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Abstract8

To obtain representative water quality simulations, unknown model param-9

eters have to be updated by combining information from the water quality10

model and the sensor outputs. An adjoint-based numerical method has11

been developed to determine the optimal placement of chlorine sensors in12

drinking water networks at a low computational cost. From a practical en-13

gineering perspective, the proposed optimal placement corresponds to the14

set of sensors that minimizes the area in which the unknown model param-15

eters cannot be identified. The numerical strategy is implemented in the16

hydraulic software EPANET. Using the adjoint framework, we develop and17

apply an adaptive strategy in a French drinking water network that provides18

the optimal placement from 1 sensor to 6 sensors. We show that the highest19

reduction of the non-identifiable area is obtained at the first stages of the20

adaptive strategy. After 4 sensors, a plateau is reached.21
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Software availability24

Name of software: EPANET25

Programming language: C/C++26

Operating system: Windows27

Availability: http://www.epa.gov/water-research/epanet28

Documentation: http://www.epa.gov/water-research/epanet29

User interface: Graphical user interface or Programmer’s toolkit30

License: Public domain software that may be freely copied and distributed31

1. Introduction32

In drinking water networks, the chlorine concentration field is one of the33

main indicators of the water quality. Legislation dictates that a minimum34

level of chlorine at each point in the network has to be ensured. To overcome35

the lack of measurements in drinking water networks, hydraulic and water36

quality models are considered. In water network applications, the hydraulic37

state is generally computed using algebraic equations, i.e., flow continuity38

at the nodes and headloss in the pipes. Regarding the water quality models,39

one-dimensional (1D) advection-reaction equations are considered in pipes,40

and perfect and instantaneous mixing is assumed in pipe junctions. The de-41

crease of the chlorine concentration due to bulk flow reactions and pipe wall42

reactions, e.g., reaction with the biofilm at the pipe wall, is modeled using43

a reaction term (Powell et al. (2000)). This term is characterized by the44
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reaction order and the reaction coefficient. The software EPANET (Ross-45

man and Boulos (1996); Rossman (2000)) is commonly used to simulate the46

hydraulics and the water quality states.47

French water companies can observe a gap higher than 30% between the48

chlorine sensor outputs and the chlorine concentration obtained from a di-49

rect simulation of the water quality model. This gap may be due to un-50

certainties in the hydraulic state, particularly the water demands, and to51

the model parameters associated with the chlorine reactions. To represent52

the variability in water demands, stochastic models are typically considered.53

The calibration of these models can be achieved using direct measurements54

(Buchberger and Wells (1996); Bakker et al. (2013); Cominola et al. (2015)),55

i.e., monitoring of the user water consumption in residences, or indirect mea-56

surements (Kang and Lansey (2009); Alcocer-Yamanaka et al. (2012)), i.e.,57

pressure and/or flow rate outputs into the drinking water network. To lo-58

cate and quantify abnormal water demands due to leaks, inverse techniques59

based on pressure sensor outputs have been proposed in (Liggett and Chen60

(1994); Meseguer et al. (2014)). In this inverse problem, the goal is to61

determine the unknown model parameters by minimizing the gap between62

the sensor outputs and the simulation. Finally, flow sensor outputs may63

also be used in inverse techniques. Indeed, an inverse computational fluid64

dynamics technique has been developed in (Waeytens et al. (2015)) to iden-65

tify the unknown boundary conditions of 2D incompressible Navier-Stokes66

equations and thus to obtain a high description in 2D of the flow profile in67

water networks. A detailed description of the flow in 2D or 3D can provide68

more representative chlorine simulations than using the mean flow velocity,69

particularly in the distribution mains of the drinking water networks where70

the flow can be laminar, thus inducing different chlorine propagation veloc-71
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ities. Note that the measurement of chlorine or tracer concentrations can72

also provide information on the water demands (Jonkergouw et al. (2008);73

Al-Omari and Abdulla (2009)).74

Regarding the water quality models, first-order reaction kinetics is com-75

monly assumed for the free chlorine decay. Many articles address the iden-76

tification of the reaction coefficient (Sharp et al. (1991); Rodriguez et al.77

(1997); Munavalli and Kumar (2005); Pasha and Lansey (2012)), but few78

aim to determine the reaction order and the reaction coefficient (Vasconcelos79

et al. (1997); Gancel (2006)). Because the reaction coefficient is associated80

with bulk flow reactions and pipe wall reactions, it is not uniform in the81

entire network. Nevertheless, to limit the number of unknowns to be de-82

termined, the reaction coefficient is considered to be piecewise constant on83

subsections of the water network. The choice of the domain decomposition84

is based on the age, the roughness, the pipe material, the pipe diameter and85

the flow rate.86

Because drinking water networks are sparsely instrumented, the use of nu-87

merical tools can indicate to the water companies the coverage area ensured88

by the existing chlorine sensors and the optimal deployment of new chlorine89

sensors. A considerable amount of literature addresses the optimal sensor90

position for detecting a contaminant intrusion in drinking water networks.91

Three categories can be distinguished: the non-model-based methods using92

the topology of the water network, the methods based solely on hydraulic93

simulations (Lee and Deininger (1992); Kessler et al. (1998); Berry et al.94

(2005); Xu et al. (2008)) and the methods based on hydraulic and water95

quality simulations (Berry et al. (2006); Preis and Ostfeld (2008); Krause96

et al. (2008)). The majority of the methods formulate the optimal sensor97

placement as a multiobjective optimization. The goal is to minimize the98
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non-coverage area, the number of sensors, the time to detection, and so99

forth.100

In the present article, we propose a numerical strategy based on the adjoint101

framework to determine and quantify the non-coverage area for a given set102

of sensor placements. This practical information can be useful for water103

companies to determine the optimal placement of chlorine sensors for maxi-104

mizing the coverage area for a given number of sensors. The method requires105

the resolution and the post-treatment of the solution of the adjoint problem,106

i.e., advection-reaction equations backward in time with virtual chlorine in-107

jection at the position of the sensors and a dynamic back flow. The adjoint108

framework is used in various applications. First, it provides at a low com-109

putational cost the functional gradient involved in inverse calculations to110

update the model parameters of the water flow (Liggett and Chen (1994);111

Waeytens et al. (2015)) and to reconstruct the concentration fields (Elbern112

et al. (2000); Waeytens et al. (2013, 2017)). Then, it is used in sensitiv-113

ity analyses to study the influence of the physical model parameters on a114

quantity of interest (Andrews (2013); Kauker et al. (2016)). The adjoint115

framework is also considered for estimating the modeling or the discretiza-116

tion error on a quantity of interest (Becker and Rannacher (2001); Waeytens117

et al. (2012); Oden and Prudhomme (2002)). Note that the determination118

and quantification of the coverage area can also be obtained from (Xu et al.119

(2008)), which is based on the knowledge of the flow and graph theory. The120

main advantage of the proposed adjoint approach is that it uses standard121

hydraulic software such as EPANET. Moreover, the adjoint solution can also122

be used in an inverse advection-reaction procedure to identify the reaction123

coefficient.124

The remainder of this article is organized as follows. Section 2 introduces the125
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model updating technique for identifying the reaction coefficient of the water126

quality model and the definition of the adjoint problem. The adjoint-based127

numerical strategy for the optimal chlorine sensor placement is developed128

in Section 3. This strategy is applied to a French drinking water network in129

Section 4 before drawing concluding remarks and prospects in Section 5.130

2. Modeling the water quality in drinking water networks and131

updating the kinetic reaction coefficient132

2.1. Simulating the water quality in drinking water networks133

In drinking water networks, the chlorine concentration is the primary134

indicator of the water quality. The chlorine propagates in the network135

according to the flow induced by water demands, and the chlorine con-136

centration decreases due to reactions occurring in the bulk or at the wall.137

Physical models can be employed to predict the propagation and the re-138

action of chlorine in drinking water networks. Generally, one-dimensional139

(1D) advection-reaction partial differential equations are considered in the140

pipes, and the mixing in the junctions is modeled using algebraic equations.141

The set of equations, detailed in (Rossman (2000)), for modeling the water142

quality in the drinking water network is called a “direct problem”. It can143

be solved using standard engineering software such as EPANET (Rossman144

and Boulos (1996)). Let us define the simulated chlorine concentration in145

the water network as C.146

In practice, water companies may observe a gap higher than 30% between147

the simulated and measured chlorine concentrations. Hence, to obtain a148

representative simulation of the water quality, the model parameters, such149

as the kinetic reaction coefficient, have to be updated. The model updating150
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strategy is described in the following sections.151

2.2. Cost functional used in model updating152

To obtain representative water quality simulations, one needs to update153

the unknown parameters of the model. Herein, we focus on determining the154

vector k = {k1, ..., kN} of reaction coefficients, where N corresponds to the155

number of water pipes in the drinking water network. For this purpose, an156

inverse modeling technique can be employed. Let us choose a quadratic cost157

functional that quantifies the difference between the sensor outputs Cmes
m158

and the numerical solution C of the water quality model mentioned in the159

previous section. One seeks the vector k of reaction coefficients by solving160

the following optimization problem:161

min
k
J(C,k) =

1

2

N∑
m=1

am

∫ T

0

(
Cm(k;x = xm, t)− Cmes

m (t)
)2
dt+ βb

N∑
m=1

(km − k0m)2 (1)

where C = {C1(x, t), ..., CN (x, t)} is the vector of chlorine concentrations.162

The Boolean parameter am is set to 1 (resp. 0) if the mth water pipe is163

equipped (resp. is not equipped) with a chlorine sensor recording the con-164

centration level on the observation time interval [0, T ]. The position of the165

mth sensor is denoted as xm. Note that Eq. (1) is a constrained optimization166

problem. Indeed, the chlorine concentration field C has to satisfy the set of167

water quality equations mentioned in Section 2.1.168

169

In general, the inverse problem is not well posed. First, in practice, to170

reduce the number of model parameters to be updated, the reaction coef-171

ficient is assumed to be the same on a group of water pipes that have the172

same characteristics, e.g., age, diameter and material (Fabrie et al. (2010)).173

Second, a Tikhonov regularization term such as the second term in Eq. (1)174

can be introduced in the cost functional. This term aims at improving the175
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convexity of the functional. The parameter b ensures the physical homo-176

geneity of both terms, and k0m corresponds to the initial guess of the mth
177

reaction coefficient. β corresponds to a normalized weighting coefficient.178

179

The minimization of the cost functional (1) can be performed using a180

gradient-like approach. In the present article, note that the functional gra-181

dient is obtained at a low computational cost using the adjoint framework.182

The methodology to derive the adjoint equation and the gradient formula183

are presented in the next section.184

2.3. Derivation and physical meaning of adjoint equations185

The constrained minimization problem (1) can be rewritten as an un-186

constrained minimization problem by introducing the Lagrangian L(k,C,P)187

and the Lagrange multiplier P. The stationarity of the Lagrangian according188

to the Lagrange multiplier P provides the equations of the direct problem189

mentioned in Section 2.1, whereas the equations of the adjoint problem are190

obtained from the stationarity of the Lagrangian according to C.191

192

Herein, the adjoint problem is quite similar to the direct problem. It193

is still an advection problem with a reaction term. In the adjoint problem,194

chlorine is virtually injected at the sensor location xm. The temporal evo-195

lution of the chlorine injection is provided by the data misfit. In contrast196

to the direct problem, the adjoint problem has a final condition in time.197

Moreover, the flow is reversed in the adjoint problem, i.e., the velocity v is198

replaced by (−v).199

Physically, the adjoint state corresponds to a “sensitivity concentration”.200

Considering a sensor at a given location in the drinking water network, the201
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“sensitivity concentration” propagates from the sensor location toward the202

upstream flow direction with increasing reversed time. Hence, it shows that203

all of the sensitivity of the sensor measurement is located upstream of the204

sensor location. In other words, the sensor is not sensitive to locations down-205

stream of the sensor, nor is it sensitive to chlorine concentrations that were206

present prior to the initial observation time.207

208

The adjoint state can provide sensitivity information, but it can also be209

used to compute the functional gradient ∇J , which is involved in model210

updating techniques, at a low computation cost. Indeed, n + 1 transport211

reaction problems have to be solved in standard finite-difference techniques,212

whereas only two transport reaction problems are needed when using the213

adjoint framework to compute the n components of the functional gradi-214

ent. The functional gradient ∇J is obtained from the derivative of the215

Lagrangian according to the reaction coefficient km.216

217

To provide a better understanding, the derivation of the adjoint equa-218

tions and the functional gradient are illustrated on a divergent node of a219

water network in Appendix B.220

2.4. Practical technique to update the reaction coefficient of the water quality221

model222

Drinking water networks are not massively instrumented with chlorine223

sensors. As mentioned in Section 2.2, to limit the number of model pa-224

rameters to be updated, the reaction coefficient is assumed to be uniform225

on subdomains of the water network that have the same characteristics.226

To update the vector k of reaction coefficients, one can follow the iterative227
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strategy detailed below.228

Direct problem:. First, considering an initial guess k0 or the kinematic229

parameters obtained at the end of the previous iteration, the advection-230

reaction direct problem is solved, thereby providing the concentration field231

C in the water network.232

Comparison of simulated chlorine and sensor outputs:. Knowing the sim-233

ulated concentration field C in the entire water network, we compute the234

data misfit at each sensor location.235

Adjoint problem:. In a water network, the adjoint problem is defined as an236

advection-reaction problem backward in time considering a reversed flow.237

It corresponds to the retropropagation of chlorine virtually injected at the238

sensor location. The higher is the data misfit, the higher is the chlorine to239

be injected.240

After changing the time variable t to τ = T − t, the final time condition241

begins as an initial condition. Hence, standard hydraulic and water quality242

software can be employed to solve the adjoint problem. By solving this243

problem, we obtain the adjoint state P.244

Functional gradient:. Let us consider the reaction coefficient kp modeling the245

chlorine reaction in a subdomain Ωp of the water network. This subdomain246

is composed of np water pipes. Thus, the formula of the derivative of the247

functional according to kp can be expressed as248

∂J

∂kp
= −

np∑
i=1

Si

∫ T

0

∫ Li

0
CiPidxdt+ βb(kp − k0p) (2)

In Eq. (2), the first term is associated with the sensitivity of the data249

misfit to the reaction coefficient kp, and the second term is dedicated to the250
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functional regularization.251

All the components of the functional gradient ∇J are computed from Eq.252

(2).253

Updating of the reaction coefficients:. Using the functional gradient ∇J254

as the descent direction, we obtain the updated vector knew of reaction255

coefficients by256

knew = kold − α∇J (3)

where α is the descent step. Several solutions are required to determine the257

descent step minimizing the cost functional J .258

If the data misfit functional reaches the measurement error, the model up-259

dating process is stopped. Otherwise, the iterative process continues.260

3. Optimal chlorine sensor placement using the adjoint framework261

3.1. Theoretical foundations of the optimal chlorine sensor placement method262

Proposition 3.1. Let us denote φ∗(x, t) as the modified adjoint solution.263

If φ∗(x, t) = 0 in Ωp × [0, T ], then the reaction coefficient k(x) is not iden-264

tifiable on the subdomain Ωp.265

The modified adjoint solution φ∗(x, t) verifies the following transport equa-266

tions in the pipes of the water networks267

−∂φ
∗
m

∂t
−vm

∂φ∗m
∂x

= amH(t)δ(x−xm), in [0, Lm]×[0, T ], m ∈ {1, ..., N}

(4)

The boolean am is equal to 1 (resp. 0) if the mth water pipe is equipped268

with a chlorine sensor (resp. is not equipped with a chlorine sensor). As with269

the adjoint problem, the pipe junctions are governed by the standard equa-270

tions of convergent or divergent nodes depending on the direction of the flow271
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(−vm). The flow (−vm) is considered stationary. Finally, in the modified272

adjoint problem, the final condition and the Dirichlet boundary conditions273

vanish.274

Note that the modified adjoint problem resembles the adjoint problem.275

The two differences are as follows. First, no reaction term is involved in the276

modified adjoint problem. Second, in the adjoint problem, the amplitude277

of the injected chlorine at the sensor location is given by the data misfit,278

whereas a constant amplitude in time is considered in the modified adjoint279

problem.280

281

The proof of Proposition 3.1 is given for a reduced water network in282

Appendix B. Although a reduced water network is considered to facilitate283

the notations, it includes key elements of a real water network, i.e., divergent284

and convergent nodes.285

3.2. Numerical method for optimal chlorine sensor placement286

For a given number ns of chlorine sensors, we seek the placement of287

chlorine sensors that minimizes the non-identifiable area associated with288

the reaction coefficient k(x). For this purpose, we propose an adjoint-based289

numerical method, which is detailed below.290

First, the hydraulic v(x, t) has to be simulated in the drinking water network.291

From the hydraulic, we deduce the reversed velocity field, i.e., (−1)×v(x, t).292

In agreement with the deployment constrains in the water network, a pos-293

sible placement of ns chlorine sensor is considered. Then, the reversed ve-294

locity field is used to obtain the modified adjoint concentration φ∗(x, t).295

The modified adjoint problem, introduced in Proposition 3.1, corresponds296

to the retropropagation of chlorine virtually injected at the sensor locations297
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with a constant unitary amplitude in time. In practice, after making the298

change of variable τ = T − t, this problem can be solved using standard299

engineering software, e.g., EPANET. In Proposition 3.1, we show that in-300

formation concerning the non-identifiable area associated with the reaction301

coefficient k(x) can be provided by the modified adjoint concentration field302

φ∗(x, t). The subdomain Ωp having a null modified adjoint concentration on303

the entire time interval [0, T ] corresponds to the non-identifiable area. To304

quantify and compare different sensor locations in view of minimizing the305

non-identifiable area, we introduce the dimensionless non-coverage indicator306

η, which is defined as307

η =
Total length of water pipes in the non-identifiable area

Total length of water pipes in the drinking water network
(5)

The proposed indicator is rapidly computable and readily usable. Thus, it308

meets the expectations of hydraulic engineers.309

4. Numerical results using the software EPANET310

Let us consider a part of the French drinking water network presented in311

Figure 1. The water network is composed of two tanks, 298 junctions and 318312

pipes. The total water pipe length is approximately 15 km. Due to technical313

and deployment constrains, chlorine sensors cannot be installed anywhere in314

the drinking water network. Hence, the water company Suez-Environnement315

has pre-selected 6 potential chlorine sensor positions, as presented in Figure316

1. The chlorine sensors are useful for comparing the measurements and the317

water quality simulations. As we previously mentioned, more representative318

water quality simulations can be achieved by updating the unknown reac-319

tion coefficient k(x).320

321
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Our goal is to determine the best set of chlorine sensors that maximize322

the coverage area, i.e., minimizing the non-identifiable area associated with323

the reaction coefficient k(x). In this section, we apply the proposed adjoint-324

based numerical method. It has been implemented in the software EPANET.325

326

S1

S6 S5

S4
S3

S2

Figure 1: Geometry of a French drinking water network with 2 water towers - 6 possible

locations of chlorine sensors

Following the methodology presented in the previous section, the first327

step consists of the hydraulic simulation in the water network using EPANET.328

As input for the hydraulic simulation, we use estimated varying consumer329

demands and the initial water level in water towers. The information as-330

sociated with one day in August 2011 was provided by the water company331

Suez-Environnement. Then, we reverse the simulated flow, i.e., −v(x, t), for332

simulating the modified adjoint problem φ∗(x, t). We recall that the modi-333

fied adjoint problem is defined as the retropropagation of chlorine virtually334

14



injected at the sensor locations with a constant unitary amplitude in time.335

336

As a first step, we consider the deployment of only one chlorine sensor in337

the water network. We test several locations of the sensor, and for each po-338

sition from S1 to S6 (see Figure 1), we solve the associated modified adjoint339

problem. In Figure 2, we show the non-identifiable area when considering a340

sensor placed at S1 or at S6. The blue color (resp. the red color) denotes341

the area where the modified adjoint solution vanishes (resp. is not null) on342

the entire daily time interval. According to the theoretical results of the343

previous section, the blue color area is associated with the non-identifiable344

area. To quantify this area, the indicator η defined in Eq. (5) is computed.345

The results are summarized in Table 1. The non-identifiable area represents346

87.5% of the water network for a sensor placed at S1, whereas it represents347

73.4% of the water network for S6. Moreover, in Figure 2, we observe that348

a sensor placed at S1 (resp. at S6) is not able to provide information on349

chlorine reactions in the lower part of the network (resp. in the upper part350

of the network). When considering a unique sensor, note that the optimal351

sensor placement for minimizing the non-identifiable area corresponds to S6.352

To reduce the non-identifiable area, more chlorine sensors should be de-353

ployed in the water network. In the following, combinations of chlorine354

sensors are studied. In Figure 3, we can observe that when using the com-355

bination of the three chlorine sensors S1−S3−S6, the non-identifiable area356

represents 54.4% of the drinking water network. Considering these 3 sensors357

rather than only sensor S1 provides a 3 km reduction in the non-identifiable358

area. Nevertheless, increasing the number of sensors does not strongly re-359

duce the non-identifiable area. Indeed, in Figures 3 and 4, we observe that360

from 3 to 5 chlorine sensors, the non-identifiable area indicator changes from361
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No-coverage area
87.5%

No-coverage area
73.4%

S1

S6

Figure 2: Sensor position S1: η = 87.5% (left), Sensor position S6: η = 73.4% (right)

Sensor Non-coverage indicator η

S1 87.5 %

S2 97.5 %

S3 88.5 %

S4 81.9 %

S5 86.3 %

S6 73.4 %

Table 1: Non-coverage area of the drinking water network when considering a unique

chlorine sensor

54.4% to 48.1%. No improvements are observed when adding a sixth sensor.362

An adaptive strategy can be applied to obtain a desired threshold of363

non-identifiable area. The adaptive process starts by considering a unique364

chlorine sensor. Using the proposed adjoint-based technique, we retain the365

sensor placement Sopt
I that has the lowest non-identifiable area indicator366

η. Then, to continue decreasing the non-identifiable area, an additional367

chlorine sensor is considered in the drinking water network. The indicator368
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S1

S6

S3

Non-coverage area
54.4%

Figure 3: Combination of three sensors S6− S1− S3: η = 54.4%

S1 S1S2 S2

S3S3

S4 S4

S6 S6
S5

Non-coverage area
48.1%

Non-coverage area
48.1%

Figure 4: Combination of 5 sensors S6−S1−S3−S4−S2: η = 48.1% (right), Combination

of 6 sensors S1 to S6: η = 48.1% (left)

η is computed for all combinations of two sensors, including the sensor Sopt
I369

determined at the previous stage. Hence, we obtain the optimal combination370

of two sensors (Sopt
I , Sopt

II ). The adaptive procedure continues until we reach371

the maximum number of chlorine sensors affordable for the water network.372
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This adaptive strategy has been applied to the investigated water network.373

The results are summarized in Tables 2 and 3. For a fixed number of sensors,374

the optimal placement is noted in bold in Tables 2 and 3. Figure 5 presents375

the evolution of the coverage area indicator 1− η for the optimal placement376

of chlorine sensors. The highest reduction in the non-identifiable area is377

obtained at the first stages of the adaptive strategy. After 4 sensors, a378

plateau is reached. The non-coverage indicator is approximately 50%.379

1 Sensor Non-coverage

indicator η

2 Sensors Non-coverage

indicator η

3 Sensors Non-coverage

indicator η

S1 87.5 % S6,S1 61.7 % S6, S1, S2 59.2 %

S2 97.5% S6, S2 70.9 % S6,S1,S3 54.4 %

S3 88.5% S6, S3 63.5 % S6, S1, S4 56.1 %

S4 81.9 % S6, S4 67.8 % S6, S1, S5 61.8 %

S5 86.3% S6, S5 72.1 %

S6 73.4%

Table 2: Non-coverage area of the drinking water network when considering 1, 2 or 3

chlorine sensors - optimal combinations of sensors are noted in bold

4 Sensors Non-coverage

indicator η

5 Sensors Non-coverage

indicator η

6 Sensors Non-coverage

indicator η

S6, S1, S3, S2 53.7 % S6,S1,S3,S4,S2 48.1% S6,S1,S3,S4,S2,S5 48.1 %

S6,S1,S3,S4 48.8 % S6, S1, S3, S4, S5 48.8 %

S6, S1, S3, S5 54.4 %

Table 3: Non-coverage area of the drinking water network when considering 4, 5 or 6

chlorine sensors - optimal combinations of sensors are noted in bold

5. Conclusions380

To obtain representative water quality simulations in drinking water net-381

works, the unknown model parameters, such as the reaction coefficient,382
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Number of sensors

Figure 5: Synthesis of optimal sensor placement to maximize the coverage area

should be updated using chlorine sensor outputs. In the present article,383

an adjoint-based numerical method dedicated to drinking water networks384

has been developed to optimally deploy chlorine sensors in view of minimiz-385

ing the non-identifiable area associated with the reaction coefficient. The386

computation of the one-dimensional adjoint advection solution using the387

standard engineering software EPANET allows us to localize and quantify388

the non-coverage area for a given set of sensors. On a French drinking water389

network, we applied an adaptive strategy starting from the optimal place-390

ment of 1 sensor to 6 sensors. We showed that the highest reduction in the391

non-identifiable area is obtained at the first stages of the adaptive strategy.392

After 4 sensors, a plateau is reached. In the model updating process of the393

reaction coefficient, the computed adjoint solution can also be used to obtain394

the functional gradient at a lower computational cost than straightforward395

difference techniques. Herein, we focus on the optimal sensor placement that396
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minimizes the non-coverage area. The non-coverage area indicator computed397

from the modified adjoint solution can be used in a more general optimal398

sensor placement strategy considering the minimization of a multiobjective399

function. Finally, the proposed method can be extended for the detection of400

species intrusion in drinking water networks. The modified adjoint solution401

can highlight the area where species intrusion may not be detected.402
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Appendix A. Illustration of adjoint framework on a divergent node410

of a water network and computation of the func-411

tional gradient412

The advection reaction within a divergent node (see Figure A.6) is rep-413

resented by the following equations:414

∂Cm

∂t
+ vm

∂Cm

∂x
+ kmCm = 0 in [0, Lm]× [0, T ], m ∈ {1, 2, 3}

C1(x = 0, t) = χ1(t) in [0, T ]

C2(x = 0, t) = C1(x = L1, t) in [0, T ]

C3(x = 0, t) = C1(x = L1, t) in [0, T ]

Cm(x, t = 0) = c0m(x) in [0, Lm], m ∈ {1, 2, 3}

(A.1)
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where m denotes the pipe number, Lm is the length of pipe m, Cm is415

the chlorine concentration in water pipe m as a function of distance x and416

time t, vm is the flow velocity, and km (resp. αm) represents the reaction417

coefficient (resp. the reaction order). As usual in drinking water networks,418

a first-order reaction is considered to model the chlorine reaction. In the419

following, we take αm = 1. The concentration boundary condition is χ1(t),420

and c0m(x) denotes the initial chlorine concentration in water pipe m.421

422

Ni

Figure A.6: Notations for advection reaction through divergent node - the flow velocity

vm in pipe m is considered positive when it passes from the starting node (x = 0) to the

ending node (x = Lm) - herein, v1 > 0, v2 > 0 and v3 > 0

To derive the adjoint equations and the gradient formula, we introduce423
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the Lagrangian424

L(k,C,P,λ,µ) = J(C,k)−
3∑

m=1

Sm

∫ T

0

∫ Lm

0

(∂Cm
∂t

+ vm
∂Cm
∂x

+ kmCm
)
Pm(x, t)dxdt

−S1

∫ T

0

(C1(x = 0, t)− χ1(t))λ1dt−
3∑

m=2

Sm

∫ T

0

(Cm(x = 0, t)− C1(x = L1, t))λmdt

−
3∑

m=1

Sm

∫ Lm

0

(Cm(x, t = 0)− c0m(x))µmdx

(A.2)

and the cost functional is defined as425

J(C,k) =
1

2

3∑
m=1

am

∫ T

0

(
Cm(k;xm)− Cmesm

)2
dt+ βb

3∑
m=1

(km − k0m)2 (A.3)

426

where k =


k1

k2

k3

 , C =


C1

C2

C3

 , P =


p1

p2

p3

 , λ =


λ1

λ2

λ3

 and µ =


µ1

µ2

µ3

427

and Sm denotes the cross-sectional area of the mth water pipe.428

429

As mentioned in Section 2.3, by writing the stationarity of the La-430

grangian according to the Lagrange multipliers P, λ and µ, we obtain the431

equations of the direct problem (A.1).432

433

The equations of the adjoint problem are obtained from the stationarity434
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of the Lagrangian according to C. Let us derive the adjoint equations.435

∂L
∂C1

δC1 = 0 ⇒ a1

∫ T

0

∫ L1

0

(
C1(x1)− Cmes1

)
δ(x− x1)δC1dxdt

−S1

∫ T

0

∫ L1

0

(∂δC1

∂t
+ v1

∂δC1

∂x
+ k1δC1

)
P1(x, t)dxdt− S1

∫ T

0

δC1(x = 0, t)λ1dt

+

3∑
m=2

Sm

∫ T

0

δC1(x = L1, t)λmdt− S1

∫ L1

0

δC1(x, t = 0)µ1dx = 0, ∀δC1

∂L
∂Cm

δCm = 0 ⇒ am

∫ T

0

∫ Lm

0

(
Cm(xm)− Cmesm

)
δ(x− xm)δCmdxdt

−Sm
∫ T

0

∫ Lm

0

(∂δCm
∂t

+ vm
∂δCm
∂x

+ kmδCm
)
Pm(x, t)dxdt

−Sm
∫ T

0

δCm(x = 0, t)λmdt− Sm
∫ Lm

0

δCm(x, t = 0)µmdx = 0, ∀δCm, m = 2, 3

(A.4)

436

After integrating by parts, one obtains437

Sm

∫ T

0

∫ Lm

0

∂δCm
∂t

Pm(x, t)dxdt = Sm

∫ Lm

0

Pm(x, t = T )δCm(x, t = T )dx

−Sm
∫ Lm

0

Pm(x, t = 0)δCm(x, t = 0)dx

−Sm
∫ T

0

∫ Lm

0

∂Pm
∂t

δCm(x, t)dxdt

Sm

∫ T

0

∫ Lm

0

vm
∂δCm
∂x

Pm(x, t)dxdt = Smvm

∫ T

0

Pm(x = Lm, t)δCm(x = Lm, t)dt

−Smvm
∫ T

0

Pm(x = 0, t)δCm(x = 0, t)dt

−Sm
∫ T

0

∫ Lm

0

vm
∂Pm
∂x

δCm(x, t)dxdt

(A.5)

From Eqs. (A.4) and (A.5), we deduce the system of equations associated438

with the stationarity of the Lagrangian according to the concentration field439
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C.440

−∂Pm

∂t
− vm

∂Pm

∂x
+ kmPm =

am
Sm

(C(xm, t)− Cmes
m (t))δ(x− xm), in [0, Lm]× [0, T ], m ∈ {1, 2, 3}

Pm(x, t = T ) = 0, in [0, Lm], m ∈ {1, 2, 3}

S1v1P1(x = L, t) = S2λ2 + S3λ3, in [0, T ]

Pm(x = Lm, t) = 0, in [0, Lm], m ∈ {2, 3}

µm = Pm(x, t = 0), in [0, Lm], m ∈ {1, 2, 3}

λm = vmPm(x = 0, t), in [0, T ], m ∈ {1, 2, 3}
(A.6)

441

In Eq. (A.6), note that the Lagrange multiplier Pm corresponds to the442

adjoint state. Thus, the equations of the adjoint are given by443

−∂Pm

∂t
− vm

∂Pm

∂x
+ kmPm =

am
Sm

(C(xm, t)− Cmes
m (t))δ(x− xm), in [0, Lm]× [0, T ], m ∈ {1, 2, 3}

Pm(x, t = T ) = 0, in [0, Lm], m ∈ {1, 2, 3}

S1v1P1(x = L1, t) = S2v2P2(x = 0, t) + S3v3P3(x = 0, t), in [0, T ]

Pm(x = L, t) = 0, in [0, Lm], m ∈ {2, 3}
(A.7)

444

From Eq. (A.7), we observe that the adjoint problem of an advection-445

reaction problem through a divergent node corresponds to an advection-446

reaction problem through a convergent node. In contrast to the direct prob-447

lem, the adjoint problem is backward in time, i.e., it has a final condition,448

and the flow is reversed in the adjoint problem, i.e., the velocity vm is re-449

placed by (−vm). The source term at the first line in Eq. (A.7) indicates450

that chlorine is virtually injected at sensor location xm, and its amplitude451

is given by the data misfit. Hence, the chlorine retropropagates from the452

sensor locations.453

In the same way, when considering an advection-reaction direct problem454

through a convergent node, it can be shown that its adjoint problem begins455
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as an advection-reaction problem backward in time through a divergent456

node.457

458

The functional gradient can be expressed using the adjoint state. It al-459

lows computation of the functional gradient at a lower computational cost460

than standard finite difference schemes. The analytical formula of the func-461

tional gradient can be obtained from the derivative of the Lagrangian ac-462

cording to the reaction coefficient km.463

∇J =


∂J

∂k1
∂J

∂k2
∂J

∂k3

 =


∂L
∂k1
∂L
∂k2
∂L
∂k3

 =


−S1

∫ T

0

∫ Lm

0
C1P1dxdt+ βb(k1 − k01)

−S2
∫ T

0

∫ Lm

0
C2P2dxdt+ βb(k2 − k02)

−S3
∫ T

0

∫ Lm

0
C3P3dxdt+ βb(k3 − k03)


(A.8)

Appendix B. Proof of Proposition 4.1 on a reduced water network464

In the interests of simplifying notations, let us consider the reduced wa-465

ter network presented in Figure B.7. It is composed of the main elements of466

a water network, i.e., water pipes, convergent nodes and divergent nodes.467

Following the methodology presented in Section 2.3 and illustrated in Ap-468

pendix A, we can show that the adjoint problem associated with the reduced469

water network corresponds to470

−∂Pm

∂t
− vm

∂Pm

∂x
+ kmPm = amfm(x, t), in [0, Lm]× [0, T ], m ∈ {1, 2, 3, 4}

Pm(x, t = T ) = 0, in [0, Lm], m ∈ {1, 2, 3, 4}

P4(x = L4, t) = 0, in [0, T ]

Pm(x = Lm, t) = P4(x = 0, t), in [0, T ], m ∈ {2, 3}

S1v1P1(x = L1, t) = S2v2P2(x = 0, t) + S3v3P3(x = 0, t), in [0, T ]

(B.1)
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The function fm(x, t) corresponds to the virtual injection of chlorine at the471

sensor location. It is defined by472

fm(x, t) = (C(xm, t)− Cmes
m (t))δ(x− xm)/Sm. (B.2)

a)

b)

Figure B.7: Reduced water network: a) Flow direction b) Notations associated with

the adjoint problem; in the advection-reaction adjoint problem, the flow is reversed;

{x1, x2, x3, x4} denote the potential locations of chlorine sensors

When considering no reaction term in (B.1), we obtain the no-reaction473
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adjoint problem474

−∂φm
∂t
− vm

∂φm
∂x

= amfm(x, t), in [0, Lm]× [0, T ], m ∈ {1, 2, 3, 4}

φm(x, t = T ) = 0, in [0, Lm], m ∈ {1, 2, 3, 4}

φ4(x = L4, t) = 0, in [0, T ]

φm(x = Lm, t) = φ4(x = 0, t), in [0, T ], m ∈ {2, 3}

S1v1φ1(x = L1, t) = S2v2φ2(x = 0, t) + S3v3φ3(x = 0, t), in [0, T ]

(B.3)

Finally, if a unitary constant chlorine amplitude in time is injected at475

the ith sensor location rather than an amplitude given by the data misfit476

as in problems (B.1) and (B.3), one obtains the modified adjoint problem477

associated with sensor i478

−
∂φ∗m,i

∂t
− vm

∂φ∗m,i

∂x
= H(t)δ(x− xi), in [0, Lm]× [0, T ], m = i

−
∂φ∗m,i

∂t
− vm

∂φ∗m,i

∂x
= 0, in [0, Lm]× [0, T ], m 6= i

φ∗m,i(x, t = T ) = 0, in [0, Lm], m ∈ {1, 2, 3, 4}

φ∗4,i(x = L4, t) = 0, in [0, L4]

φ∗m,i(x = Lm, t) = φ∗4,i(x = 0, t), in [0, Lm], m ∈ {2, 3}

S1v1φ
∗
1,i(x = L1, t) = S2v2φ

∗
2,i(x = 0, t) + S3v3φ

∗
3,i(x = 0, t), in [0, T ]

(B.4)

This problem does not depend on reaction phenomena. Moreover, from the479

solution of Eq. (B.4), we can deduce the general solution of the modified480

adjoint problem (4) involved in Proposition 3.1481

φ∗m(x, t) =

N∑
i=1

aiφ
∗
m,i(x, t), in [0, Lm]× [0, T ], m ∈ {1, 2, 3, 4} (B.5)

On the one hand, the solution φm(x, t) of the no-reaction adjoint problem482

(B.3) can be obtained from the modified adjoint solution φ∗m,i (also called483
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“Green function”). Indeed, noting that484

fm(t) = [fm ∗ δ](t) = [f ′m ∗H](t) (B.6)

where ∗ denotes the convolution product in time and H is the Heaviside485

function, one has486

φm(x, t) =
N∑
i=1

ai[f
′
i ∗ φ∗m,i](x, t), m ∈ {1, 2, 3, 4} (B.7)

where f ′m is the derivative of the function fm according to the time variable.487

We recall that the flow (−vm) is considered stationary in the present proof.488

Consequently:489

φ∗m(x, t) = 0 in [0, Lm]×[0, T ] ⇔ φ∗m,i(x, t) = 0 in [0, Lm]×[0, T ] ⇒ φm(x, t) = 0 in [0, Lm]×[0, T ]

(B.8)

490

On the other hand, subtracting Eq. (B.1) from (B.3) and noting δPm(x, t) =491

Pm(x, t)− φm(x, t), one has492

−∂δPm

∂t
− vm

∂δPm

∂x
+ kmδPm = −kmφm, in [0, Lm]× [0, T ], m ∈ {1, 2, 3, 4}

δPm(x, t = T ) = 0, in [0, Lm], m ∈ {1, 2, 3, 4}

δP4(x = L4, t) = 0, in [0, T ]

δPm(x = Lm, t) = δP4(x = 0, t), in [0, T ], m ∈ {2, 3}

S1v1δP1(x = L1, t) = S2v2δP2(x = 0, t) + S3v3δP3(x = 0, t), in [0, T ]

(B.9)

From Eq. (B.9), we deduce that493 
φm(x, t) = 0, in [0, Lm]× [0, T ]

δPm(x = Lm, t) = 0, in [0, T ]

δPm(x, t = T ) = 0, in [0, Lm]

(B.10)
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implies494

δPm(x, t) = 0, in [0, Lm]× [0, T ]⇒ Pm(x, t) = 0, in [0, Lm]× [0, T ] (B.11)

As the gradient ∇J can be expressed using the adjoint solution Pm495

∂J

∂km
δkm = −Sm

∫ T

0

∫ Lm

0
CmPmδkmdxdt+ βb(km − k0m)δkm (B.12)

it can be noted that a null adjoint solution Pm(x, t) in the pipe m on the496

entire time interval [0, T ] implies that the first term of the gradient compo-497

nent according to the reaction coefficient km vanishes. Hence, the reaction498

coefficient in pipe m cannot be updated.499
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