Bi-objective matchings with the triangle inequality

Abstract : This article deals with a bi-objective matching problem. The input is a complete graph and two values on each edge (a weight and a length) which satisfy the triangle inequality. It is unlikely that every instance admits a matching with maximum weight and maximum length at the same time. Therefore, we look for a compromise solution, i.e. a matching that simultaneously approximates the best weight and the best length. For which approximation ratio ρ can we guarantee that any instance admits a ρ-approximate matching? We propose a general method which relies on the existence of an approximate matching in any graph of small size. An algorithm for computing a 1/3-approximate matching in any instance is provided. The algorithm uses an analytical result stating that every instance on at most 6 nodes must admit a 1/2-approximate matching. We extend our analysis with a computer-aided approach for larger graphs, indicating that the general method may produce a 2/5-approximate matching. We conjecture that a 1/2-approximate matching exists in any bi-objective instance satisfying the triangle inequality.
Type de document :
Article dans une revue
Theoretical Computer Science, Elsevier, 2017, 670, pp.1 - 10. 〈10.1016/j.tcs.2017.01.012〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger
Contributeur : Fanny Pascual <>
Soumis le : lundi 13 mars 2017 - 16:08:53
Dernière modification le : mercredi 21 mars 2018 - 18:58:11
Document(s) archivé(s) le : mercredi 14 juin 2017 - 14:05:13


Fichiers produits par l'(les) auteur(s)





Laurent Gourvès, Jérôme Monnot, Fanny Pascual, Daniel Vanderpooten. Bi-objective matchings with the triangle inequality. Theoretical Computer Science, Elsevier, 2017, 670, pp.1 - 10. 〈10.1016/j.tcs.2017.01.012〉. 〈hal-01488424〉



Consultations de la notice


Téléchargements de fichiers