializations of C that are excep-
tional contextual subgraphs. If all the attributes have been instantiated (line
2), the connected components of GC are considered (line 3) and the function
CheckConstraints (line 4) is called: It returns true iff (C,CCC) satisfies all
the constraints of Definition 7 and Problem 1. In that case, the pattern is
output (line 5).

If the attribute Ri can still be specialized in the context (lines 6 to 31),
a new context C ′ is generated: If Ri is symbolic, a loop over the values of
dom(Ri) ∪ ?i (line 8) lists all the possible specializations C ′ of C on Ri (line
9). Then, the transactions of GC that do not satisfy C ′ are removed (line
10). The closure F of C ′ is computed line 11. If C ′ is closed (line 12), the
function Pruning (detailed in the next subsection) is called (line 13) to prune
all the edges and connected components that are guaranteed to not satisfy the
constraints for any contexts that are specializations of C ′. If GC′ is not empty
(line 14), (C ′, GC′) is recursively enumerated (line 15) to generate all valid
exceptional contextual subgraph patterns.

From lines 16 to 31, we consider the case where Ri is numerical. Enu-
merating all possible contexts consists of listing all intervals, i.e. those whose
end-points occurring in the relation R. Let domRi

= (v1i , · · · , vmi ) be the or-
dered set of values that appear for attribute i in relation R. The function next

(analogously previous) provides access to the following (analogously preced-
ing) value of the one given as parameter. To enumerate all intervals included
in dom(Ri) once and only once, we generate, from each interval [a, b], two
intervals [a, previous(b)] and [next(a), b], the first one [a, previous(b)] being
generated only if its left end-point a has not been increased so far (see the test
line 2, with variable left retrieved from the stack in line 19). The generated
intervals are pushed onto the stack (lines 29 and 31) and the loop from lines
18 to 31 is reiterated until the last interval has been considered.

For each interval, a new context C ′ is generated (line 20) and, as for nominal
attributes, the transactions of GC that do not satisfy C ′ are removed (line 21).
The closure F of C ′ is computed (line 22). If C ′ is closed, the function Pruning

–detailed in the next subsection– is called (line 24) and (C ′, GC′) is recursively
enumerated (line 26).

This algorithm explores the lattice of symbolic concepts to find the closed
ones, and therefore benefits from the developments and optimizations that
have been published in the data mining literature for that problem setting.
Given that we search strict closed contexts, the algorithm risks running into
the same issues in the presence of noise that existing such algorithms exhibit.
Extending the algorithm with the capability to mine noise-tolerant contexts
[6] remains for future work.
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Algorithm 1: COSMIc

Input: C = (C1, · · · , Cp), GC , G = (V,E, T,Edge) with the transactions of T in the
relation R of schema SR = [R1, . . . , Rp], i the attribute index to be
enumerated

Output: CS the set of exceptional contextual subgraph patterns under construction
1 begin
2 if (i = p) then
3 for CCC ∈ GC do
4 if CheckConstraints(C,CCC) then
5 CS ← CS ∪ (C,CCC)

6 else
7 if (Ri is symbolic) then
8 for a ∈ dom(Ri) ∪ {?i} do
9 C′ ← (C1, · · · , Ci−1, a, Ci+1, · · · , Cp)

10 GC′ ← MC→G(C′)
11 F ← MG→T (GC′ )
12 if (C′ = F ) then
13 GC′ ← Pruning(C′, GC′ )
14 if GC′ 6= ∅ then
15 COSMIc(C′, GC′ , G = (V,E, T,Edge), i+ 1)

16 else
17 stack ← ([minai∈dom(Ri)

ai,maxbi∈dom(Ri)
bi], true)

18 while (stack is not empty) do
19 ([a, b], left)← unstack(stack)
20 C′ ← (C1, · · · , Ci−1, [a, b], Ci+1, · · · , Cp)
21 GC′ ← MC→G(C′)
22 F ← MG→T (GC′ )
23 if (C′ = F ) then
24 G′C ← Pruning(C′, G′C)
25 if GC′ 6= ∅ then
26 COSMIc(C′, GC′ , G = (V,E, T,Edge), i+ 1)

27 if left = true then
28 interval ← [a, previous(b)]
29 stack ← push(interval, true)

30 interval ← [next(a), b]
31 stack ← push(interval, false)

32 return CS

4.2 The Pruning function

The Pruning function, see Algorithm 2, is based on two pruning mechanisms.
The first one (lines 3 to 5) consists of removing individual edges. The constraint
|MC→T (C,MG→T (e))| > min weight (constraint (2) in Definition 7) is anti-
monotonic and can be used to safely remove edges as soon as they do not
satisfy the constraint. Constraint (3) on X2(C, e) is not anti-monotonic, but
we use an upper bound X2

ub(C, e), presented below, to remove the edge e from
GC as soon as we have guarantee that none of the specializations of C can
lead to X2(C, e) > χ2

0.05.

The second pruning mechanism (lines 6 to 7) focuses on the connected com-
ponents CC of GC . Constraints (6) and (7) of Problem 1 are anti-monotonic
and are used to stop the enumeration as soon as they are not satisfied by
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CC. Constraint (8) is not anti-monotonic, but we propose (see Algorithm 3 in
subsection 4.2.3) a tight upper bound with pruning capabilities without loss
of promising patterns.

Algorithm 2: Pruning

Input: C = (C1, · · · , Cp), GC , G = (V,E, T,Edge)
Output: The pruned graph

1 begin
2 for CC = (VCC , ECC) ∈ GC do
3 for e ∈ ECC do
4 if (| MC→T (C,MG→T (e))| ≤ min weight) or (X2

ub(C, e) < χ2
0.05)

then
5 ECC → ECC \ {e}
6 if (|VCC | ≤ min vertex size) or (|ECC | < min edge size) or

(
∑

WRAccub(C,ECC) < min sum wracc) then
7 GC ← GC \ {CC}
8 return GC

4.2.1 Upper bound for X2(C, e)

Let us denote by y = WC(e), x = Σz∈EWC(z), α = Σz∈EW?(z) and β =
W?(e). Since α and β are independent of WC , the values of x and y uniquely
determine X2(C, e) and we have

X2(x, y) =
(y − xβα )2

βx
α

+
((x− y)− xα−βα )2

xα−βα
+

(
(β − y)− (α− x)βα

)2
(α− x)βα

+
((α− β − x+ y)− (α− x)α−βα )2

(α− x)α−βα

=
(αy − βx)2

β(α− β)
.

α

x(α− x)

X2(x, y) is a convex function and, as shown by Morishita and Sese [33], takes
its maximum values at the extrema: (x − y, 0), (y, y). Since the former is
equivalent to an edge with weight= 0, i.e. an edge that violates constraint (2),
we only consider the latter tuple for the upper bound, that is to say

X2(C, e) ≤ X2
ub(C, e) =

(αy − βy)2

β(α− β)
× α

y(α− y)

When X2
ub(C, e) < χ2

0.05, the edge can never satisfy the constraint.
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4.2.2 Upper bound for WRAcc(C, e)

Similarly, let us denote by y = WC(e), x = maxz∈EC
WC(z), α = maxz∈EC

W?(z)
and β = W?(e). Since α and β are independent of WC , the values of x and
y uniquely determine the WRAcc(C, e) value and we have WRAcc(x, y) =
x
α

(
y
x −

β
α

)
.

Property 1 The function WRAcc(x, y) is a convex function.

Proof For 0 ≤ λ ≤ 1, we have

WRAcc(λ(x1, y1) + (1− λ)(x2, y2)) =
λx1 + (1− λ)x2

α

(
λy1 + (1− λ)y2
λx1 + (1− λ)x2

− β

α

)
=
λy1
α

+
(1− λ)y2

α
− βλx1

α2
− β(1− λ)x2

α2

= λ

(
y1
α
− βx1

α2

)
+ (1− λ)

(
y2
α
− βx2

α2

)
= λ

(
x1
α

(
y1
x1
− β

α

))
+ (1− λ)

(
x2
α

(
y2
x2
− β

α

))
= λWRAcc(x1, y1) + (1− λ)WRAcc(x2, y2)

Following the results of [33] and the argumentation of above, this function
takes its maximum value at (y, y), that is to say

WRAcc(C, e) ≤WRAccub(C, e) =
WC(e)

maxx∈EC
W?(x)

×
(

1− W?(e)

maxx∈EC
W?(x)

)
4.2.3 Upper bound for the sum of WRAcc

When specializing a context C, the connected components of the associated
graph may expand or shrink, some edges increasing their value on X2 above
χ2
0.05, or decreasing it below χ2

0.05. The set of edges thus does not satisfy a
monotonic property. To upper bound

∑
WRAcc on each connected compo-

nent, we only consider the terms that depend on WC :

∑
WRAcc(C, (VCC , ECC)) =

∑
e∈ECC

WRAcc(C, e)

=
∑

e∈ECC

maxx∈ECC
WC(x)

maxx∈EW?(x)
×
(

WC(e)

maxx∈ECC
WC(x)

− W?(e)

maxx∈EW?(x)

)
=

maxx∈ECC
WC(x)

maxx∈EW?(x)

∑
e∈ECC

(
WC(e)

maxx∈ECC
WC(x)

− W?(e)

maxx∈EW?(x)

)

=
maxx∈ECC

WC(x)

maxx∈EW?(x)

( ∑
e∈ECC

WC(e)

maxx∈ECC
WC(x)

−
∑
e∈ECC

W?(e)

maxx∈EW?(x)

)
=

maxx∈ECC
WC(x)

α

( ∑
e∈ECC

WC(e)

maxx∈ECC
WC(x)

− γ
)
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Let us order the edges of ECC in descending order of their weights:WC(e1) ≥
. . . ≥WC(ek). While specializing C into C ′, clearly, a more constrained context
is satisfied only by a subset of the transactions. To upper bound the measure,
we search for the weight combination that maximizes

∑
WRAcc(C, (VC , EC)) =

∑
WRAcc(C, (VC , {WC(e1) . . .WC(ek)}))

To this end, we successively replace maxx∈E in the formula above, starting
with e1, i.e. the observed set of weights. Next, we evaluate the configuration
with WC(e2) as maximum weight, i.e.

∑
WRAcc(C, (VC , {WC(e2)WC(e2)WC(e3) . . .WC(ek)})),

and continue until the value of
∑

WRAcc decreases. Indeed, as the sum of
convex functions is also convex, we are sure to have reached the maximum
value of

∑
WRAcc. Once the edges are sorted, this computation can be

done in linear time as explained in Algorithm 3. At each iteration, WC(ej)

Algorithm 3: Upper bound of
∑

WRAccub.

Input: ECC , WC , α and γ
Output: The bound

∑
WRAccub

1 begin
2 Sort the k edges of ECC in descending order of their weights
3 S1 ←WC(e1)

4 S2 ←
∑k
i=2WC(ei)

5 UB1 ← WC(e1)
α

(
S1+S2
WC(e1)

− γ
)

6 j ← 2
7 repeat
8 S1 ← (k − j)×WC(ej)
9 S2 ← S2 −WC(ej)

10 UBj ←
WC(ej)

α

(
S1+S2
WC(ej)

− γ
)

11 j ← j + 1

12 until (UBj < UBj−1) or (j = k);

13 return UBj−1

is considered to be the maximum edge weight. The variable S1 stores the
sum of the weights for the edges that are before ej with a weight equal to
WC(ej) for each of them. S2 is the sum for the remaining edge weights, which
remain unchanged. S1 + S2 corresponds to the sum of weights for the current
combination of edge weights and is used to evaluate

∑
WRAccub.

There is always the risk that weakly expressed edges mean that upper
bounds are far too optimistic and do not aid in pruning. We empirically assess
this issue, as well as the effect of mining only closed patterns, in Section 5.3.
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4.3 Discussion

COSMIc performs a complete and non redundant enumeration of all useful
contexts, that is, contexts for which one or several interesting patterns can
be found. It is complete as it enumerates all contexts and as it uses safe
pruning (c.f. upper bounds and a threshold on an anti-monotonic constraint
on the minimum weight of an edge). By definition, closed contexts cannot share
exactly the same set of transactions, hence the enumeration is not redundant.
This is a known result in the pattern mining literature, hence we omit a proof
here.

Each closed context thus induces a different of set of transactions (obtained
with the MC→T operator). However, the filtering of non-exceptional edges may
output a redundant pattern. Redundant patterns are filtered out at the end
of the algorithm. In practice however, we rarely observed such a situation in
our experiments.

To identify interesting patterns without requiring the end-user to set thresh-
olds (on minimum number of vertices, weights, ...), we can slightly adapt COS-
MIc to output the best patterns either w.r.t a single measure (top-k) or sev-
eral measures and associated user preferences. For example, the analyst could
be interested in patterns maximizing the number of edges while minimizing
the edge average WRAcc and number of vertices, that is, densely connected
graphs with a high average quality measure. For that matter, we can simply
keep in memory patterns that are not dominated by others while enumerating
them. In other words, we incrementally build the Pareto front given a set of
user preferences (so called skypatterns [45]).

5 Experimental Study of COSMIc

In this section, we first propose an artificial data generator that is used in
the following to evaluate the performances of COSMIc (Section 5.1). Then, we
evaluate the ability of COSMIc to recover meaningful exceptional contextual
subgraphs embedded into an augmented graph in the presence of noise (Sec-
tion 5.2). Finally, we study the performance of COSMIc (e.g., execution time,
pruning effectiveness) by using the generator and varying a single parameter,
while controlling the others (Section5.3).

Note also that COSMIc was implemented in Java and the experiments run
on machines equipped with i7-2600 CPUs @ 3.40GHz, and 16GB main mem-
ory, running Ubuntu 12.04, and Java Version 1.6. Algorithm implementations,
data generator and Vélo’v results exploration are available on a Web page3.

3 https://mehdi-kaytoue.github.io/contextual-exceptional-subgraph-mining/.
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5.1 Artificial augmented graph generator

Since it is notoriously difficult to obtain data of which the ground truth is
known, especially for augmented graphs that have not been much studied so
fare, we designed an artificial augmented graph generator that makes possible
to evaluate COSMIc in a systematic way.

The generator works as follows. First, it generates the graph structure
with nbV ertices vertices, where each pair of vertices has the same probability
linkProb to be linked by an edge. Then, it generates nbPatterns contexts
and assigns to each of them a distinct connected subgraph with patternSize
edges. Then, the transactions are generated: We assign on average weight
transactions that satisfy the context associated to that pattern. Finally, noise
is added to these transactions, governed by noiseRate. The parameters used
for generating data are summarized in Table 3.

Parameter Description
Default
value

nbV ertices number of vertices 104

nbTrans number of transactions 3× 106

nbAtt number of nominal attributes 5
domainsize avg. size of attribute domains 20

nbPatterns number of hidden patterns 5

patternSize avg. number of vertices involved in a hidden pattern 10
linkProb probability of two vertices to be linked 0.2

weight avg. weight of contextual edges in hidden patterns 10

noiseRate
probability of a transaction supporting the context to
be noisy

0.1

Table 3 Default parameters used for generating data.

5.2 Robustness to noise and ability to discover hidden patterns

In this section, we evaluate the ability of COSMIc to recover contexts (and
their corresponding connected components) that have been hidden in an aug-
mented graph thanks to our artificial data generator. To assess the quality of a
discovered pattern Pd = (Cd, (Vd, Ed)), we compare it to each hidden pattern
Ph = (Ch, (Vh, Eh)) based on the scores SV and SC :

– SV indicates the similarity between the vertices of the two patterns:

SV (Pd, Ph) =
|Vd ∩ Vh|
|Vd ∪ Vh|

– SC assesses how similar Pd is to the context Ph:

SC(Pd, Ph) =

∑m
i=0 δ1(apdi , a

ph
i )∑m

i=0 δ2(apdi , a
ph
i )



22 Mehdi Kaytoue et al.

with

δ1(apdi , a
ph
i ) =

{
1 if apdi = aphi
0 otherwise

δ2(apdi , a
ph
i ) =

{
1 if apdi = aphi or apdi = ?i
2 otherwise

Note that we penalize patterns Pd that instantiate an attribute ai with a
value different from aPh

i instead of keeping the symbol ?. For instance, given
the hidden context Ch = (a, b, c), Cd1 = (a, ?, c) has a better SC score (i.e., 2

3 )
than Cd2 = (a, b2, c) whose restriction on the second attributes is wrong (the
SC score is 1

2 ).
Since several patterns are hidden, we assign to Pd the maximal score on

the hidden patterns:

SV (Pd) = max
Ph

SV (Pd, Ph) and SC(Pd) = max
Ph

SC(Pd, Ph)

Finally, we define a unique aggregated score for each Pd as the harmonic mean
between SC and SV :

S(Pd) =
SV (Pd) + SC(Pd)

2

We generate several synthetic datasets that differ by the weight, the link
probability and the noise level parameters used. In each dataset, 5 hidden
patterns are embedded.

In Fig. 5, we investigate the individual quality of the retrieved patterns for
three settings:

1. weight=10 and linkProb=0.1
2. weight=30 and linkProb=0.2
3. weight=40 and linkProb=0.5

where the noise level varies from 0 to 0.6. The scores SC(Pd) and SV (Pd) of
each discovered pattern show that the computed exceptional contextual sub-
graphs have the same context as the hidden patterns, but can differ by their
related connected component, especially when the link probability and the
weight are low and the noise level is high. In most of the cases, all the hidden
patterns are retrieved partially or totally as indicated in the radar plots in Fig.
5 (second, fourth, and sixth row). Fig. 6 reports the average and the standard
deviation of the scores S of the patterns obtained on these datasets (i.e., this
is the result of the aggregation of individual results provided in Fig. 5).

We also ran COSMIc on 80 artificial datasets, generated with 4 different
weight values (10,20,30,40), 4 link probability values (0.1, 0.2, 0.3, 0.5) and 5
of noise rates (0, 0.2, 0.4, 0.6, 0.8) and we report the median of the score S, as
aggregated in Fig. 6, in Fig. 7. These results demonstrate that our approach is
able to discover hidden patterns even if the dataset is very noisy (up to a noise
rate equal to 0.8). Indeed, either the patterns are perfectly retrieved (i.e., S is
equal to 1), or the patterns are partially discovered with an incomplete context
description or a partial coverage of the vertices. As expected, the higher the
density and weight of the hidden patterns, the more robust the approach is
to noise. It is also important to note that whatever the configuration, our
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Fig. 5 Scores SC and SV of discovered patterns w.r.t different levels of noise (in columns)
and for different weights and link probabilities (in rows).

algorithm does not return patterns when the noise rate is equal to 1. Actually,
the statistical test that has to be satisfied by each edge of a pattern makes it
impossible to return nonsensical patterns.
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Fig. 6 Boxplot of the discovered pattern scores S w.r.t. different levels of noise for dif-
ferent settings (top: weight=10, linkProb=0.1, middle: weight=30, linkProb=0.2, bottom:
weight=40, linkProb=0.5).

5.3 Performance study

We also use our artificial data generator to study the behavior of COSMIc with
regard to several factors: The number of transactions, the number of vertices,
the number of attributes and the cardinality of the attribute domains. We
generate datasets by varying a single factor, the other ones being fixed. To
avoid atypical results due to the randomness, we generate 10 datasets for
each settings and report the median of the execution times as well as the
median number of discovered patterns and their median score S, defined in
the previous subsection. In this set of experiments, we use the default values
for the generator that are given in Table 3.

Fig. 8 reports the run time of COSMIc, the number of discovered patterns
and their quality when the number of vertices is varying. While the other
parameters remain unchanged, the number of vertices has no influence on
either the execution time or the number of patterns and their related quality.

Fig. 9 presents the same quantities when the number of transactions change.
We can observe that the run time increases proportionally to the number of
transactions, whereas the number of discovered patterns tends to decrease.
The larger the number of transactions, the better the quality of the discovered
patterns.
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Fig. 7 Median score S of the discovered patterns with respect to the noise rate and the
link probability for 4 different weight values.

Fig. 8 Run time (left), number of discovered patterns and their score S (right) w.r.t. the
number of vertices.

In Fig. 10 and 11, we respectively report on the behavior of our algorithm
when varying the number of attributes and their domain cardinality. Obvi-
ously, adding new attributes or increasing the size of the attribute domain
results in a larger search space. Therefore, the execution time increases when
either the number of attributes or the size of the attribute domain increase.
The number of attributes is the more influential factor. Its increase leads to
the discovery of larger sets of patterns with worse quality. Notice that even if
the quality of the patterns is decreasing, it remains satisfactory (i.e., greater
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Fig. 9 Run time (left), number of discovered patterns and their score S (right) w.r.t. the
number of transactions.

than 0.6 with 7 attributes). We observe the same phenomena when we increase
the size of domain values.

What is different and interesting to see is the convexity/concavity of the
curves, however: small attribute domains lead to a lack of diversity in possible
noise patterns – while the score shows that some of those patterns are spurious,
the number stays small. Increasing the domain size allows larger variety in
patterns that will be mistakenly identified as contexts – number of patterns
rises and scores fall. Finally, there is a tipping point reached at which the
domain size becomes so large that many different noise contexts are generated,
none of which is considered significant.

Fig. 10 Run time (left), number of discovered patterns and their score S (right) w.r.t. the
number of attributes.

We also studied in Fig. 12 the behavior of our algorithm w.r.t. the replica-
tion factor, i.e., when the number of transactions increases while depicting the
same phenomena, preserving the search space. To this end, we report the ratio
of the execution time for several values of the replication factor. This execu-
tion time ratio is equal to execution time needed to mine the replicated dataset
divided by the execution time on the original dataset. In this way the ratio is
equal to 1 for the original datasets (i.e., for a replication factor equaling 1). We
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Fig. 11 Run time (left), number of discovered patterns and their score S (right) w.r.t. the
cardinality of the attribute domains.

considered several settings for the size of the attribute domains, the number of
attributes, the number of vertices and the number of transactions. Obviously,
these ratios increase with the replication factor. But it is important to note
that, for all configurations, the execution time ratio increases sublinearly, i.e.
ratios are lower than the replication factor itself. For instance, in most of the
cases, with replication factors equal to 16, the algorithm takes about 10 times
as long to perform the extraction as on the original datasets. This means that
some pruning properties become more efficient when the replication factor in-
creases. This experiment demonstrates that our algorithm scales well with the
replication factor.

We also evaluated the ability of the closure operator to reduce the size of the
search space, that is, enumerating only contexts C with strictly different set of
transactions MC→T (C). For that matter, we generated a dataset that ensures
that many of the contexts will be enumerated in a reasonable amount of time.
Most importantly, we set 4 attributes each with 10 different values (hence 4.1
million possible contexts at maximum), 2000 transactions, 200 vertices and a
noise rate set to 0.1. We ran COSMIc without constraints on the minimum
number of nodes/edges nor on the minimum WRAcc per edge, but with a
minimum WRAcc sum of 0.5, and with minimum weight min weight vary-
ing between 2 and 10, the maximum weight in the data. In Fig. 13, closed
contexts plot corresponds to COSMIc, whereas all contexts plot is ob-
tained by removing lines 12 and 23 in Algorithm 1. The results clearly show
the significant impact of the closure on reducing both run time and number
of actually explored patterns.

Finally, we assessed the ability of the upper bounds to prune unpromis-
ing context specializations, that is, stopping the enumeration when the upper
bounds cannot be satisfied. We generated an artificial dataset with similar pa-
rameters as in the previous paragraph except that we did not hide any pattern
and set noise rate to its maximum (1.0). The efficiency of the upper bounds is
illustrated in Fig. 14, where with pruning stands for COSMIc and without

pruning is obtained by removing lines 13 and 24 in Algorithm 1. In this case
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Fig. 12 Run time ratio w.r.t. the replication factor for several data generator settings.

Fig. 13 Run times (left) and number of patterns (right) when varying the edge minimum
support min weight: Closed versus non-closed pattern enumeration.

also, we can see the impact of the pruning technique on the performance of
the algorithm.

6 Comparative Experiments

In this section, we compare the results obtained by COSMIc with those pro-
vided using related approaches (reviewed in Section 2), namely the MiMaG
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Fig. 14 Run times (left) and number of patterns (right) when varying the edge minimum
support min weight with and without pruning.

approach [7] designed for subspace clustering on layered edge-weighted graphs,
and an Exceptional Model Mining algorithm [50].

6.1 Comparison to MiMag

As we discuss in Section 2, several approaches for mining edge-attributed
graphs have been proposed in the literature. The one closest in goal to our
technique, an algorithm called MiMaG, has been introduced in [7]. In that
framework, graphs exist in several layers, and edges have weights that are
determined by those layers, obviously a formulation that is rather close to
our own. MiMaG attempts to find quasi-cliques formed by edges with similar
weights, and group layers in which the same nodes are involved in a quasi-
clique. We therefore explore to what degree that technique can discover pat-
terns in the data that we use.

To translate our data into a representation that can be processed by
MiMaG, we have to choose appropriate representations and adjust the pa-
rameter values:

1. How to define graph layers?
2. How to define edge weights?

Graph layers The obvious representation would consist of letting each distinct
context define its own layer. Returning to the example we gave in Table 1 in
the beginning, there would be 13 layers to the graph (all possible combina-
tions of Gender, Age, Time and Weather that occur in the data), as shown in
Table 4 (Graph layer modeling 1).

While MiMaG groups layers, however, it has no capability to generalize
them. This means that it might group disjoint contexts if we use only this
form of layers. Alternatively, we can treat each attribute-value combination as
a distinct layer, leading to 12 layers (see Table 4 (Graph layer modeling 2)).
This would allow MiMaG to group a subset of attribute-value pairs contained
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in contexts, and in this manner generalize them, e.g. combining Time=’Night’
and Weather=’Windy’, subsuming three of the contexts.

Graph layer modeling 1 Graph layer modeling 2
Gender Age Time Weather max

x∈E
WC(x) Attribute Value max

x∈E
WC(x)

F 20 Day Rainy 1 Gender F 3
F 20 Night Cloudy 1 Gender M 2
F 20 Night Windy 1 Age 20 3
F 20 Night Rainy 1 Age 23 1
M 23 Night Windy 1 Age 30 1
M 23 Night Cloudy 1 Age 45 2
M 23 Night Rainy 1 Age 50 1
F 45 Night Cloudy 1 Time Day 2
F 45 Day Rainy 1 Time Night 4
F 45 Night Windy 1 Weather Cloudy 2
M 50 Day Windy 1 Weather Rainy 2
M 50 Night Rainy 1 Weather Windy 2
F 30 Night Rainy 1

Table 4 Potential graph layers and maximum weights of edges for each layer.

Edge weights As in our earlier discussion in Section 2, it obviously does
not make too much sense to use absolute edge weights, particularly not if
we try to assess edges’ similarity. Instead, we can either normalize by the
largest weight an edge has for the context or attribute-value pair, or calculate
the WRAcc values. In the former case, MiMaG will group edges that have
the same relative weight, in the latter edges with the same WRAcc value.
Table 5 gives the two types of weights for the edge (C,D) in our toy example.
For the full context shown in the first row, the edge is clearly not particular,
yet its relative weight would make it appear highly similar (in fact, identical)
to all other edges for that context (and for all other contexts). For individual
attribute-pairs, on the other hand, WRAcc scores give more expressive results
than weights (the edge is under-expressed for the gender and age attributes,
over-expressed for the others), and can separate the time and weather effects,
which the relative weight cannot. To aid MiMaG, we filter out edges that
have a negative WRAcc value.

Context Relative Weight WRAcc

〈F, 20, Night,Rainy〉 1/1 1
5

(
1
1
− 5

5

)
Gender=’F’ 1/3 3

5

(
1
3
− 2

5

)
Age=20 1/3 3

5

(
1
3
− 2

5

)
Time=’Night’ 2/4 4

5

(
2
4
− 2

5

)
Weather=’Rainy’ 1/2 2

5

(
1
2
− 2

5

)
Table 5 Possible weight encodings of edge (C,D) for an example context and its component
attribute-value pairs.
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Parameter settings MiMaG has two parameters: γ influences the degree to
which quasi-cliques need to be connected, and w is the tolerance parameter
deciding whether edge weights are considered similar or not. There is no clear
guidance how to set those parameters: γ ∈ [0, 1] but anything below 0.5 de-
noted non-dense cliques (a type of pattern COSMIc can discover). Given that
we have normalized weights, we know that w ∈ [0, 1] but we cannot decide a
priori what is a good value. The authors of the original paper evaluate their
approach with γ = 0.5 and w = 0.1 and we therefore use the same parameters.
We use the Java implementation of the algorithm that has been provided to
us by the authors.

Results We generated data using the default parameters given in Section 5.1,
with the difference that we lower nbV ertices to 1000, and nbtrans to 100, 000.
For larger values, MiMaG runs out of memory even when the Java virtual
machine is provided with 16 GB of main memory; in fact, for nbtrans =
250, 000 and larger using contexts as layers leads to crashes of the program
when reading the data file.

Fig. 15 Scores SC and SV of discovered patterns w.r.t different levels of noise for attribute-
value pairs as layers, and WRAcc as weight(first row: weight=10, linkProb=0.1, second row:
weight=30, linkProb=0.2, third row: weight=40, linkProb=0.5).

We use the scores SV , SC (see subsection 5.2) to evaluate the quality of
the results. Using contexts as layers leads to poor results: Scores of the found
patterns (if any) are 0 in almost all cases. Using attribute-value pairs as layers
gives MiMaG the possibility to find patterns that partly correspond to the
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hidden patterns, as Fig. 15 shows. MiMaG needs rather high values of weight
and link probability to recover the patterns. The best results are achieved
for the data set with a link-probability of 0.5 (bottom row), i.e. relatively
dense graphs. Noise seems to have little effect on its performance, neither for
weight=30, link-probability=0.2, nor for the data in the bottom row. In ei-
ther case, however, the results are inferior to those of COSMIc. Interestingly,
MiMaG still returns contexts when the noise probability is 1.0, something that
should be impossible given that no contexts are embedded anymore, and edge
descriptions contain only noise. This behavior, together with the enumeration
of contexts that have little to do with the hidden ones in terms of descriptors
and vertices, indicates that this might simply the result of frequency: certain
attribute-value pairs and certain vertices appear more often in the data and
MiMaG selects those. It seems therefore as if MiMaG combines frequently oc-
curring attributes and vertices, and that some of those somewhat accidentally
agree with hidden contexts. Given that an in-depth discussion of the strength
and weaknesses of MiMaG is out of the scope of this paper, however, we leave
the exploration of this question open to interested readers.

Fig. 16 Scores SC and SV for weight=40, linkProb=0.5 for attribute-value pair layers, and
relative weight.

Fig. 16 reports the results obtained on the same datasets as in the bottom
row of Fig. 15, but using the relative weight measure. The patterns are of
clearly worse quality than the ones obtained using WRAcc: Their SC is much
lower and SV does not improve.

Performance-wise, Fig. 17 shows that MiMaG is not faster than COSMIc,
even while finding a comparable amount of patterns overall. Notably, each
pattern involves typically five nodes or less.

There is arguably an explanation for the inability of MiMaG to group
more nodes together: The parameter value γ = 0.5 means that it is searching
relatively dense subgraphs. The problem is, however, that lowering that value
causes MiMaG to encounter memory problems again: for γ = 0.3, for instance,
it crashes when mining data with attribute-value pairs as layers. When mining
data with context as layers, the process terminates with long running times,
yet fails to find any patterns. Using MiMaG to address our problem setting
therefore requires significant preprocessing of the data: the tasks that COSMIc
performs internally – decomposing contexts and calculating WRAcc – need
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Fig. 17 Run time (left), number of discovered patterns (right) w.r.t. different levels of noise
for attribute-value pair layers.

to be done beforehand. Even then WRAcc stays static, however, and does
not change while attributes are combined, leading to patterns of lower quality.
As a conclusion, those experiments show that MiMaG can hardly be adapted
to solve the problem we consider here, which is quite different from the one
addressed by the authors in [7].

6.2 Comparison to Exceptional Model Mining

As mentioned earlier, our problem is a particular instance of exceptional model
mining (EMM) [29,16]. Therefore, we instantiate our problem as the closest
existing EMM setting that can partially model our setting to evaluate the per-
formance of an EMM approach. Recall that our dataset is an augmented graph:
Each transaction takes values for some numerical and categorical attributes
and is also associated to an edge. These attributes values vectors form the ob-
ject descriptions in EMM. Each edge found in the dataset is a binary target. In
this reformulation, an EMM algorithm searches for subgroups (S,MT→C(S))
(or equivalently (MC→T (C), C)), for any subset of transactions S ⊆ T and
context MT→C(S). Subgroups are evaluated with a quality measure, for in-
stance the (weighted) Kullback-Leibler divergence ((W)KL): it measures the
difference between the target attributes’ distribution (the graph edges’ dis-
tribution) within the subgroup and within the full dataset. The higher the
difference, the more exceptional the subgroup. Contexts for which the appear-
ance of edges is exceptional are searched for.

Example. Consider Table 1 and the context C = (?,Night,Windy). We have
that T = MC→T (C) = {m2,m7,m10,m15,m17} and (T,C) is a subgroup. The
appearance probability of each edge e ∈ E in the subgroup p(e|T ) and in the
whole dataset p(e|R) are:
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p((A,B)|T ) = 1/5 p((A,B)|R) = 5/18
p((B,C)|T ) = 1/5 p((B,C)|R) = 3/18
p((B,D)|T ) = 1/5 p((B,D)|R) = 3/18
p((C,D)|T ) = 0/5 p((C,D)|R) = 2/18
p((D,E)|T ) = 2/5 p((D,E)|R) = 5/18

The WKL of a subgroup is

WKL((T,C)) =
|T |
|R|
×
∑
e∈E

p(e|T )log2
p(e|T )

p(e|R)
,

so for our example: WKL((T,C)) = 5
18×((1/5 log2

1/5
5/18

)+(1/5 log2
1/5
3/18

)+(1/5 log2
1/5
3/18

)+

(0/5 log2
0/5
2/18

) + (2/5 log2
2/5
5/18

) = 0.04.

Although this modelization partially fits to our problem, it suffers from
major issues that we discuss below. For some elements of the discussion, we
ran several experiments with this modelization and the DSSD algorithm. It
performs a beam-search through the lattice of subgroups, enabling the dis-
covery of a diverse set of subgroups [49,50] and considers the WKL quality
measure. Given that this heuristic exploration is not able to deal with large
graphs, we did not experiment with exhaustive explorations (e.g., SD-Map
[3]).

Subgroup interpretation. Knowing that a subgroup, or context, is excep-
tional is not enough: we need to know for which edges this is the case. In
other words, the targets of the objects within a subgroup induce a weighted
subgraphs, and selecting which edges are important remains to be done. A
solution is to keep only over-expressed edge according to the WRAcc mea-
sure (edges whose WRAcc is strictly positive). This can however result in an
over-abundance of connected components, as well as in too small subgraphs,
or even individual edges. Most importantly, the WKL suffers from the curse of
dimensionality : when dealing with numerous targets (edges), it is very likely
that the best subgroups appear exceptional due to a slight global difference in
the distribution of edges, and not a strong local one that affects only a few
edges4. The best contextual graphs may be missed.

Run times and memory consumption. As illustrated hereafter, DSSD, un-
der various configuration, is not scalable enough to solve our problem. This
is mainly due to the fact that each edge of the graph has to be encoded as
a target attribute. When experimenting with DSSD5, we used its default pa-
rameters for the beam-search exploration (except a depth at least equal to the
number of attributes). We set the following default parameters for generating
synthetic data: 10, 000 transactions with 5 attributes each with 20 possible val-
ues taking edges in a graph of 100 vertices (with weight = 20, linkProb = 0.5
and noiseRate = 0.1) in which 5 patterns of 10 vertices are hidden. Fig. 18

4 A parallel could be drawn to the case when one has to use bi-clustering techniques over
traditional clustering in the presence of a large number of attributes [31].

5 Provided by the authors of the DSSD at http://patternsthatmatter.org/dssd/
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Fig. 18 Run times and quality scores w.r.t. a varying number of transactions when exper-
imenting with DSSD.

Fig. 19 Run time and quality scores w.r.t. a varying number of hidden patterns (left) and
vertices (right )when experimenting with DSSD.

presents the run times and quality scores when varying the number of trans-
actions. As a first remark, DSSD scales badly while COSMIc shows equal or
smaller run times for much larger data (see the previous subsections). This
result becomes even more striking given that DSSD uses a heuristic approach
while COSMIc performs an exhaustive search. We ran DSSD with a number of
different parameter settings and rarely retrieved the hidden patterns. Most of
the time, only a single pattern was retrieved with scores indicating that con-
text or vertex coverage was incomplete (see Fig. 18 (right) and Fig. 19), even
when changing DSSD parameters to ensure more diversity in the output. One
way of solving this problem is to enlarge the beam width (100 by default), but
it comes with longer run times and results in premature DSSD termination.

7 Case Studies with Real-World Data

We report two case studies showing the actionability of the discovered patterns:
(1) On the public bicycle sharing system of Lyon, called Vélo’v, we study
the use of the system depending on time of day, user demographic data (age,
gender etc.) and properties of the districts of Lyon; (2) On data gathered from
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matches of DOTA 2, a tactical multi-player computer game, we demonstrate
the ability of exceptional contextual subgraphs to highlight mobility behaviors.

7.1 Travel patterns in the Vélo’v system

Vélo’v is the bike-sharing system run by the city of Lyon (France) and the
company JCDecaux6. There are a total of 348 Vélo’v stations across the city
of Lyon. Our Vélo’v dataset contains all the trips collected over a 2 year
period (Jan. 2011 – Dec. 2012). Each trip includes the bicycle station and the
time stamp for both departure and arrival, as well as some basic demographics
about the users (gender, age, zip code, country of residence, type of pass).
Hence, the Vélo’v stations are the graph vertices (|V | = 348), and directed
edges correspond to the fact that a Vélo’v user checks out a bicycle at a
station and returns it at another. There are in total 164, 390 users for which
demographics are available and 6.7 million of transactions (i.e., movements).

The rapid development of bicycle sharing and renting systems has an im-
pact on urban mobility practices. Studying this impact is crucial for the fol-
lowing reasons: (1) It is important to understand whether and how this new
service contributes to the emergence of new mobility trends; (2) This study
is multi-disciplinary and involves physicists, economists, geographers and so-
ciologists as well as the practicians directly involved with the bicycle sharing
system. Notice that our approach fits well in a multi-disciplinary context since
the patterns we are interested in are interpretable without data mining ex-
pertise; (3) The conclusions of the analysis are of interest for several urban
mobility actors (local authorities and private mobility operators). For instance,
these conclusions can be transferred to new cities for the deployment of new
services.

The problem setting for our experiments on the Vélo’v data is essentially
the one that we outlined in the introduction to motivate our work: Given the
characteristics of different users, we aim to identify populations that use the
rental bicycles in a particular manner. Hence each pattern is a hypothesis
on a movement schema (connected subgraph) for a specific population (the
context). We transformed the initial data set into several databases of trans-
actions. This gives us the opportunity to experiment with the algorithm in
various conditions with non-synthetic data while also exploring the data to
elicit hypothesis. We generated |{2weeks, october, all} × {basic, extended}|
datasets as defined by:

– Number of transactions. To vary this parameter, three subsets of data have
been chosen: The two first weeks of October 2011, denoted as 2weeks,
with 312, 185 transactions), the full month of October 2011, denoted as
october, with 565, 065 transactions, and the full dataset, denoted as all,
with 6, 713, 937 transactions.

6 http://www.velov.grandlyon.com/
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– Number of attributes. In its basic version, the dataset contains the following
attributes: daytime ∈ {morning,midday, evening, lastmetro, night, other}
which denotes specific bike usage [21]; the zipcode, gender, country, and age
of the biker (where age ∈ {[14; 25][25, 60],≥ 60} still according to [21]) as
well as the type of pass subscribed by the user.
In its extended versions, the dataset contains properties of both departure
and arrival stations (edge source and target attributes). We use census data
provided by the National Institute of Statistics and Economic Studies (IN-
SEE) that provides meaningful information about education, employment,
industries, etc. Each station is labeled with some information of the IN-
SEE division whose center is the closest to the bike station (using a Google
API). The information used is TrainStation, University, Companies, Ho-
tel, Tourism, which respectively are true if there is at least a train station
or a university, at least 10 companies, at least one hotel and at least one
tourism center. In total there are 9 attributes for the basic datasets and 19
for extended ones.

To evaluate the ability of COSMIc to deal with a real world dataset, we
report the run times and number of extracted patterns (Fig. 20) for the dataset
(october, basic), with min vertex size = 2, min edge size = 1. The results
indicate that COSMIc is able to mine patterns in a real life dataset, even with
low minimal support on the edges (min weight) and no other constraints that
would otherwise reduce the size of the search space.

However, it should be noted that the extraction of the whole dataset with
extended attributes (all, extended) takes too long (more than two days). A
way to solve this problem is to impose a syntactic constraint, that is to say
to start the enumeration in a given context Croot. In this setting, COSMIc
produces only more specific patterns than Croot, yet still taking the whole
dataset for computing edges probabilities W?(.). This allows an expert to par-
tially materialize his hypothesis.

Fig. 20 Run times (left) and number of patterns (right) on Vélo’v when varying
min weight.
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(a) C1 = {Zip code = 38, Gender = men,
Age = [26, 60], Pass = oura}

(b) C2 = {Zip code = 38, Gender = men,
Age = [26, 60], Pass = oura}

(c) C3 = {T ime = night, Country =
France, Pass = velov}

(d) C4 = {T ime = night, Zip code = 69005,
Country = France, Age = [26, 60], Pass =
standard}

(e) C5 = {Gender = men, Age = [14, 26],

University In, University out}

(f) C6 = {Zip code = 69004, Gender =
men, Age = [14, 26], University In,

University out}

Fig. 21 Several contextual subgraphs discovered in the Vélo’v datasets.
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Fig. 21 presents a visualization on the map of Lyon of six patterns that we
extracted from different datasets introduced above7. For each, we detail the
experimental protocol and propose an interpretation.

To start, we mine the dataset (october, extended) with Croot = (?1, . . . , ?p).
The extraction lasts 62 minutes and returns 1, 703 patterns (with parameters
min vertex size = 2, min edge size = 1 and min weight = 6). Instead of
evaluating each pattern individually, we choose to filter out patterns whose
context does involve the attribute-value pair zip code = 38. This is the zip
code of a neighboring area of Lyon reachable by car and train (at least 40
km away from Lyon). The idea is to understand the behavior of non-Lyon
residents. Two patterns (out of a total of three) are presented in Fig. 21 (a)
and (b). Both of their contexts C1 and C2 include pass = OURA, which means
that the users have a Vélo’v pass card linked to a rail pass (both patterns
contain each 3 vertices and 4 edges and a WRAcc sum of, resp. 0.04 and
0.12.). Their subgraphs involve the two main train stations of Lyon: Perrache
(south-west) and Part-Dieu (center) that are connected to the main city center
square of Lyon, named Bellecour. These patterns may thus identify stations
that the Vélo’v system operator should care of at the end of work hours:
bikes must be available for workers that seek to reach the train stations.

While mining the dataset (all, basic) with {daytime = night} ∈ Croot,
we obtain 45 patterns in 80 seconds (with parameters min vertex size = 2,
min edge size = 1 and min weight = 6). Two of these patterns are shown in
Fig. 21 (c) and (d): The graph associated to C3 involves three areas known
for their nightlife (left hand side of the figure) and two residential areas with
many young inhabitants (on the right). Context C4 contains the attribute-
value zipcode = 69005 and its associated graph displays travels between this
area (on the left along the river) and Lyon’s opera as well as the Part-Dieu rail
station. The pattern represented in Fig. 21 (c) (resp. (d)) contains 7 nodes and
10 edges with a WRAcc sum of 0.03 (resp. 6, 10 and 0.05). These patterns
may thus identify key stations and demographics that the Vélo’v system
operator could target for heightening awareness campaigns on, for example,
dangers when biking at night or after parties.

Finally, we run COSMIc on (all, extended) starting the pattern enumera-
tion with {age ∈ [14, 26]} ∈ Croot, thus aiming to get insights on young peo-
ple’s behaviour. The execution took 70 minutes with min vertex size = 15,
min weight = 100 and min sum wracc = 0.1. It returned 31 patterns. Two
of the patterns obtained are shown in Fig. 21 (e) and (f), having, respectively,
18 vertices, 45 edges, and a WRAcc sum of 0.28, and 16 vertices, 39 edges,
and a WRAcc sum of 0.3. In the graph associated to C5, edges link city cen-
ter areas with the city center campus. Pattern C6 contains the attribute-value
pair zipcode = 69004 which is the area where many edges depart (upper left
part). The arrivals of these edges are the main components of the University of
Lyon spread across the city. Most importantly, in both case the context hints

7 All results can be explored through a user friendly interface http://liris.cnrs.fr/

dm2l/projects/graisearch/mlj/
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the presence of universities in the IRIS attached to each node. One possible
interpretation is that these two patterns depict students from the 4th district
of Lyon going to their universities. Here again, such hypotheses are valuable
for the Vélo’v system operator as it gives hints on the behaviour for partic-
ular demographics (without specifying them explicitly: The root pattern has
just a single attribute instantiated).

7.2 Behavioral mobility patterns in Dota 2

Electronic sport (eSport) is an emerging domain where the most skilled gamers
are hired by professional teams, surrounded by sponsors, and compete in in-
ternational tournaments [47], widely followed on live streaming platforms such
as Twitch.tv [25].8 Its development impacts our society: For example, a law
project in France is studying the legal status of e-sport athletes and tourna-
ments just as for off-line athletes.9 Academics and experts in sport analytics
are starting to get interested in this emerging topic [51,32] as well. Strategic
video games received much attention from the AI community for an extended
period [37], attention that was renewed after recent announcements from the
DeepMind team naming a video game as the next challenge after Go.10

In this context, we study Dota 2, a multiplayer online battle arena video
game released in July 2013. Up to February 2015, Dota 2 attracted tour-
naments totalling US$ 25 million in prize money, becoming one of the most
lucrative competitive video games. Just as in sport, players are gathered as a
team with coaches and practice as a daily routine. Behavioural data analyt-
ics start to play a key role to understand and model the opponents and thus
prepare tournaments, here again, just as for any athlete or sport team with
sport analytics (baseball, soccer and basket-ball). We assess our methodology
showing that behavioural patterns specific to game conditions and players can
be discovered from Dota 2 games. These patterns can be used to understand
the behaviour of a single or several players (the subgraph) at various stage of
the game and under several conditions (the contexts).

Fig. 22 DOTA Map.

Dota 2 and problem settings A game is played on
a map where two teams of five players are battling
each other in real time. Each team has to defend their
own stronghold and destroy the opponent’s one to win.
Each player controls a hero that he moves on the map,
and needs to train, by collecting gold, new items and
abilities, and by fighting opposing heroes. Fig. 22 dis-
plays the initial influence zone of both teams. The red

8 recently acquired by Amazon for US$ 970 million
9 http://www.gouvernement.fr/partage/6761-esport-en-france-on-avance (2016)

10 http://www.theverge.com/2016/3/10/11192774/demis-hassabis-interview-alphago-

google-deepmind-ai
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team called the dire (resp. green for the radiant), de-
fends their stronghold at the top right corner (resp. bottom left). Three lanes
(top, mid, bot in Fig. 23 (i)) separate the teams, on which defensive towers are
set. The players have well defined roles, depending on the heroes they initially
picked and their properties (110 available heroes). One role consists of defend-
ing and extending the influence zone in a specific lane, another is to quickly
switch lanes to attack by surprise. Knowing that a team only sees controlled
map zones, estimating enemies positions and triggering team fights at well-
chosen times and in well-chosen areas is key to success. As in any traditional
sport, professional teams study their soon-to-be opponents. Understanding
what are the specific zones controlled by a player in some contexts is crucial,
and allows teams to adapt their strategy and prepare the tournaments.

Scenario Any action performed during a game is stored afterwards in a file
(replay), allowing to re-watch it at any time. Replays and parsing tools are
freely available on dotabank.com and the skadistats GitHub. We randomly
selected an expert game from The International 3 Eastern Qualifiers: lasting
42 minutes and won by the dire (more information on dota2stat.com, match
#199392262). We built different augmented graphs from this game as follows.
The map is cut into n2 non-overlapping squares of equal width/height and
each cell of this grid is a vertex v ∈ V , edges of the graph are hero travel paths
(movement between two cells), R is the set of attributes describing players
heroes properties at the moment of the movement. Game time is measured in
ticks (30 ticks per second): There is at most |T | = 30×42×60×10 = 756, 000
movements (as there are 10 players). As such, we work directly on aggregated
data by rounding game times to a factor of w seconds and grid resolution n. We
build two datasets with different resolutions in space and time: DOTA1 with
w = 600 and n = 60 (which gives 482, 937 transactions and 3, 475 vertices)
DOTA2 with w = 1800 and n = 100 (that is, 482, 250 transactions and
11, 263 vertices). The datasets also differ by their attributes: Transactions are
defined on time (discretized game ticks), hero type, team (dire or radiant) for
DOTA1. We add two attributes in DOTA2 : percentage of remaining life (at
zero, the hero dies and waits a time proportional to the current game time
before re-spawning) and percentage of remaining mana (consumed when using
special tactics). A transaction example is t = {Jakiro, [0−600],dire} with edge
{(10, 32)}: A player of the dire team moved his Jakiro from cell 10 to cell 32
in the first 600 seconds of the game.

Experimental results We run COSMIc on the two datasets searching for con-
textual subgraphs having at least 30 nodes and 29 edges. We compute the
average and deviation of the WRAcc measure for each pattern. We remove
patterns dominated by another on all these dimensions to reduce the number of
output patterns (that is, we use a skyline operator seeking to minimize devia-
tion and maximize the other measures). DOTA1 produces 77 exceptional con-
textual subgraphs out of 29 different contexts in 363 seconds while DOTA2 pro-
duces 158 exceptional contextual subgraphs out of 124 contexts in 230 seconds.
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Fig. 23 presents some of the best patterns (highest average WRAcc). In (i),
contexts are: {SD,w2, radiant} and {SD,w3, radiant}: these two connected
components show different characteristic zones of the hero ShadowDemon
(SD) at two different phases of the game. While this player is aggressive in time
window w2 pushing on the top lane, he mainly walks around his stronghold
in the next window. Given that he belongs to the losing team, we can assume
that the latter is a defensive pattern. The pattern in Fig. 23 (ii), whose context
is {Juggernaut, w2, dire}, characterizes a role mentioned before: It represents
quick lane switches to help team mates and attack by surprise. Finally, two
exceptional contextual subgraphs of DOTA2 are given on Fig. 23 (iii), sharing
the same context {w0, radiant,mana ≤ 25%}. They clearly show mana-back-
up trajectories: in the early stage, mana is a rare resource, and getting back
inside the stronghold allows a player to quickly regain all of his mana, which
otherwise increases very slowly out of the stronghold.

These four examples of patterns show large connected components rep-
resenting movements or behaviors linked to their context. Knowing that the
full graph is large (with thousand of nodes) and contains many movements
(up to 720,000), the fact that we are able to discover large graphs (several
hundred nodes and edges) that are not necessarily dense, emphasizes the abil-
ity of COSMIc to discover behavioral mobility patterns. The main difference
with Vélo’v is the rate of mobility (30 movements per second for a player,
no more than 10 bike rides per day). Moreover, the semantics of the discov-
ered behavioral patterns (subgraphs) can be explained by their context: For
many examples including the four presented here, the mobility pattern is ef-
fected by an expert player. It remains for future work to apply COSMIc in
various scenarios, implying a detailed experimental protocol and involving a
deep knowledge of the game. It is indeed particularly important for eSport
structures to find this type of patterns in dataset composed of several games
of (i) a player to study his strategies, (ii) the same 5-players team to study
their common tactics or even (iii) with transactions of a single hero to discover
the most rewarding movements in terms of experience, gold, ... earnings (that
is find the best way of using that hero).

(i) {SD,w2, rad} (top) (ii) {Juggernaut, w2, dire} (iii) {w0, rad,mana ≤ 25%}
{SD,w3, rad} (bottom)

Fig. 23 Dota 2 patterns: to ease visualization, only vertices are shown (no edges).
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8 Conclusion

In this paper, we defined the problem of finding exceptional contextual sub-
graphs in augmented graphs. This problem has many applications, especially
for mobility data analysis such as in location based social networks, urban
data, and recommendation systems. It enables to discover connected com-
ponents highly characteristic of specific category of users and time periods.
We showed how an inductive approach rooted in Exceptional Model Mining
can answer this challenging problem. This is achieved thanks to an efficient
data mining algorithm COSMIc that avoids materializing all context/subgraph
pairs and benefits from pruning and upper bound computations techniques.
We evaluated COSMIc on both synthetic and real-world datasets. For that
matter, we designed an augmented graph generator that allows to hide ex-
ceptional contextual subgraphs and showed that COSMIc is able to retrieve
the hidden patterns in noisy data and to scale w.r.t. the parameters of the
input data (attribute domain size and number, number of transactions and
vertices). We compared our approach to the closest existing formalisms and
algorithms we could find and discussed how they fail to answer our problem.
Eventually, we provided two case-studies (i) on the analysis of a bike-sharing
system, where discovered patterns are helpful for the Vélo’v system opera-
tors (e.g. discovering stations and mobility patterns involving young people
at night) and (ii) on the analysis of Dota 2 replays, a well-known game in
eSport, for which the discovered patterns explains the mobility behaviors of
players.
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