
HAL Id: hal-01488042
https://hal.science/hal-01488042v2

Submitted on 24 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Taxi-Sharing: Parameterized Complexity and
Approximability of the Dial-a-ride problem with money

as an incentive
Dimitri Watel, Alain Faye

To cite this version:
Dimitri Watel, Alain Faye. Taxi-Sharing: Parameterized Complexity and Approximability of the
Dial-a-ride problem with money as an incentive. Theoretical Computer Science, 2018, 745, pp.202-
223. �10.1016/j.tcs.2018.06.006�. �hal-01488042v2�

https://hal.science/hal-01488042v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Taxi-Sharing: Parameterized Complexity and
Approximability of the Dial-a-ride problem with money

as an incentive.

Alain Fayea,c, Dimitri Watela,b,

aENSIIE, 1 square de la Résistance, 91025, Evry, FRANCE
bSAMOVAR, Telecom SudParis, 9 Rue Charles Fourier, 91000, Évry, FRANCE

cCEDRIC, CNAM, 2 rue Conté, 75003, Paris, FRANCE

Abstract

We study, in this paper, a taxi-sharing problem, called Dial-a-Ride problem
with money as an incentive (DARP-M). This problem consists in defining a set
of taxis that will be shared by different clients in order to reduce their bill by
a given factor α < 1. To achieve this, each client shares the cost of the ride
with other passengers. More precisely, the fragments of the ride in which the
client is alone is fully paid by this client and, for each fragment in which the
client shares the taxi with other passengers, the cost is equally divided between
the passengers. In addition to this cost constraint, the taxi must satisfy a time
window constraint for each passenger and a capacity constraint.

We define three versions of the problem: max-DARP-M where the objective
is to drive the maximum number of clients with an arbitrarily large number
of taxis; max-1-DARP-M in which we want to drive the maximum number of
clients with one taxi; and 1-DARP-M which consists in deciding whether it is
possible to drive at least one client while satisfying the constraints. We study the
parameterized complexity and approximability of those problems with respect
to four parameters: the factor α, the capacity capa of the taxis, the maximum
size TW of the time windows of the clients, and the value S of an optimal
solution.

Among other results, we prove that 1-DARP-M is NP-Complete and max-
DARP-M and max-1-DARP-M cannot be approximated in polynomial time to
within any variable ratio even if α, capa and TW are fixed and if the road
network is a planar graph. We also give a polynomial algorithm for max-1-
DARP-M for the case where capa and TW are fixed and where the network does
not contain a circuit. This algorithm implies a 1√

n
-polynomial approximation

for max-DARP-M.

Keywords: Parameterized complexity, Approximability, Dial-a-ride problem,
Taxi-Sharing

Preprint submitted to Elsevier May 4, 2018

1. Introduction

The Dial-a-Ride problem (DARP) consists in the search for an optimal route
for many vehicles in order to drive people from their respective origin to their
respective destination. This model is used, for example, to determine an opti-
mized route for taxis in order to pick up passengers. We focus in this article on
the complexity of a version of this taxi-sharing problem in which the price paid
by each passenger is shared. Such a version, called Dial-a-Ride problem with
money as an incentive, was previously introduced and studied in [20, 21].

Ride-sharing, including Taxi-sharing, has been massively studied for the last
fifteen years due to the economical impact and the ecological impact of such a
research. Indeed, optimizations reducing the number of vehicles or the number
of travels is an obvious way to reduce the costs and the greenhouse gas emissions.
DARP can be seen as a subproblem of the general pickup and delivery problem
(GPDP) described in [22] in which the goal is to transport a resource from
different pickup locations to drop off locations. In DARP, we consider a human
resource (the clients) and each pickup or drop off location is associated with
exactly one client. The consequence of this specific resource is that one must
be aware of the user inconvenience.

1.1. Related work on the DARP problem
DARP can hardly be defined as a unique problem. The feasible and optimal

solutions of a Dial-a-Ride problem depend on the measure, the fleet parameters
and the clients constraints. Thus, the variety of studies about DARP is not
surprising.

Considering the measure, one may optimize the vehicle travel cost, see for
example [3, 16, 19], the total travel time [10] or the profit [7]. Another option
is to maximize the number of satisfied requests or a combination of all those
parameters [20, 21, 23].

Some constraints modelize the user convenience. A usual option is to search
for a feasible solution considering time windows [4, 10, 19, 23] as it has been
done for the more general pickup and devivery problem [8]. This last problem is
solved with a column generation scheme where columns define admissible routes.
In [10, 19], the authors develop a similar approach merging a branch-and-cut
algorithm with column generation. In [4, 23], the problem is solved using a
Tabu search heuristic. Another option to modelize the user convenience is to
tend to minimize the excess ride time [2, 11, 14].

Finally one can consider either the static problem in which all the requests
are known in advance or the dynamic version in which the requests may occur
at any time [1, 6, 11, 20, 21], this problem is usually solved using a local search
heuristic.

A recent review about the Dial-a-Ride problem and some of its generaliza-
tions may be found in [15]. We refer the reader to [5, 10] for a more specific
review about DARP.

2

1.2. DARP with Money as an incentive
We focus on a problem where the goal is to find a feasible solution satisfying

a client cost constraint. Few papers focused on that constraint. In [20, 21],
the authors study the version of the problem in which each client, traveling by
taxi, may share the cost of the ride with other passengers. More precisely, the
fragments of the ride in which the client is alone is fully paid by this client. On
the contrary, for each fragment in which the client shares the taxi with other
passengers, the cost is equally divided between the passengers. The problem
consists in the search for a ride in which every client does not pay more than
the cost he would pay alone in a taxi traveling directly from his origin to his
destination. Note that a client can be served by being assigned to a private
ride but each client must also satisfy a time window constraint. The objective
is to maximize the number of served clients. This problem is called Dial-a-Ride
problem with Money as Incentive and is denoted by DARP-M.

In [21], the authors give a reduction from the Traveling salesman problem
to DARP-M, based on the sole time windows constraint. However, no taxi is
shared, all the clients are driven in a private ride. It proves that serving all the
clients and satisfying a time windows constraint is NP-Complete. Considering
this reduction, DARP-M can be seen as a generalization of TSP in which we add
a sharing cost constraint. Although this reduction clearly shows that DARP-
M is strongly NP-Complete, it does not reflect the hardness of determining if
at least two clients can be served by sharing a taxi while satisfying the cost
constraint. That simpler question is not insignificant as it leads to a natural
greedy algorithm for DARP-M in which we group clients who can share a taxi
until all of them have to be assigned to private rides.

Furthermore, it was shown by [18] that searching for a (not elementary)
shortest path between a source and a sink satisfying a time windows constraint
is weakly NP-Complete as it can be solved in polynomial time if the width of
the time windows is polynomially bounded. Consequently, as the reduction of
[21] uses only the time windows constraint and as it is from the strongly NP-
Complete problem TSP, it seems that it cannot be easily adapted to prove the
hardness of determining if at least two clients can share a taxi.

1.3. Our contributions
We focus on the parameterized complexity and the parameterized approx-

imability of three problems derived from DARP-M defined by [20, 21]. The
purpose of this paper is mainly to investigate how hard the cost constraint is.
Particularly, we point out the fact that every hardness result we give is true
even if we do not take into account the time windows.

We now formally define the problems we study. We work in a directed graph
G = (V,A). We are given a set of n clients arbitrarily numbered in J1;nK.
A client is attached to two nodes which are respectively the origin and the
destination of the client. In order to avoid any ambiguity, a node cannot be
the origin or the destination of two clients. If two clients books from and/or
for the same place, we can simply duplicate the node in the graph. There are,

3

in this paper, two ways to refer to a client and its associated nodes. Either we
know the number i of the client and, in that case, we refer to the client with the
client i and to its origin and destination nodes with vi and v′i; or we know the
origin node v of the client and we refer to the client and the destination node
with respectively cv and v′. We respectively define Vc and V ′c as {vi, i ≤ n}
and {v′i, i ≤ n}. A route P of a taxi is defined by a list (u1, u2, . . . , u2·s(P)) of
nodes in Vc∪V ′c where s(P) is the number of clients traveling in P . A taxi must
satisfy four constraints.

Precedence constraint. For each client i, vi ∈ P if and only if v′i ∈ P . In
that case, if vi = uj and v′i = uk, then j < k. We say the client i travels in that
taxi, or that the taxi drives the client i.

Capacity constraint. We consider that each taxi has the same number of
seats. This number is defined as the capacity capa of the taxis. This capacity
is at least 2 and is no more than n. For each node uj ∈ P , let nj = |{uk ∈
Vc, k ≤ j}| − |{uk ∈ V ′c , k ≤ j}|. This value is the number of clients in the
taxi immediately after uj . For every j, nj ≤ capa. In addition, if j 6= 2 · s(P),
nj ≥ 1: a taxi cannot be emptied before the end of the ride.

Time constraint. Each arc a = (u, v) ∈ A is weighted with a non-negative
integer τ(a), corresponding to the time that a taxi spends to go from u to v.
We extend this function to every couple of nodes in G: τ(u, v) is the weight of
a shortest path in G from u to v. Each client i is associated with two moments
(and integers) bi and ei between which a taxi driving that client must pick him
up and deliver him. The taxi can start at any moment of the time window of
its first client. We respectively define Bc and Ec as the sets containing all the
values bi and ei for all the clients.

Cost constraint. Each arc a = (u, v) ∈ A is weighted with a non-negative
integer ω(a), corresponding to the cost that a client would pay alone in a taxi
driving from u to v. We extend this function to every couple of nodes in G:
ω(u, v) is the cost of a shortest path in G from u to v. We define the desired
gain α < 1 as the minimum factor reducing the bill of each client. The cost
paid is divided between the passengers traveling on the same arc: for each
client i traveling in P , if vi = uj and v′i = uk, the cost paid by that client is

ωi =
k−1∑
l=j

ω(ul,ul+1)
nl

. This cost must satisfy ωi ≤ α · ω(vi, v
′
i). In that case, we

say the taxi P satisfies the client i.
Note that there would not be any feasible solution if the capacity of the taxi

is 1. This is why this case is forbidden.

Remark 1. A taxi P is only defined by waypoints in the road network: the
origins where it picks up clients and the destinations where it delivers them. In
order to draw the route of the taxi in the network, we follow the shortest paths
in G from uj to uj+1 for every j < 2 · s(P). (We assume that a shortest path
over the costs ω is also a shortest path over the weights t.) That route is a
path of G that can contain intermediate nodes that are neither an origin nor a
destination of a client driven by P .

4

We can now define the problems max-DARP-M, max-1-DARP-M and 1-
DARP-M.

Definition 1. Given a directed graph G = (V,A) with non-negative weights ω
over the arcs, n clients with their origin Vc, their destinations V ′c and their time
windows Bc and Ec, a capacity capa ≤ n of the taxis, a desired gain α < 1,

• the max-DARP-M problem consists in finding a set P of taxis satisfying
the precedence constraint, the capacity constraint, the time constraint and
the cost constraint maximizing

∑
P∈P s(P) such that for each client there

is a unique taxi of P in which that client travels;

• the max-1-DARP-M problem consists in finding a taxi P satisfying the
four constraints and maximizing s(P);

• the 1-DARP-M problem consists in deciding whether a taxi P satisfying
the four constraints exists.

We define also define two decision problems max-DARP-M= and max-1-DARP-
M= in which, given an instance of max-DARP-M or max-1-DARP-M and an
integer S, we search for a solution for which the objective value equals S. We
finally define the parameter TW as max

i∈J1;nK
(ei − bi) + 1, the maximum width of

a time window.

The results are summarized in Table 1. In some of the results, TW is
marked as polynomially bounded resulting in pseudo-polynomial algorithms.
By polynomially bounded, we mean that TW is a unary encoded number
or, equivalently, that there exists a polynomial p such that, for each instance
(G, (Vc, V

′
c , Bc, Ec), τ, ω, capa, α), TW is no more than p(size) where size is the

maximum of the size of G, the number of clients, and the logarithm of every
other numerical value such as τ(a), ω(a), capa and α.

Remark 2. We studied the problems in two main cases: planar and acyclic
graphs. If the first may seem relevant considering the application, the second
is clearly not as a road network hardly is acyclic. However, there exists param-
eterized algorithms for the three problems in that case. It could be used if the
circuits of the graph are removed (by defining a priority order over the nodes of
the graph using, for example, the time windows of the clients, as discussed in
Section 3). Of course, by doing this, some routes cannot be used anymore by
the driver and this may deteriorate the value of an optimal solution. However,
according to Table 1, none of the feasible solutions in the original instance may
be computed in polynomial or FPT time by any parameterized algorithm.

Remark 3. Note that, on every hardness result where TW is fixed, the reduc-
tion first consists in setting the durations τ to 0 and the time windows to [0, 0],
so that the time constraint is trivially satisfied and that TW = 1. This means
that the same hardness results occur even if we remove the time constraint.

5

Table 1: This table summarizes the set of results in the paper. The Parameters column
specifies which parameter is fixed or polynomialy bounded (denoted by (poly)). The Comp.
and the Approx. columns tell whether the problem is NP-Hard (NP-H), NP-Complete (NP-C),
APX-Hard (APX-H), not approximable to within any ratio (not approx.) or if it belongs to
the class XP or if it W[1]-Hard (W[1]-H) with respect to the fixed parameters. For instance,
max-1-DARP-M is XP with respect to capa when the graph is a DAG and when TW is
polynomially bounded. An hyphen in the approximability column means that the cell does
not make sense, either because the problem is polynomial (or XP), or because the line is about
a decision problem. The last column indicates in which theorem/corollary the result is proven.

Graphs Problem Parameters Comp. Approx. Result

Planar
graphs

max-DARP-M α, TW , capa NP-H No approx. Cor. 2.1
max-1-DARP-M α, TW , capa NP-H No approx. Cor. 2.1

1-DARP-M α, TW , capa NP-C - Th. 2.1
All

graphs
max-DARP-M= S XP - Sect. 3.1.3
max-1-DARP-M= S XP - Sect. 3.1.3

DAG

max-DARP-M

TW NP-H No approx. Th 3.3
TW (poly), capa NP-H 1√

n
-approx Cor. 3.2

α, TW , capa NP-H APX-H Th. 3.1
α, capa NP-H No approx. Cor. 3.1

max-DARP-M= S, α, TW , capa W[1]-H - Th. 3.3

max-1-DARP-M
TW NP-H No approx. Th 3.3

TW (poly), capa XP - Th. 3.5
α, capa NP-H No approx. Cor. 3.1

max-1-DARP-M= S, α, TW , capa W[1]-H - Th 3.3

1-DARP-M

TW NP-C - Th. 3.3
TW (poly), capa XP - Th. 3.5

α, capa NP-C - Th. 3.2
α, TW , capa W[1]-H - Th. 3.3

2. Planar graphs

This section is dedicated to proving that 1-DARP-M is NP-Complete and
that max-DARP-M and max-1-DARP-M are NP-Hard and cannot be approx-
imated to within any constant or variable ratio, even if capa, α and TW are
fixed and if the graph is planar.

In this proof, we fix capa = 2 and α ∈]0.5, 1[. Note that it is possible to
adapt the result for any fixed values of capa and α. This adaptation is not trivial
and make the proof harder to read. That is why we present in this section only
the simple case. We also consider that we remove the time constraint by setting
τ(a) = 0 for every arc a ∈ A and bi = ei = 0 for all i and, in that case, TW = 1.

Belonging to NP. We consider the decision version of max-1-DARP-M and max-
DARP-M in which, given an instance of the optimization problems and an

6

integer K, we search for a set of taxis or a unique taxi satisfying at least K
clients.

Those problems and 1-DARP-M belong to NP as, given a taxi, we can easily
determine whether the capacity, the cost and the precedence constraints are
satisfied for every client in the taxi and count how many clients are satisfied by
the taxi.

NP-hardness: the reduction. In this part, we prove a reduction from the 3-
partition problem to 1-DARP-M. We then deduce the hardness of approximation
results for the optimization problems.

Given n positive integers X = [x1, x2, . . . , xn], with n = 3m, the 3-partition
problem consists in the search for a partition S1] S2] · · ·] Sm of X such that
|Sj | = 3 and m ·

∑
x∈Sj

x =
∑
x∈X

x for all j ≤ m. Let B = 1
m

∑
x∈X

x. The 3-partition

problem is NP-Complete even if xi ∈]B/4;B/2[for each i ≤ n [9].
We define two real values 1 ≤ φ ≤ Ω. We set those variables later in this

proof. Let n ≥ 9 be a multiple of 3 and X = [x1, x2, . . . , xn] be an instance of
3-partition such that xi ∈]B/4;B/2[for each i ≤ n. We build an instance J =
(G, (Vc, V

′
c , Bc, Ec), τ, ω, capa, α) of 1-DARP-M as follows. As it was previously

said, we fix capa = 2, α ∈]0.5, 1[, τ(a) = 0 for every arc a and bi = ei = 0 for
every client i.

We formally describe the instance hereinafter.
There are 3 categories of clients :

• the main clients: m clients cuj , for j ∈ J1;mK, going from uj to u′j ;

• 2 clients cv1 and cvm, going respectively from v1 to v′1 and vm to v′m.

• m ∗ n clients cwij , for i ∈ J1;nK, j ∈ J1;mK going from wij to wi′j .

In addition to the origins and destinations, we add n+ 1 intermediate nodes
to G: INP , OUT , int1, int2, and, intn−1. We add the arcs

• (uj , u
′
j) of cost 2Ω for each j ∈ J1;mK;

• (uj+1, u
′
j) of cost Ω, (u′j , INP) of cost 0 and (OUT, uj+1) of cost 0 for

each j ∈ J1;m− 1K;

• (v1, v
′
1) and (vm, v

′
m) of cost Ω

• (u1, v1), (v′1, INP), (OUT, vm), (v′m, u
′
m) of cost 0

• (w1
i , w

1′
i) of cost φ + xi and (wji , w

j′
i) of cost φ for each i ∈ J1;nK and

j ∈ J1;mK;

• (INP,wj1) and (wj′n , OUT) of cost 0 for each j ∈ J1;mK;

• (wj′i , inti) and (inti, w
j
i+1) of cost 0 for each i ∈ J1;nK and j ∈ J1;mK.

Figure 1 illustrates the graph G and the costs ω. Note that, for each client
cuj , the cost of a private ride is 2Ω. For the clients cv1 and cvm, the cost is Ω.
For the clients cwij for j 6= 1, the cost is φ and for the clients cwi1 the cost is
φ+ xi. Note also that the graph is planar.

7

u1 v1 v′1

u2u′1

u3u′2

umu′m−1

vm v′m u′mΩ

Ω

Ω

Ω

Ω

INP OUT

2Ω

2Ω

2Ω

...

INP

w1
1

w2
1

w3
1

wm1

w1′
1

w2′
1

w3′
1

wm′1

int1

w1
2

w2
2

w3
2

wm2

w1′
2

w2′
2

w3′
2

wm′2

inti

w1
n

w2
n

w3
n

wmn

w1′
n

w2′
n

w3′
n

wm′n

OUT

φ+ x1

φ

φ

φ

φ+ x2

φ

φ

φ

φ+ xn

φ

φ

φ

...
...

...

Figure 1: A reduction from 3-partition to max-1-DARP-M. Note that this graph can be drawn
planar if we move u1 and v1 above u2 and v′1 above u′1. Each non specified cost is 0.

We set Ω and φ as follows:

φ ≥ B + 1 (1)

Ω =
nφ+B + 1

2

4α− 2
(2)

We start by proving useful properties on φ and Ω.

8

Lemma 2.1. Ω and φ satisfy the following properties :

2Ω + nφ+B + 1

2
> 2αΩ (3)

2Ω + nφ+B

2
≤ 2αΩ (4)

3

2
Ω +

nφ

2
> 2αΩ (5)

Ω

2
> α · (φ+B) (6)

Proof. Equation (2) proves that

nφ+B

4α− 2
≤ Ω <

nφ+B + 1

4α− 2

nφ+B + 2Ω ≤ 4αΩ < nφ+B + 1 + 2Ω

and this proves Equations (3) and (4).
We now prove Equation (6). As α < 1,

4α(4α− 2) < 8 and 2α(4α− 2) < 4

We recall that n ≥ 7 and B > 0,

0 < (n+ 1− 4α(4α− 2))B + (n− 2α(4α− 2)) +
1

2

0 < (n− 2α(4α− 2))(B + 1) + (1− 2α(4α− 2))B +
1

2

By Equation (1)

0 < (n− 2α(4α− 2))φ+ (1− 2α(4α− 2))B +
1

2

2α(4α− 2)(φ+B) < nφ+B +
1

2

By Equation (2)

α · (φ+B) <
Ω

2

Finally, we can similarly prove Equation (5). As n ≥ 7, α < 1 and B > 0,

0 < (n− (4α− 3))(B +
1

2
)

By Equation (1)

0 < nφ+ (3− 4α)(B +
1

2
)

0 < (4α− 2)nφ+ (3− 4α)(nφ+B +
1

2
)

9

By Equation (2)

0 < nφ+ (3− 4α)Ω

2αΩ <
nφ

2
+

3

2
Ω

NP-hardness: from X to J .

Lemma 2.2. We now assume X is a YES-instance, then, J is a YES-instance.

Proof. Let I1] I2] · · ·] Im be a partition of J1;nK such that
∑
i∈Ij

xi = B for all

j ≤ m.
A feasible taxi satisfying every client has the following route:

• it picks up the client cu1 at u1;

• it goes to v1 and drives the client cv1 from v1 to v′1;

• for j ∈ J1;mK

• it drives to INP ,

• for i ∈ J1;nK

• if i ∈ Ij it drives cw1
i from w1

i to w1′
i ,

• otherwise it drives cwki from wki to wk′i for some k such that client
cwki was not already driven,

• it drives to inti if i 6= n,

• it drives to OUT ,

• if j 6= m, it drives to uj+1 and picks up the client cuj+1,

• otherwise it goes to vm and drives client cvm from vm to v′m,

• it drives to u′j to deliver the client cuj .

The client cuj pays Ω
2 + nφ+B

2 + Ω
2 . By Equation (4), the client cuj satisfies

his cost constraint. Each other client pays exactly half of the price he would
have pay alone. As α > 0.5, it is a feasible solution for J satisfying every
client.

NP-hardness: from J to X. In order to prove the converse of Lemma 2.2, we
first prove six intermediate results from Lemma 2.3 to 2.7.

Lemma 2.3. A feasible solution must start at u1.

Proof. By enumerating every case, we prove that a taxi starting at any other
position should pick up a client that could not satisfy the cost constraint.

10

1. If the taxi starts at wi1, the client cwi1 must pay φ + xi alone, and then,
cannot satisfy his cost constraint. Similarly the taxi cannot start at wij
for any j > 1.

2. If the taxi starts at v1, the client cv1 must pay Ω alone, and then, cannot
satisfy his cost constraint. Similarly, the taxi cannot start at vm.

3. If the taxi starts at ui, for any i ≥ 2, the client cui must firstly pay at
least Ω to reach position INP . Then he pays at least nφ+Ω

2 from INP to
his destination. By Equation (5), he cannot satisfy his cost constraint.

Lemma 2.4. All the following cases are not possible :

1. The taxi drives a client cwji to a node which is not wj′i .

2. The taxi drives the client cv1 to a node which is not v′1.

3. The taxi drives the client cvm to a node which is not v′m.

4. the taxi drives through an arc (uj , u
′
j)

5. the taxi drives cui to the node uj, for j 6= i+ 1

6. the taxi drives cui to the node u′i but does not deliver it

7. the taxi drives cui to the node u′i alone, for i 6= m

8. the taxi never picks up cv1 while driving cu1

9. the taxi never picks up cvm while driving cum

Proof. We first prove the case 1. If the taxi drives the client cwji to any node
different from wj′i , that client must go through at least one arc of cost Ω in order
to reach his destination. By equation (6), even if there is another client in the
taxi with cwji , he has to pay at least α · (φ + B). However, in a private drive,
cwji pays φ or φ + xi depending on whether j = 1 or not. As xi ∈]B4 ; B2 [for
every i, cwji cannot satisfy his cost constraint. A similar argument proves the
two next cases.

If Case 4 is true, then, by the three first cases, the taxi can drive only one
client cuj or two clients cuj and cuk through that arc. Because a client alone
in the taxi would have to pay at least 2Ω > 2αΩ, he would not satisfy his cost
constraint. Consequently, there are two clients cuj and cuk. One of them is not
cui. Without loss of generality, we assume that k 6= i. That client would have
then to pay at least Ω through the arc (ui, u

′
i), then to reach position INP ,

then to pay at least nφ
2 to reach position OUT and, finally, to pay at least Ω

2 to
reach u′k. By Equation (5), he cannot satisfy his cost constraint.

If the taxi goes to uj with the client cui, he pays at least Ω
2 + nφ

2 to go to
uj from ui. In order to reach his destination, he has to pay at least twice Ω

2 ,

11

through the arc (uj , u
′
j−1) and through the arc (ui+1, u

′
i). By Equation (5), he

cannot satisfy his cost constraint, this proves that the case 5 is not possible.
The cases 6 to 9 can be similarly proven.

Lemma 2.5. While driving the client cuj from his origin to his destination, the
taxi drives exactly n clients cwki from their respective origin to their respective
destination.

Proof. By the fourth statement of Lemma 2.4, in order to reach u′j , the client
cuj must go from position INP to position OUT . If the taxi reaches position
INP with cuj , that client is alone. Indeed, by the three first statements of
Lemma 2.4, clients cv1, cvm and cwki cannot be driven to position INP , and if
the taxi drives another client cul to position INP from uj , this contradicts one
of the statements 4 to 9 of Lemma 2.4. If we assume that strictly less than n
clients cwki are driven from their respective origin to their respective destination,
cuj pays at least φ+ (n−1)φ

2 in order to reach position OUT from position INP .
As the taxi goes through at least one arc of cost Ω to reach position INP from
uj and to reach u′j from position OUT , his ride costs at least Ω

2 +φ+ (n−1)φ
2 + Ω

2 .
Note that the same occurs if more than n such clients are driven.

By Equation (1)

Ω + φ+
(n− 1)φ

2
≥ Ω +

(nφ+B + 1)

2

By Equation (3)

Ω + φ+
(n− 1)φ

2
> 2αΩ

Consequently, the taxi must picks up and delivers exactly n clients cwki from
position INP to position OUT .

Lemma 2.6. In a feasible solution for J , every client is satisfied.

Proof. By Lemmas 2.3, 2.4, 2.5, if there is a feasible solution, the taxi must start
at u1 and drive each client cui from his origin to his destination, each one goes
from position INP to position OUT and then is driven with exactly n clients
cwij . As there arem clients cui and n∗m clients cwij , every client cwij is satisfied.
Finally, cv1 and cvm must be picked up and delivered by Lemma 2.4.

Lemma 2.7. While driving cui from his origin to his destination, it must drive
exactly three clients cw1

i1
, cw1

i2
and cw1

i3
such that xi1 + xi2 + xi3 ≤ B.

Proof. By Lemma 2.5, the set containing the clients cw1
i is partitionned into m

subsets, one subset Sj for each client cuj , each client of Sj is driven with cuj .

Then the client cuj pays at least Ω
2 +

nφ+
∑

i∈Sj

xi

2 + Ω
2 . If

∑
i∈Sj

xi ≥ B + 1, by

Equation (3), the client cuj cannot satisfy his cost constraint.

12

Moreover, if |Sj | < 3, as n = 3m, there is a client cuk such that |Sk| > 3.
As xi ∈]B4 ; B2 [,

∑
i∈Sk

xi ≥ B + 1 and cuk cannot satisfy his cost constraint.

Lemma 2.8. We now assume J is a YES-instance then X is a YES-instance.

Proof. There exists a taxi satisfying at least one client. By lemma 2.6, every
client cui is satisfied by that taxi. By Lemma 2.7, such a solution proves the
existence of a partition S1]S2]· · ·]Sm such that

∑
x∈Sj

x ≤ B. As
∑
x∈X

x = mB,

then
∑
x∈Sj

x = B for all j. Consequently, X is a YES-instance.

By Lemma 2.2 and 2.8, we can deduce the following theorem.

Theorem 2.1. 1-DARP-M is NP-Complete even if G is planar and if α, capa
and TW are fixed.

Corollary 2.1. max-DARP-M and max-1-DARP-M are NP-Hard and, unless
P = NP, cannot be approximated in polynomial time to within any variable ratio,
even if G is planar and if capa, α and TW are fixed.

Proof. If we assume there exists a polynomial r-approximation algorithm A for
max-DARP-M, where r is a function from N to Q+ satisfying 0 < r(p) < 1.
Let J be an instance of 1-DARP-M and max-DARP-M. If no client can be
satisfied, the optimal solution of J is 0. Thus A returns a solution of value
r(|J |) · 0 = 0. If some client is satisfied, the optimal solution of J is greater
than 1 and A returns a solution of value greater than r(|J |) · 1 > 0. We can
then decide in polynomial time whether at least one client can be satisfied or
not. There is then a contradiction with Theorem 2.1. The same result occurs
for max-1-DARP-M.

3. Directed acyclic graph

In the previous section, we proved hardness results for all the DARP-M prob-
lems even if we strongly restrict the instance. The reduction from 3-partition
produced an instance in which any taxi must satisfy all the clients by cycling
in the graph, driving multiple time through the same roads. Consequently, we
study, in this section, the directed acyclic graph case, in order to establish the
influence of directed cycles on the complexity of DARP-M.

Obviously, such a case hardly ever occurs on real road networks and finding a
polynomial time algorithm does not seem relevant. However, we can arbitrarily
build a topological ordering of the nodes of the graph. For example, each client
i is associated with a time window [bi, ei] ; we can order the origins and the
destinations of the clients using respectively the values of bi for the origins and
ei for the destination. In that case, the taxi could drive from the origin vi to
the origin vj only if bi < bj . Of course, this may delete existing solutions.

13

In this section, we show some hardness results for the acyclic case, a pa-
rameterized pseudopolynomial algorithm for 1-DARP-M and max-1-DARP-M
with respect to capa, and an parameterized 1√

n
-approximation algorithm in

pseudopolynomial time for max-DARP-M parameterized with capa.

3.1. Hardness results
3.1.1. Hardness of approximation for max-DARP-M

In this section, we prove a hardness of approximation result for max-DARP-
M when G is a DAG and when the parameters α, capa and TW are fixed.

The reduction. We prove a reduction from the 3-Dimentional Matching problem
(3DM). Given three finite disjoint sets X,Y and Z, and a subset S of triplets
of X × Y × Z, (3DM) consists in the search for a maximum size subset M of
S such that for every couple (m1,m2) of M , m1 and m2 are disjoint. (3DM) is
NP-Complete and APX-Complete. [13]

From an instance I = (X,Y, Z, S) of (3DM), we now build an instance
J = (G, (Vc, V

′
c , Bc, Ec), ω, τ, capa, α) of max-DARP-M where capa and α are

fixed such that I has a feasible solution of size K if and only if J has a feasible
solution with K taxis satisfying 7K clients. An example is given in Figure 2.
We consider that we remove the time constraint by setting τ(a) = 0 for every
arc a ∈ A and bi = ei = 0 for all i and, in that case, TW = 1.

For each set s = (x, y, z) ∈ S, we define four clients cvs, cvxs , cvys and cvzs
going respectively from vs, vxs , vys and vzs to v′s, vx′s , vy′s and vz′s . For each element
x of X (respectively y of Y and z of Z), we add a client cwx, (respectively cwy
and cwz) going from wx to w′x (respectively wy to w′y and wz to w′z).

We add an arc (wx, w
′
x) of cost 1 for each x ∈ X. We add similar arcs for

each y ∈ Y and each z ∈ Z. For each set s = (x, y, z) ∈ S, we add four arcs
(vs, v

x
s), (vx′s , v

y
s), (vy′s , v

z
s) and (vz′s , v

′
s) of cost 0. We also add two arcs (vxs , wx)

and (w′x, v
x′
s) of cost 0. We similarly link the nodes of cvys and cvzs to the origin

and destination of cwy and cwz.
Finally, we set capa = 3 and α = 1

3 . Consequently, there must be 3 clients
in the taxi when it drives through an arc of cost non-zero.

Note that G is a DAG.

NP-Hardness.

Theorem 3.1. max-DARP-M is NP-Hard and APX-Hard, even if G is a DAG
and if α and capa are fixed.

Proof. As α = 1
3 and capa = 3, there must be 3 clients in the taxi while it is

driving through an arc of cost 1. Any taxi must then start at a node vs for
some s = (x, y, z) ∈ S and end at v′s, otherwise, there cannot be enough client
in the taxi to satisfy any cost constraint. Let Ps be such a taxi. We now show
that there is only one possible path Ps going from vs to v′s. The taxi must go
either to vxs or wx as it cannot reach another node with an arc of cost 0. If the
taxi goes to wx directly, it would have to drive through the arc (wx, w

′
x) of cost

14

x1

x2

x3

y1

y2

y3

y4

z1

z2

z3

X Y Z

A

BC

D

vA v′A

vB v′B

vC v′C

vD v′D

wx1 w′x1

wx2 w′x2

wx3 w′x3

wy1 w′y1

wy2 w′y2

wy3 w′y3

wy4 w′y4

wz1 w′z1

wz2 w′z2

wz3 w′z3

vx1

A vx1′
A vy1A vy1′A vz1A vz1′A

vx1

B vx1′
B vy2B vy2′B vz2B vz2′B

vx2

C vx2′
C vy3C vy3′C vz3C vz3′C

vx3

D vx3′
D vy4D vy4′D vz3D vz3′D

1

1

1

1

1

1

1

1

1

1

Figure 2: Example of reduction from (3DM). Every unspecified cost is 0. An optimal solution
of (3DM) is 2: for example the sets A and C. An optimal solution for max-DARP-M is 14
with two taxis, for example the taxi starting at vA and ending at v′A and the taxi from vC to
v′C .

at least 1 with at most 2 clients and thus, would not satisfy the cost constraint
of the clients cvs and cwx. Consequently, the taxi Ps must pick up the clients
cvs, cvxs and cwx, and goes to w′x and vx′s to deliver cvxs and cwx. Similarly, Ps
must satisfy cvys , cwy, cvzs and cwz before reaching v′s.

A feasible solution can contain two taxis Ps1 and Ps2 if and only if s1∩s2 6= ∅.
Indeed, if, for instance, s1 ∩ s2 = {x}, the two taxis would have to pick up the

15

same client cwx. Consequently, there is a feasible solution for I of size K if and
only if there is a feasible solution of J with K taxis. As each taxi satisfies 7
clients, the solution satisfies 7K clients.

LetM∗ = {s∗1, s∗2, . . . , s∗K∗} be an optimal solution for I of sizeK∗. Then, an
optimal solution P∗ = (P ∗s∗1 , P

∗
s∗2
, . . . , P ∗s∗

K∗
) for J has K∗ taxis and satisfies 7K∗

clients. If we assume there is a polynomial α-approximation for max-DARP-
M, such an algorithm would return a feasible solution P = (Ps1 , Ps2 , . . . , PsK)
satisfying 7K clients such that α7K∗ ≤ 7K. Consequently, we could build in
polynomial time a feasible solution {s1, s2, . . . , sK} for I of size K such that
αK∗ ≤ K. Thus, there is a polynomial α-approximation for (3DM). As (3DM)
is NP-Complete and APX-Complete and as G is a DAG in the reduction, this
concludes the proof.

Remark 4. The previous proof can be adapted to any fixed values of capa and
α such that capa ≥ 1

α ≥ 3 by replacing every client cwx, cwy or cwz by
⌈

1
α

⌉
− 2

clients. The nodes wx and w′x (similarly wy and w′y or wz and w′z) would be
replaced by two paths respectively containing the

⌈
1
α

⌉
−2 origins and the

⌈
1
α

⌉
−2

destinations of those new clients. Every arc of those paths would have a cost 0.
And an arc of cost 1 would link the last origin to the first destination.

3.1.2. NP-Hardness when TW is not bounded
We give, in this part, a proof that 1-DARP-M is NP-Complete, even if the

graph is a DAG and if α and capa are fixed.

The reduction. We prove a reduction from the partition problem (PART). Given
a finite set of integers X = {x1, x2, . . . , xn}, is it possible to part J1;nK into two
parts I] J such that

∑
i∈I

xi =
∑
i∈J

xi. (PART) is weakly NP-Complete [9].

From an instance I = (X) of (PART), we now build an instance J =
(G, (Vc, V

′
c , Bc, Ec), ω, τ, capa, α) of 1-DARP-M where G is a DAG and where

capa and α are fixed. Let B =
∑
x∈X

x/2. We fix capa = 2 and α = 1
2 . We define

three main clients cv1, cv2 and cv3 going respectively from v1 to v′1, v2 to v′2
and v3 to v′3. We also define 2n clients cw1

1, cw
1
2, . . . , cw

1
n and cw2

1, cw
2
2, . . . , cw

2
n.

The client cwji goes from wji to wj′i . We finally add n − 1 intermediate nodes
int1, int2, . . . , intn−1. The arcs of the graph are the following:

• (v2, v
′
2) and (v3, v

′
3) of cost 1 and duration 0.

• (w1
i , w

1′
i) of cost 1 and duration xi for every i ∈ J1;nK.

• (w2
i , w

2′
i) of cost 1 and duration 0 for every i ∈ J1;nK.

• (v1, v2), (v2′, w
1
1), (v2′, w

2
1), (w1′

n , v3), (w2′
n , v3) and (v3′, v1′) of cost 0 and

duration 0

• (w1′
i , inti), (w2′

i , inti), (inti, w
1
i+1), (inti, w

2
i+1) of cost 0 and duration 0

for every i ∈ J1;n− 1K.

16

v1

v2 v′2

w1
1

w2
1

w1′
1

w2′
1

int1

w1
2

w2
2

w1′
2

w2′
2

inti

w1
n

w2
n

w1′
n

w2′
n

v3 v′3

v′1

1, 0

1, x1

1, 0

1, x2

1, 0

1, xn

1, 0

1, 0

Figure 3: Example of reduction from (PART) to 1-DARP-M. On each arc a, we write the
values ω(a) and τ(a) in that order. If no number is given, the two values are 0.

The graph G, the costs ω and the times τ are illustrated on Figure 3.
The time window of cv2 is [0, 0]. The time window of cv3 is [B,B]. For all

the other clients, the time window is [0, B].

Theorem 3.2. 1-DARP-M is weakly NP-Complete even if G is a DAG and if
α and capa are fixed.

Proof. As α = 1
2 and capa = 2, there must be 2 clients in the taxi while it is

driving through an arc of cost 1. Consequently, the taxi must pick up the client
cv1. In order to go to v′1, the taxi must drive through (v2, v

′
2) and, then, must

also pick up cv2. Similarly it must pick up cv3 and, for each i ∈ J1;nK, either
cw1

i or cw2
i . Let I be the subset of J1;nK such that i ∈ I if cw1

i is picked up.
Due to the time window of cv2, the taxi must arrive at v2 at time 0 otherwise

the time constraint cannot be satisfied. Similarly it must arrive at v3 at time B.
The moment when the taxi reaches v3 is

∑
i∈I

τ(w1
i , w

1′
i) +

∑
i6∈I

τ(w2
i , w

2′
i) =

∑
i∈I

xi.

Thus, there exists a feasible taxi if and only if
∑
i∈I

xi = B =
∑
i6∈I

xi. This

concludes the proof.

From Theorem 3.2, we can deduce the following results.

Corollary 3.1. max-DARP-M and max-1-DARP-M are weakly NP-Hard and,
unless TW is polynomialy bounded or P = NP, cannot be approximated in poly-
nomial time to within any variable ratio, even if G is a DAG and if capa and
α are fixed.

3.1.3. NP-Hardness and Parameterized Hardness with respect to the number of
satisfied clients

If we search for a taxi satisfying exactly S clients, we can enumerate every
subset of S clients and check if a taxi only satisfying that subset exists, and this
give an XP algorithm for max-1-DARP-M= and max-DARP-M= with respect
to S. We prove in this subsection that a better algorithm is not likely to exist as
max-1-DARP-M= and max-DARP-M= are W[1]-hard in S, capa, α and TW .

We also demonstrate that the three problems, max-1-DARP-M, max-DARP-
M and 1-DARP-M are NP-Complete and cannot be approximated in polynomial
time even if TW is fixed and that 1-DARP-M is W[1]-hard in capa, α and TW .

17

The reduction. We describe an FPT-Reduction from the partitioned clique
problem. Given an undirected graph G = (V = V1] V2] · · ·] Vk, E) where V
is partitioned into k independent sets, the partitioned clique problem consists
in the search for a clique of size k. Any such clique contains exactly one node
in each part Vi. This problem is NP-Complete and is W[1]-hard with respect
to k [17].

From a parameterized instance (G, k) of the partitioned clique problem, we
build a parameterized instance ((J , S), (S, α, capa,W)) of max-1-DARP-M=

such that the graph is a DAG. Note that this instance is also a parameterized
instance for max-DARP-M=, and that (J , (α, capa,W)) is a parameterized in-
stance of 1-DARP-M. The same reduction proves hardness results for the three
problems. We consider that we remove the time constraint by setting τ(a) = 0
for every arc a ∈ A and bi = ei = 0 for all i and, in that case, TW = 1.

Our goal is to create a directed acyclic graph H = (W ∪X,A).
W contains two nodes wvu and wuv for each edge (u, v) of G. It is partitioned

into k layers and each layer is partitioned into k − 1 sublayers. We write Wi

for layer i. The sublayers of layer i are numbered from 1 to k except i and we
write W j

i for sublayer j of layer i. For each edge {u, v} in E such that u ∈ Vi
and v ∈ Vj and i < j, we add a client cwvu with the origin wvu ∈ W

j
i and the

destination wv′u = wuv ∈W i
j .

Each sublayer is a stable set. A node wv1u1
∈ W j

i is linked to a node wv2u2

of the next sublayers of Wi (W
j+1
i if j 6= i − 1, W i+1

i otherwise) if u1 = u2.
Note that this common node is necessarily in Vi. Note also that each layer is
an acyclic graph.

X is a set of k − 1 paths. For each i ∈ J1; k − 1K, we add to H a path
(x1
i , x

2
i , . . . , x

si
i , x

1′
i , x

2′
i , . . . , x

si′
i) where si = (k−1)·k

2 − i · (k − i). We also add
si clients CXi = {cx1

i , cx
2
i , . . . , cx

si
i }. Each client cxli goes from xli to xl′i . Let

Xi be the set of origins of those clients and X ′i be the set of destinations. All
the nodes of the last sublayer of each layer Wi, for i 6= k, are linked to x1

i , and,
similarly, xsi′i is linked to all the nodes of the first layer of Wi+1.

We can easily see that H does not contain a circuit as each layerWi is acyclic
and as it is only connected to the following layer with the path Xi ∪X ′i.

The cost of every arc (xsii , x
1′
i) is 1. For every other arc, the cost is null.

Finally, we set S = (k−1)·k
2 +

k−1∑
p=1

sp, capa = (k−1)·k
2 and α = 1

capa . Any taxi

driving through an arc of cost non-zero must contains capa clients otherwise the
cost constraint cannot be satisfied.

Example 1. We first describe, in this section, why the reduction works on a
simple example, given in Figure 4 and then give the formal proof.

On that example, we have a Partitionned Clique instance with k = 3 con-
taining for instance the clique {2, 5, 7}. Thus, in the max-1-DARP-M problem,
the graph H contains 3 layers and 2 sublayers per layer and we have S = 5,
s1 = s2 = 1, capa = 3 and α = 1/3. Consequently, a taxi cannot go through an
arc of cost 1 if it is not driving exactly 3 clients.

18

1 2

3 4 5

6 7

V1

V2

V3

w3
1 w4

1 w4
2 w5

2

w6
1 w7

1 w7
2

w1
3 w1

4 w2
4 w2

5

w6
3 w6

4 w7
5

w1
6 w1

7 w2
7

w3
6 w4

6 w5
7

x1
1

x1′
1

x1
2

x1′
2

1

1

W1

W 2
1

W 3
1

W2

W 1
2

W 3
2

W3

W 1
3

W 2
3

Figure 4: Example of reduction from the Partitioned Clique problem. There are 3 stable sets
in G: V1, V2 and V3; and 6 sublayers in H: W 2

1 , W
3
1 , W

1
2 , W

3
2 , W

1
3 and W 2

3 . Each layer is
separated from the other with an horizontal dashed line. The two paths of X are on the right.
Note that there are dashed lines joining the origin and the destination of each client cwv

u for
information. Those lines are not edges or arcs of the graph. Every cost which is not specified
is 0.

We first explain why any feasible taxi must drive S clients. Due to how
the graph H is built, if a taxi drives a client from W 3

1 , it must reach W 1
3 and,

then, it must go through the arcs (x1
1, x

1′
1) and (x1

2, x
1′
2). Similarly, if a taxi

drives a client from W 2
1 (respectively from W 3

2), it must goes through (x1
1, x

1′
1)

(respectively (x1
2, x

1′
2)). On the other hand, if the taxi goes through the arc

(x1
1, x

1′
1) with 3 clients, those three clients must be cx1

1 and two clients from W 2
1

and W 3
1 . Similarly, the three clients of a taxi going through (x1

2, x
1′
2) must be

cx1
2 and two clients from W 3

1 and W 3
2 . As a consequence, any feasible taxi must

19

drive at least S = 5 clients: the clients cx1
1, cx1

2 and three clients from W 2
1 , W 3

1

and W 3
2 . The taxi cannot drive more than S clients because every sublayer is

an independent set and every path connect a sublayer to the next sublayers.
We now explain why this feasible taxi exists if and only if a clique of size k

exists in G. Each layer Wi is associated with the edges incident to the nodes
of the set Vi of node of G. For instance, in W1, there are four nodes associated
with the four edges incident to node 1 and three nodes associated with the three
edges to node 2. The four first nodes are not connected to the three last, it is
not possible for a taxi to pick up a client in W 2

1 associated with the node 1 and
a client in W 3

1 associated with the node 2. Thus, in order to go through W1,
the taxi must choose either the node 1 or 2 and then choose two incident edges.
Similarly, to go through W2 (respectively W3), the taxi must choose the node
3, 4 or 5 (respectively the node 6 or 7). Consequently, the taxi builds a set C
of three nodes, one for each set V1, V2 and V3.

If the set C is a clique, for instance {2, 5, 7}, then the edges (2, 5), (2, 7) and
(5, 7) exist and, consequently, the corresponding client exist too. The origins
and the destinations of all those clients are connected by a path. This case is
illustrated in Figure 4. Note that this also work with the two other cliques of
G, {1, 3, 6} and {1, 4, 6}.

If the set C is not a clique, for instance {2, 4, 7}, then at least one of the
three edges does not exist. In this case, the edge (4, 7) does not exist, and thus,
the client cw7

4 and the nodes w7
4 and w4

7 do not exist. Maybe the taxi can drive
cw4

2, cw7
2 and another client fromW 3

2 . However, the precedence constraint must
be satisfied. If the clients cw4

2 and cw7
2 are picked up, they must be delivered

at w2
4 and w2

7. While leaving w2
4, the taxi has no other choice than going to an

edge linking 4 and a node of V3. In this case, the only possibility is the edge
(4, 6). As explained previously, the taxi must pick up the client cw6

4 otherwise
there cannot be 3 clients in the taxi while going through (x1

2, x
1′
2). The taxi

must then reach w2
7 and w4

6 and those nodes are not connected. More generally,
if C is not a clique, the missing edges must be replaced by edges that are not
incident to two nodes of C and this prevents the taxi from being able to satisfy
either the cost constraint or the precedence constraint.

We now formally prove the reduction. We first show two intermediate lem-
mas.

Lemma 3.1. The route of a feasible taxi contains at most one node in each
sublayer W j

i .

Proof. As every sublayer W j
i is either linked to the next sublayer or connected

to Wi+1 with the path Xi ∪X ′i, there is no path connecting two nodes of W j
i .

Thus, there is at most one node of W j
i is a path of H.

Lemma 3.2. A feasible taxi picks up a client in W j
i , for some i < j, and

delivers it in W i
j if and only if it goes through every path Xl ∪X ′l including the

arc (xsll , x
1′
l) for l ∈ Ji; j − 1K.

20

Proof. The necessary condition follows from the fact that any path from W j
i to

W i
j goes through those paths.
We now assume there is a feasible route of a taxi in H not containing any

node of W j
i and that this taxi goes through (xsll , x

1′
l) for some l ∈ Ji; j− 1K. We

will show that the taxi cannot contain capa clients while going through the arc
(xsll , x

1′
l). By doing this, we prove the taxi does not satisfy the cost constraint

as α = 1
capa and as the arc has cost 1. This would lead to a contradiction.

If a client is in the taxi while it drives through the arc (xsii , x
1′
i), the origin of

that client is before xsii and its destination is after x1′
i in a topological ordering

of H. There are two categories of such clients. There are firstly the si clients of
CXi. There are secondly the clients cwvu coming from sublayer W q

p to sublayer
W p
q where p ≤ l and q > l except if p = i and q = j because the taxi does not

drive any client from W j
i . There are l possible values for p and (k − l) possible

values for q. As we remove the couple (p, q) = (i, j), there are l · (k− l)− 1 such
couples of sublayers.

By Lemma 3.1, there is no more than one client per sublayer in a path of
H, there cannot be more than si + i · (k− i)− 1 clients in a taxi going through
(xsii , x

1′
i). As si = (k−1)·k

2 − i · (k − i) and capa = (k−1)·k
2 , there can be at most

capa− 1 clients in the taxi.

Lemma 3.3. If there is a clique C of size k in G, there is a feasible solution
for J satisfying S clients.

Proof. If there is a clique C of size k in G, then, let ui be the node of C ∩ Vi.
We define the subgraph P of H such that, for each i < j ∈ J1; kK, P contains
one node per sublayer, the origin and the destination of the client cwuj

ui , and all
the paths Xi ∪X ′i. There is always in P an arc linking two nodes wvu and wyx of
two consecutive sublayers of Wi because u = x = ui. Thus, P is a path.

P satisfies the precedence constraints. A similar argument to the one given
in the proof of Lemma 3.2 proves that P never drives more than capa clients
at the same time and that P satisfies the cost constraint. Finally, P satisfies

exactly S = k·(k−1)
2 +

k−1∑
1
si clients.

Lemma 3.4. The route of a feasible taxi contains exactly one node in each
sublayer and all the nodes of X.

Proof. By Lemma 3.1, there is at most one node of W j
i is a path of H.

The taxi must go through at least one arc of cost 1, because, for every client,
there is such an arc separating its origin to its destination. Thus, by Lemma 3.2,
it must satisfy at least one client from W k

1 . Consequently, again by Lemma 3.2,
it goes through every arc (xsll , x

1′
l) for l ∈ Ji; k− 1K and every node of X. Thus,

again by Lemma 3.2, the route of the taxi contains one node per sublayer.

Lemma 3.5. If there is a feasible taxi for J satisfying S clients, there is a
clique C of size k in G.

21

Proof. We now assume that there is a taxi P satisfying S clients. Let C be
the subgraph of G induced by the set of edges {{u, v} ∈ E|wvu ∈ P}. Note
that wvu ∈ P ⇔ wuv ∈ P because P satisfies the precedence constraint. By
Lemma 3.4, there is in P exactly one node per sublayer and P contains all the
nodes of X. As a consequence, for each i < j, there are at least one node ui ∈ Vi
and one node uj ∈ Vj such that the client cwvjui is satisfied, thus, such that the
edge {ui, uj} ∈ C. In addition, for each i ≤ k, |Vi ∩ C| ≥ 1. By proving that
|Vi ∩ C| = 1 for all i, we prove that C is a clique of size k of G.

If, for some i, |Vi ∩ C| > 1, there would be two nodes u1 6= u2 ∈ Vi ∩ C and
two other nodes v1, v2 such that {u1, v1} ∈ C and {u2, v2} ∈ C. Note that v1

and v2 may be equal. We assume that v1 ∈ Vj1 , v2 ∈ Vj2 and i < j1 ≤ j2. Every
other case can be similarly proven. There are two nodes w1 = wv1u1

∈ W j1
i ∩ P

and w2 = wv2u2
∈ W j2

i ∩ P . Note that those two nodes belong to the same layer
Wi. We recall that two nodes wba and wdc of two successive sublayers of a same
layer are linked if and only if a = c. By induction, there is a path between
two nodes wba and wdc of two (successive or not) sublayers of the same layer if
and only if a = c. Consequently, there is a path from w1 to w2 if and only if
u1 = u2. As w1 and w2 belong to the path P , we deduce that u1 = u2 and that
|Vi ∩ C| = 1. And this conclude the proof.

Theorem 3.3. Even if G is a DAG,

• 1-DARP-M is W[1]-hard with respect to capa, α and TW ;

• max-DARP-M= and max-1-DARP-M= are W[1]-hard with respect to S,
capa, α and TW ;

• 1-DARP-M is NP-Complete and max-DARP-M, max-1-DARP-M are NP-
Hard and cannot be approximated in polynomial time to within any variable
ratio even if TW is fixed.

Proof. Lemma 3.4 proves that any feasible solution satisfies exactly S clients
and any taxi satisfies all the clients of X. Thus there cannot be two taxis in
a feasible solution. Consequently, in that instance, an optimal solution of the
problems max-1-DARP-M and max-DARP-M satisfies S clients if and only if
the answer to the problems max-1-DARP-M=, max-1-DARP-M and 1-DARP-M
is YES. Otherwise, no client can be satisfied.

Lemma 3.3 and 3.5 proves then the theorem.

3.2. Parameterized algorithms
In this section, we first give an algorithm to solve max-1-DARP-M in a

DAG in pseudopolynomial time when capa is fixed. We then deduce a
√
n-

approximation algorithm for max-DARP-M in a DAG in pseudopolynomial time
when capa is fixed.

22

3.2.1. A parameterized algorithm for max-1-DARP-M
We consider an instance I = (G, (Vc, V

′
c , Bc, Ec), τ, ω, capa, α) with n clients

and where G is a DAG. We assume that, in G, there is a path from any origin
vi ∈ Vc to the corresponding destination v′i ∈ V ′c : there is no path from v′i to vi.
We finally consider that there is no intermediate point: V = Vc ∪V ′c . Every arc
(u, v) corresponds to a shortest path from u to v in the road network if such a
path exists.

Definition 2. We now define an auxiliary graph S(I) in which each node is
associated with a state corresponding to the taxi leaving a node u ∈ V at time
t with a set C of at most capa clients and such that S clients already entered
the taxi (including the clients who have left the taxi and the clients who have
not); we write that state w(u, t, C, S), u ∈ V , t ∈ Jbi, eiK if u = vi or if u = v′i,
C ⊂ J1;nK, |C| ≤ capa, S ∈ J1;nK. An arc is a transition between two states:
we add an arc (w(u1, t1, C1, S1), w(u2, t2, C2, S2)) in S(I) if and only if all the
following four properties are true:

1. C1 6= ∅

2. there is a path from u1 to u2 in G;

3. t2 − t1 = τ(u1, u2)

4. • either u2 is the origin vi of client i, C2 = C1] {i} and S2 = S1 + 1

• or u2 is the destination v′i of client i, C1 = C2] {i} and S2 = S1

An example is given in Figure 5.
As the existence of an arc between two states w(u1, t1, C1, S1) and w(u2, t2, C2, S2)

implies that there is a path from u1 to u2 in G and as G is a DAG, we can deduce
the following property.

Property 1. S(I) is a DAG.

We now introduce Algorithm 1, which solves max-1-DARP-M using the aux-
iliary graph S(I). We then prove the polynomial time complexity and the cor-
rectness of the algorithm.

For each node w = (v, t, C, S) ∈ S(I), we define a set P(w) of mappings
associating to each client of C a non negative real number: each mapping rep-
resents a possible taxi driving the clients of C through v and p(i) is the cost
that the client i has already paid for the travel from its origin to v in that taxi.

Definition 3. Let w = (v, t, C, S) ∈ S(I), and p and p′ be two mappings of
P(w). We say p dominates p′ if, for every client i in C, p(i) ≤ p′(i). We write
p � p′.

We use Algorithm 1 to compute all the sets of mappings of the auxilliary graph
and to deduce a feasible solution for I.

Each set P(w) is built recursively using the sets of mappings of all pre-
decessors of w. In order to simplify Algorithm 1, we define, for each arc

23

v1 v3 v′3 v2 v4 v′4 v5
1 2 1 2 6 2

1 6

1
v1 1

1 3
v3 2

1
v′3 2

1 2
v2 3

1 2
v2 2

2
v2 1

1 2 4
v4 4

1 2 4
v4 3

1 4
v4 3

1 4
v4 2

2 4
v4 2

1 2
v′4 4

1 2
v′4 3

1
v′4 3

1
v′4 2

2
v′4 2

1 2 5
v5 5

1 2 5
v5 4

1 2 5
v5 3

1 5
v5 4

1 5
v5 3

1 5
v5 2

2 5
v5 3

2 5
v5 2

5
v5 1

. . .

. . .

. . .

Figure 5: Example of transformation from I to the auxiliary graph S(I). For readability,
we do not consider, in this figure, the time windows, and some states like w(v3, t, 3, 1) or
w(v4, t, 4, 1) are missing. The weight of each arc a on the upper graph is the cost ω(a). Each
state w(u, t, C, S) on the lower graph contains u, C and S respectively on the lower left part,
the upper part and the lower right part of the node. The time t is not given.

(w1, w2) ∈ S(I), a set of intermediate mappings P(w1, w2) which can be seen as
the subset of P(w2) built from the state w1 with useful additional information.
This set is built with the SUBMAP function, described in Algorithm 2. In ad-
dition, a BUILD function is given in Algorithm 3 to build a solution. Table 2
illustrates some iterations of the algorithm on the example given in Figure 5.

Correctness. This part is dedicated to proof the correctness of Algorithm 1. The
key idea is to prove that any mapping of P(w), for some node w = (u, t, C, S),
corresponds to the part of a taxi from the first origin of its route to u, hereinafter
called a partial taxi.

Definition 4. For every node w = (u, t, C, S) ∈ S(I), we define the set pP (w)

24

Algorithm 1 Main algorithm
Require: an instance I = (G, (Vc, V

′
c , Bc, Ec), τ, ω, capa, α) of max-1-DARP-M

Ensure: an optimal solution for I
1: Build the auxiliary graph S(I)
2: For each client i ∈ J1;nK and t ∈ [bi, ei] Do
3: pi ← a mapping associating 0 to the client i
4: P(w(vi, t, {i}, 1))← {pi}
5: pred(pi)← null

6: L← a topological ordering of S(I)\{w(vi, t, {i}, 1)|i ∈ J1;nK}
7: For each w = w(v, t, C, S) ∈ L Do
8: P(w)← ∅
9: For each predecessor w− = w(v−, t−, C−, S−) of w Do

10: P(w−, w)← SUBMAP(I,S(I), (w−, w),P(w−))
11: For each (p, w−, p−) ∈ P(w−, w) Do
12: If For all p′ ∈ P(w), p′ 6� p Then
13: remove from P(w) every mapping p′ such that p � p′
14: add p to P(w)
15: pred(p)← (w−, p−)

16: T ← {w = w(v′i, t, ∅, S)|i, S ∈ J1;nK,P(w) 6= ∅}
17: If T = ∅ Then Return no solution.
18: w∗ ← argmax{S|w(v′i, t, ∅, S) ∈ T}
19: p← a mapping of P(w∗)
20: Return BUILD(I,S(I), pred, w∗, p)

Algorithm 2 SUBMAP Function
Require: an instance I = (G, (Vc, V

′
c , Bc, Ec), τ, ω, capa, α) of max-1-DARP-

M, the auxiliary graph S(I), an arc (w1 = w(u1, t1, C1, S1), w2 =
w(u2, t2, C2, S2)) ∈ S(I), a set P(w1) of mappings from C1 to R+

Ensure: a set P(w1, w2) of mappings from C2 to R+

1: function SubMap(I,S(I), (w1, w2),P(w1))
2: P(w1, w2)← ∅
3: For each mapping p1 ∈ P(w1) Do
4: Initialize a mapping p2 of C2 → R+

5: For each client i ∈ C1 Do
6: If p1(i) + ω(u1,u2)

|C1| ≤ α · ω(vi, v
′
i) Then

7: If i ∈ C2 Then p2(i)← p1(i) + ω(u1,u2)
|C1|

8: Else
9: Continue loop For at Line 3

10: If C2 contains a client i not in C1 Then, p2(i) = 0

11: Add (p2, w1, p1) to P(w1, w2)

12: Return P(w1, w2)

25

Algorithm 3 BUILD Function : Build a partial solution from a selected node.
Require: an instance I = (G, (Vc, V

′
c , Bc, Ec), τ, ω, capa, α) of max-1-DARP-

M, the auxiliary graph S(I), a predecessor function pred,a node w =
w(u, t, C, S) ∈ S(I) and a mapping p of P(w)

Ensure: a path ending at u in G
1: function Build(I,S(I), pred, w, p)
2: P ← {u}
3: If pred(p) 6= null Then
4: (w−, p−)← pred(p)
5: P ← P∪ BUILD(I,S(I), pred, w−, p−)

6: Return P

Table 2: Example of iterations of the For loops at Lines 7 and 9 of Algorithm 1 on the
instance given in Figure 5. We assume that every duration τ(a) is 0 and that every time
window contains 0. The first column gives the iteration numbers of the outer loop. The two
last columns give the two lists of mappings P(w−, w) and P(w). Each mapping p is written
i → p(i). The first part ends with a state containing two non-dominated mappings whereas
the second part ends with an iteration where a mapping is not inserted in P(w) because it is
dominated by an existing mapping.
It. w w− P(w−, w) P(w)

1 w(v3, 0, {1, 3}, 2) w(v1, 0, {1}, 1) 1→ 1, 3→ 0 1→ 1, 3→ 0

2 w(v′3, 0, {1}, 2) w(v3, 0, {1, 3}, 2) 1→ 2 1→ 2

3 w(v2, 0, {1, 2}, 3) w(v′3, 0, {1}, 2) 1→ 3, 2→ 0 1→ 3, 2→ 0

4 w(v2, 0, {1, 2}, 2) w(v1, 0, {1}, 1) 1→ 1, 2→ 0 1→ 1, 2→ 0

5 w(v4, 0, {1, 2, 4}, 3) w(v2, 0, {1, 2}, 2) 1→ 2, 2→ 1, 4→ 0 1→ 2, 2→ 1, 4→ 0

6 w(v′4, 0, {1, 2}, 3) w(v4, 0, {1, 2, 4}, 3) 1→ 4, 2→ 3 1→ 4, 2→ 3

7 w(v5, 0, {1, 2, 5}, 4) w(v2, 0, {1, 2}, 3) 1→ 6, 2→ 3, 5→ 0 1→ 6, 2→ 3, 5→ 0

7 w(v5, 0, {1, 2, 5}, 4) w({1, 2}, 0, v′4, 3) 1→ 5, 2→ 4, 5→ 0
1→ 6, 2→ 3, 5→ 0

1→ 5, 2→ 4, 5→ 0

8 w(v4, 0, {1, 4}, 2) w(v1, 0, {1}, 1) 1→ 3, 4→ 0 1→ 3, 4→ 0

9 w(v′4, 0, {1}, 2) w(v4, 0, {1, 4}, 2) 1→ 6 1→ 6

10 w(v5, 0, {1, 5}, 3) w(v′4, 0, {1}, 2) 1→ 8, 5→ 0 1→ 8, 5→ 0

10 w(v5, 0, {1, 5}, 3) w(v′3, 0, {1}, 2) 1→ 9, 5→ 0 1→ 8, 5→ 0

26

of partial taxis of w as the set of paths P in G such that:

(i) P starts at an origin vi, for some client i, and ends at u

(ii) the capacity constraint is satisfied;

(iii) the time constraint is satisfied;

(iv) C is the set {i|vi ∈ P and v′i 6∈ P} and S is the value of |{i|vi ∈ P}|.

(v) if v′i ∈ P , then the precedence and the cost constraints are satisfied for
the client i;

(vi) if i ∈ C, the cost ω(i, P) paid by the client i from vi to u in P is less than
α · ω(vi, v

′
i);

Remark 5. If P is a taxi starting at vi, then any subpath of P starting at
vi is a partial taxi. However, there exists partial taxis such that no valid taxi
contains them.

Lemma 3.6. Let w = (u, t, C, S) ∈ S(I). We assume p ∈ P(w) is a mapping
that was just added at Line 14. Let P be the result of the BUILD function on
w and p, then P ∈ pP (w) and, for each i ∈ C, p(i) = ω(i, P).

Proof. Let L′ be the list starting with the nodes of {w(vi, t, {i}, 1)|i ∈ J1;nK, t ∈
[bi, ei]} and ending with the list L defined at Line 6 of Algorithm 1. Note
that any node w of {w(vi, t, {i}, 1)|i ∈ J1;nK, t ∈ [bi, ei]} has no predecessor
(otherwise, let w− = w(u−, C−, S−) be that predecessor, then, according to
Definition 2, by the Rule 4 an arc of S(I) must satisfy, C− = ∅ and this is not
compatible with Rule 1). As a consequence, L′ is a topological ordering of S(I).

We prove the lemma by induction on the index of w in L′.
Basis: We first prove the lemma for the nodes of {w(vi, t, {i}, 1)|i ∈ J1;nK, t ∈

[bi, ei]}. Let w = w(vj , tj , {j}, 1) be such a node. The set of mappings of w is
initialized at Line 2 of Algorithm 1. The only mapping in P(w) is pj , the map-
ping associating 0 to the client j. By Definition of pP (w), a partial taxi P of
that set ends in vj and satisfies {i|vi ∈ P and v′i 6∈ P} = {j} and {i|vi ∈ P} = 1
by (i) and (iv). Thus, for all i 6= j, v′i ∈ P otherwise, by (v), vi ∈ P and
this would be a contradiction with the fact that {i|vi ∈ P} = 1. Consequently,
pP (w) contains only one partial taxi P = {vj}. In that taxi, the client j pays
0. The lemma is then proved for w.

Inductive Step: Let w = w(u, t, C, S) ∈ L = L′\{w(vi, t, {i}, 1)|i ∈
J1;nK, t ∈ [bi, ei]}. We now assume that the lemma is true for every node
before w in L′. Note that P(w) is build in the for loop from line 7 and 15 of
Algorithm 1.

Without loss of generality, we assume u is the origin vj of the client j.
Let p be a mapping of P(w), this mapping is added at Line 14 of Algorithm 1.

Consequently, there is a predecessor w− = (u−, t−, C−, S−) of w and a mapping
p− ∈ P(w−) such that (p, w−, p−) ∈ P(w−, w) at Line 11. By Definition 2, as u
is the origin of the client j, C = C−] {j}. The SUBMAP function is called at

27

Line 10 of Algorithm 1. In that function, when p1 = p−, the current iteration
is not stopped at Line 9 of Algorithm 2, otherwise (p, w−, p−) would not be
returned in P(w−, w). Consequently, p(j) = 0 and, for each client i ∈ C−,

p(i) = p−(i) +
ω(u−, vj)

|C−|
≤ α · ω(vi, v

′
i) (7)

Note that the value of pred(p−) is never changed after Line 15 of Algorithm 1:
if we call the BUILD function with p− and w− just after p− is added to P(w−)
or if we call it later, the result is the same. By the inductive hypothesis, that
function returns a partial taxi P− ∈ pP (w−) such that, for each i ∈ C−,
p−(i) = ω(vi, P).

If we call BUILD after p is added to P(w), as pred(p) is set to (w−, p−), the
result P is the path P− to which we add the node vj . We now prove P ∈ pP (w).

• (i) is obviously proved for the path P .

• As P− ∈ pP (w−), the capacity constraint is satisfied from the first node
of P to v− by (ii). By (iv), there are |C−| clients in the taxi when it leaves
the node u−. By Definition 2, since the arc (w−, w) exists in S(I) and
since u is an origin node, |C−| ≤ capa− 1. Thus, there are at most capa
clients in the taxi when it leaves vj and (ii) is proved for P .

• The time constraint is satisfied for P−. The taxi leaves u− at time t−
and reaches u at time t−+ τ(u−, u). By (iii) Definition 2, t belongs to the
time windows associated with u and, since the arc (w−, w) exists in S(I),
t = t− + τ(u−, u). Consequently, (iii) is proved for P .

• C = C−] {j} = {i|vi ∈ P− and v′i 6∈ P−}] {j} and S− = |{i|vi ∈ P−}
by (iv). In G, there is no path from v′j to vj , thus v′j 6∈ P−. Consequently,
C = {i|vi ∈ P and v′i 6∈ P}. Moreover, again by Definition 2, since the
arc (w−, w) exists in S(I) and since u is an origin node, S = S− + 1 =
|{i|vi ∈ P−}] {j}| = |{i|vi ∈ P}|. Consequently, (iv) is proved for P .

• u is an origin node, then, as (v) is true for P−, it is also true for P .

• The cost ω(i, P) paid by any client i ∈ C− in the path P from vi to vj is
ω(i, P−)+

ω(u−,vj)
|C−| . By the inductive hypothesis, ω(i, P−) = p−(i). Thus,

ω(i, P) = p−(i) +
ω(u−,vj)
|C−| = p(i) ≤ α · ω(vi, v

′
i) by Equation (7). The

cost ω(j, P) paid by the client j is 0, thus ω(j, P) = p(j) ≤ α · ω(vj , v
′
j).

Consequently, (vi) is proved for the path P .

As a consequence, P belongs to pP (w) and, for each client i ∈ C, p(i) =
ω(i, P). Lemma 3.6 is shown for w. By induction, Lemma 3.6 is proved.

Lemma 3.7. For every node w = (u, t, C, S) ∈ S(I), for each partial taxi P ∈
pP (w), there is a mapping p ∈ P(w) such that, for each i ∈ C, p(i) ≤ ω(i, P).

28

Proof. This proof is similar to the one of Lemma 3.6. We do it by induction on
the same list L′. The basis is exactly the same in the two proofs.

For the inductive step, a converse argument to the inductive step of Lemma 3.6
proves that there is a mapping p built with the SUBMAP function such that
for each client i ∈ C, p(i) = ω(i, P). When, Algorithm 1 reaches Line 14, either
there is a mapping p′ � p and, for each client i ∈ C, p′(i) ≤ p(i) = ω(i, P) or
no such mapping exists and p is added to P(w). Lemma 3.7 is shown for w and
by induction, Lemma 3.7 is proved.

Theorem 3.4. Algorithm 1 returns an optimal solution for I.

Proof. We prove that Lines 17 and 20 return either no solution if no solution
exists or an optimal solution.

If, for some w = w(v′j , t, C = ∅, S) ∈ T , there is no mapping in P(w), then,
by Lemma 3.7, there is no valid taxi from any origin to v′j in G. If T is empty,
at Line 17, there is no solution and Algorithm 1 correctly returns no solution.

If such a mapping exists, by Lemma 3.6, the function BUILD at Line 20
returns a path P ∈ pP (w∗). We recall that w∗ is the node w(v′j , t, C = ∅, S)
maximizing S. As {i|vi ∈ P and v′i 6∈ P} = C = ∅, thus every client of P
satisfies the precedence and the cost constraints: P is a valid taxi. In addition,
P satisfies |{i|vi ∈ P}| = S clients. By definition of w∗, P is a valid taxi
maximizing |{i|vi ∈ P}|, thus P is an optimal solution.

Time complexity. The end of this part is dedicated to proving that, for every
node w = (v, t, C, S) ∈ S(I), the size of P(w) is polynomial if capa is fixed
and if TW is polynomially bounded1, and deduce that Algorithm 1 is XP with
respect to capa when TW is polynomially bounded.

Definition 5. Let w = (v, t, C, S) ∈ S(I), for every subset I ⊂ C, we define
p|I as the subvector of p restricted to every client of I. The set P(w, I) is the
subset of non-dominated vectors of {p|I , p ∈ P(w)}, i.e. for any two distinct
mappings p and p′ of P(w, I), p 6� p′ and p′ 6� p.

Note that P(w,C) = P(w) due to Lines 12 and 13 of Algorithm 1.
We want to prove the following properties:

Property 2. Let w = (u, t, I] J, S) ∈ S(I), with |I| ≥ 2, and if u is the origin
of a client in I, then |P (w, I)| ≤ n(capa−1)·(|I|−2) · TW |I|−2.

Property 3. Let w = (u, t, I] J, S) ∈ S(I), with |I| ≥ 1, and if u is not the
origin of any client in I then |P (w, I)| ≤ n(capa−1)·(|I|−1) · TW |I|−1.

1By polynomially bounded, we mean that TW is a unary encoded number or, equivalently,
that there exists a polynomial p such that, for each instance (G, (Vc, V ′c , Bc, Ec), τ, ω, capa, α),
TW is no more than p(size) where size is the maximum of the size of G, the number of clients,
and the logarithm of every other numerical value such as τ(a), ω(a), capa and α.

29

We prove the two properties by induction on the size of |I|. Each property
alternatively proves the other one. The following lemmas proves that Property 3
is true when |I| = 1, that if Property 3 is true when |I| ≤ c for some constant c,
then Property 2 is true when |I| = c + 1, and, finally, when Property 2 is true
when |I| ≤ c for some constant c, then Property 3 is true when |I| = c.

Lemma 3.8. Property 3 is true when |I| = 1.

Proof. Let I = {i}. In that case, every mapping of |P (w, I)| maps some positive
real to the client i. There can be only one non-dominated mapping: the one
associating the smallest real to i.

Lemma 3.9. If, for some constant c ≤ capa, Property 3 is true when 1 ≤ |I| ≤
c, then Property 2 is true when |I| = c+ 1.

Proof. Let w = w(u, t, I] J, S), we assume I = {i1, i2, . . . , ic+1}. In order to
prove Property 2, we assume that u is the origin of some client in I. Without
loss of generality, we also assume that, in any topological ordering of G, vij is
before vik if and only if j ≤ k. Then u = vic+1

. Otherwise, u is some other origin
vij and, when the taxi reaches u, as the client ic+1 is in I, it was already picked
up by the taxi. This contradicts the fact that the taxi cannot have already
reached vic+1

because vij is before that node in any topological ordering.
As a consequence, for any mapping p of P(w), p(ic+1) = 0. If we consider

two mappings p and p′ of P(w), p|I\ic+1
� p′|I\ic+1

if and only if p|I � p′|I . Thus,
|P(w, I)| = |P(w, I\ic+1)|. By the hypothesis, |P (w, I\ic+1)| ≤ n(capa−1)·(c−1) ·
TW c−1 = n(capa−1)·(|I|−2) · TW |I|−2. Thus Property 2 is proved for I.

In order to prove the last lemma, we first prove an intermediate result.

Definition 6. Using the pred array, we can define a precedence tree of mappings
in which p− is linked to p if pred(p) = (w−, p−) for some state w−. Let w1 =
w(u1, t1, I]J1, S1) and w2 = w(u2, t2, I]J2, S2) such that there is a path from
w1 to w2 in S(I). We say that a mapping p1 of P(w1) generates p2 of P(w2) if
there is a path of mappings from (w1, p1) to (w2, p2) in the precedence tree.

Lemma 3.10. Let w1 = w(u1, t1, I]J1, S1) and w2 = w(u2, t2, I]J2, S2) such
that there is a path from w1 to w2 in S(I). Let q1 be a mapping of P(w1, I)
and p1 and p′1 be two mappings of P(w1) such that p1|I = q1 and p′1|I = q1. Let
p2 and p′2 be two mappings of P(w2) such that p1 generates p2 and p′1 generates
p′2. Let finally q2 and q′2 be p2|I and p′2|I . Then q2 � q′2 or q′2 � q2.

Proof. We first assume that w1 is a predecessor of w2. Note that, due to
Algorithm 2 at Line 7, p2(i) − p1(i) = p′2(i) − p′1(i) equals ω(u1,u2)

|I]J1| for ev-
ery clients i ∈ I. Since p1|I = p′1|I = q1, p1(i) = p′1(i) = q1(i) and then
q2(i) = p2(i) = p′2(i) = q′2(i).

We can similarly show the same property if w1 is an ancestor of w2 instead
of just a predecessor. In that case, there are intermediate mappings between
p1 and p2, and between p′1 and p′2. There is a path (w1 = x1, x2, . . . , w2 =

30

xl) such that p1 generates a mapping px2 of x2 which generates a mapping
px3 of x3, . . . There is also a path (w1 = x′1, x

′
2, . . . , w2 = x′k) such that p′1

generates a mapping p′x2
of x′2 which generates a mapping p′x3

of x′3, . . . Let
xi = w(uxi , t

x
i , C

x
i , S

x
i) and x′i = w(ux

′

i , t
x′

i , C
x′

i , S
x′

i). Due to Algorithm 2 at

Line 7, p2(i)− p1(i) =
l−1∑
i=1

ω(ux
i+1−u

x
i)

|Cx
i |

and p′2(i)− p′1(i) =
k−1∑
i=1

ω(ux′
i+1−u

x′
i)

|Cx′
i |

. Since

p1|I = p′1|I = q1, for all i ∈ I, p1(i) = p′1(i) = q1(i) and then depending whether
l−1∑
i=1

ω(ux
i+1−u

x
i)

|Cx
i |

≥
l−1∑
i=1

ω(ux′
i+1−u

x′
i)

|Cx
i |

or not, either for all i ∈ I q2(i) ≥ q′2(i) or for

all i ∈ I q2(i) < q′2(i).

Lemma 3.11. If, for some constant c ≤ capa, Property 2 is true when 2 ≤
|I| < c, then Property 3 is true when |I| = c.

Proof. Let w = w(u, t, I] J, S), we assume I = {i1, i2, . . . , ic} and u is not the
origin of any client in I.

Let
A =

⋃
t′∈[eic ,bic]

J′⊂J1;nK\I
|J′|≤capa−|I|
S′∈J1;nK

P(w(vic , t
′, I] J ′, S′), I)

. We want to prove that |P(w, I)| ≤ |A|.
We define a function anc associating to each mapping of P(w, I) an ancestor

mapping of A. Let q be a mapping of P(w, I). There exists a mapping p of P(w)
such that q = p|I . Thus there exists an ancestor wc = w(vic , t

′, I] J ′, S′) of w
in S(I) and a mapping pc of P(wc) such that pc generates p. Let anc(q) = pc|I .

If |P(w, I)| > |A|, there exist two mappings q1 and q2 in P(w, I) such that
anc(q1) = anc(q2). By Lemma 3.10, q1 ≺ q2 or q2 ≺ q1. There is a contradiction
because every mapping of P(w, I) is non-dominated. Consequently |P(w, I)| ≤
|A|.

|P(w, I)| ≤ |A| ≤
∑

t′∈[eic ,bic]

J′⊂J1;nK\I
|J′|≤capa−|I|
S′∈J1;nK

|P(w(vic , t
′, I] J ′, S′), I)|

≤ (TW · ncapa−2 · n) · (n(capa−1)·(|I|−2) · TW |I|−2)

≤ n(capa−1)·(|I|−1) · TW |I|−1

Thus Property 3 is proved for I.

Lemma 3.12. Algorithm 1 is pseudo XP with respect to capa.

Proof. We assume capa is fixed and want to prove that the algorithm is poly-
nomial in |I| and TW . Note firstly that S(I) has |S(I)| = O(n · TW ·ncapa ·n)
nodes, thus Line 1 is done in time at most O(|S(I)|2) = O(TW 2 · n2·capa+4).

31

The loop at Line 2 does O(n · TW) constant time iterations.
The topological sorting at Line 6 can be done in time O(|S(I)|2) with the

Kahn algorithm [12].
The For loops at Lines 7 and 9 do each at most one iteration per node in

S(I). The time complexities of those loops depend on the number of mappings
associated with a node of the auxiliary graph. Lemmas 3.8, 3.9 and 3.11 prove
by induction that Properties 2 and 3 are true. Thus, for each node w ∈ S(I),
the size of P(w) is never more than TW capa · ncapa·capa.

Line 10 calls the SUBMAP function. This function has two For loops, at
Lines 3 and 5, doing respectively |P(w1)| and O(capa) iterations. Each iteration
of the inner loop and the other operations of the iterations of the outer loop
have a constant time complexity. Thus the SUBMAP function is done in time
O(TW capa · ncapa·capa · capa). It returns a set of size at most |P(w1)|.

The For loop at Line 11 does one iteration per mapping returned by the
SUBMAP function. The If condition at Line 12 and the remove operation at
the next line need O(|P(w)|) comparisons of mappings. Each comparison is done
in time O(capa). The other operations of the For Loop are done in constant
time. Consequently, the loop complexity is O((TW capa ·ncapa·capa)2 · capa) and
the complexity of the loop at Line 7 is O(|S(I)|2 · (TW capa ·ncapa·capa)2 · capa).

The set T at Line 16 contains at most one O(n2) state nodes. The three
next operations are done either in constant time or in O(n2) time.

Finally, the last line calls the BUILD function which is done in time O(|G|).
We recall that O(|G|) = O(n2) because we removed the intermediate nodes that
are neither an origin nor a destination of a client.

Thus, the complexity of the algorithm is O(TW 2·capa+2 · n2·capa2+2·capa+4 ·
capa). This complexity is polynomial if TW is polynomially bounded and if
capa is fixed.

By Lemma 3.4 and 3.12, we prove the following theorem.

Theorem 3.5. If G is a DAG, max-1-DARP-M is pseudo XP in capa.

3.2.2. A parameterized approximation for max-DARP-M
Corollary 3.2. If G is a DAG, there is a 1√

n
-approximation for max-DARP-M

in time pseudo XP with respect to capa.

Proof. We use Algorithm 4.
If G is a DAG and as capa is a fixed parameter, we can compute the taxi P

at Line 4 in pseudopolynomial time by Theorem 3.5. Consequently, Algorithm 4
is pseudopolynomial.

We define s(P) as the number of clients that are driven by the taxi P . Let
P∗ = (P ∗1 , P

∗
2 , . . . , P

∗
q) be an optimal solution for I and let P = (P1, P2, . . . , Pr)

be the solution returned by Algorithm 4. We now show the following property :

Property 4. Either P∗ and P are empty or

q∑
i=1

s(P∗i)

r∑
i=1

s(Pi)
≤

√
q∑
i=1

s(P ∗i).

32

Algorithm 4
Require: An instance I = (G, (Vc, V

′
c , Bc, Ec), τ, ω, capa, α) of max-DARP-M

Ensure: A feasible solution for I
1: P ← ∅
2: loop
3: I1 ← the instance of max-1-DARP-M with the same parameters as I
4: P ← an optimal solution for the instance I1 of max-1-DARP-M
5: If P = ∅ Then Return P
6: Else
7: Insert P into P
8: Remove every client satisfied by P from I.

Note that P is empty if and only if P∗ is empty. We just have to assume that
P 6= ∅ and prove the second part of the property. Finally, note that Property 4

implies that Algorithm 4 is a 1√
n
-approximation algorithm as

q∑
i=1

s(P ∗i) ≤ n.

We prove Property 4 by induction on n, the number of clients.
Basis : if there are 2 clients, then, there cannot be more than one taxi in

a feasible solution for I : q = r = 1. Consequently, the optimal solutions for
I and for I1 are the same. Thus, s(P∗1)

s(P1) = 1 ≤
√

2 =
√
s(P ∗1). Consequently,

Property 4 is proved in that case.
Inductive Step : We now assume that the property is true for every

instance with n clients or less. Let I be an instance with n+ 1 clients. Let l be
the number of taxis in P∗ with a non empty intersection with P1. Without loss
of generality, we renumber those taxis (P ∗1 , P

∗
2 , . . . , P

∗
l). Note that l ≤ s(P1)

because a client cannot be satisfied by two taxis in P∗, thus, there cannot be
more than s(P1) taxis intersecting P1. In addition, note that l ≤ q.

As P1 is an optimal solution of I1 and as every taxi in P∗ is a feasible
solution of I1,

l∑
i=1

s(P ∗i)

s(P1)
≤ l · s(P1)

s(P1)

≤ l
≤ s(P1)

Consequently, √√√√ l∑
i=1

s(P ∗i) ≤ s(P1) (8)

l∑
i=1

s(P ∗i)

s(P1)
≤

√√√√ l∑
i=1

s(P ∗i)

33

If l = q, then the property is proved.
Otherwise, let J be the instance I where every client satisfied by P1 is

removed. Note that, this instance is exactly the instance Algorithm 4 is working
on at the beginning of the second of iteration. Consequently, if we directly run
Algorithm 4 on instance J , it returns (P2, P3, . . . , Pr).

Let Q∗ be an optimal solution of J . Note that, as l 6= q, (P ∗l+1, P
∗
l+2, . . . , P

∗
q)

is not empty, and as it is a feasible solution for J , Q∗ is not empty. In addition,
r ≥ 2. By the inductive hypothesis,

∑
Q∗∈Q∗

s(Q∗)

r∑
i=2

s(Pi)
≤
√ ∑
Q∗∈Q∗

s(Q∗)

√ ∑
Q∗∈Q∗

s(Q∗) ≤
r∑
i=2

s(Pi)

As (P ∗l+1, P
∗
l+2, . . . , P

∗
q) is a feasible solution for J ,√√√√ q∑

i=l+1

s(P ∗i) ≤
r∑
i=2

s(Pi)

By equation (8),√√√√ l∑
i=1

s(P ∗i) +

√√√√ q∑
i=l+1

s(P ∗i) ≤
r∑
i=1

s(Pi)

Finally, note that if A > 0 and B > 0, then
√
A+B ≤

√
A+
√
B,√√√√ q∑

i=1

s(P ∗i) ≤
r∑
i=1

s(Pi)

The inductive step is proved. Consequently, Property 4 is proved too and this
concludes the proof of the corollary.

Remark 6. The proof of Corollary 3.2 proves also that the smaller the optimal
solution is, the better the approximation ratio is.

4. Conclusion

We have studied a taxi sharing problem in which the price of a trip is evenly
shared between the passengers of the trip. The bill of the passengers must be

34

reduced by a given factor α. In addition, the taxi must satisfy a capacity con-
straint and a time window constraint. We defined two optimization problems,
max-DARP-M and max-1-DARP-M, and a decision problem 1-DARP-M and
studied the parameterized complexity and approximability of those problems.
It seems that the cost constraint affects the complexity of the problem more
than the time constraint. The latter makes the problems weakly hard whereas
the problems are strongly hard to solve even if the time constraint is removed
and if all the natural parameters are fixed.

We showed that there exists a pseudopolynomial algorithm for max-1-DARP-
M and 1-DARP-M if the capacity capa of the taxis is fixed and if the road net-
work is acyclic. This algorithm makes it possible to build a 1√

n
-approximation

for max-DARP-M. However, considering its time complexity, this algorithm
seems unpractical without any implementation improvement.

Some questions remain open: what is the parameterized complexity and
approximability of the three problems with respect to α or to α and TW?, and
is there a constant factor parameterized approximation for max-DARP-M in
capa?

To conclude, max-1-DARP-M seems too hard to be solved in practice and it
looks like the cost constraint is the main cause of that. We think this constraint
is hard because it is independently defined for each client. A way to simplify it
could be to define a unique constraint for all the clients or for all the clients of a
same taxi. In the current model, every client cannot pay more than α multiplied
by the cost of a private ride. Instead of that constraint, we could ask all the
clients of a same taxi to not pay more than the sum of all their private rides
multiplied by α. If we then fairly divide the cost of the ride, no client would
pay more than α multiplied by the cost of a private ride. Note that some of the
clients would not pay exactly the cost of their own ride but also a part of the
rides of the other clients.

[1] Attanasio, A., Cordeau, J., Ghiani, G., and Laporte, G. Parallel
tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem.
Parallel Computing 30, 3 (2004), 377–387.

[2] Chan, S. Metaheuristics for solving the dial-a-ride problem. PhD thesis,
North Carolina State University, 2004.

[3] Cordeau, J. A branch-and-cut algorithm for the dial-a-ride problem.
Operations Research 54, 3 (2006), 573–586.

[4] Cordeau, J., and Laporte, G. A tabu search heuristic for the static
multi-vehicle dial-a-ride problem. Transportation Research Part B: Method-
ological 37, 6 (2003), 579–594.

[5] Cordeau, J., and Laporte, G. The dial-a-ride problem: models and
algorithms. Annals of Operations Research 153, 1 (may 2007), 29–46.

35

[6] Coslovich, L., Pesenti, R., and Ukovich, W. A two-phase inser-
tion technique of unexpected customers for a dynamic dial-a-ride problem.
European Journal of Operational Research 175, 3 (2006), 1605–1615.

[7] Crainic, T., and Malucelli, F. Meta-heuristics for a class of demand-
responsive transit systems. INFORMS Journal on Computing 17, 1 (2005),
10–24.

[8] Dumas, Y., Desrosiers, J., and Soumis, F. The pickup and delivery
problem with time windows. European Journal of Operational Research 54,
1 (1991), 7–22.

[9] Garey, M., and Johnson, D. Computers and intractability: a guide to
the theory of NP-completeness. W. H. Freeman & Co., New York, NY,
USA, 1979.

[10] Hu, T., and Chang, C. Exact Algorithm for Dial-A-Ride Problems
with Time-Dependent Travel Cost. Journal of the Eastern Asia Society for
Transportation Studies 10 (2013), 916–933.

[11] Jung, J., Jayakrishnan, R., and Park, J. Dynamic Shared-Taxi Dis-
patch Algorithm with Hybrid-Simulated Annealing. Computer-Aided Civil
and Infrastructure Engineering (jun 2015).

[12] Kahn, A. B. Topological sorting of large networks. Commun. ACM 5, 11
(Nov. 1962), 558–562.

[13] Kann, V. Maximum bounded 3-dimensional matching is MAX SNP-
complete. Information Processing Letters 37, 1 (1991), 27–35.

[14] Ma, S., Zheng, Y., and Wolfson, O. Real-time city-scale taxi rideshar-
ing. Knowledge and Data Engineering, IEEE Transactions on 27, 7 (2015),
1782–1795.

[15] Nedregård, I. The Integrated Dial-a-Ride Problem-Balancing Costs and
Convenience. PhD thesis, Norges teknisk-naturvitenskapelige universitet,
Trondheim, 2015.

[16] Parragh, S., Doerner, K., and Hartl, R. Variable neighborhood
search for the dial-a-ride problem. Computers & Operations Research 37,
6 (2010), 1129–1138.

[17] Pietrzak, K. On the parameterized complexity of the fixed alphabet
shortest common supersequence and longest common subsequence prob-
lems. Journal of Computer and System Sciences 67, 4 (2003), 757–771.

[18] Powell, W. B., and Chen, Z.-l. A generalized threshold algorithm
for the shortest path problem with time windows. In Network Design:
Connectivity and Facilities Location, Proceedings of a DIMACS Workshop,
Princetin, New Jersey, USA, April 28-30, 1997 (1997), pp. 303–318.

36

[19] Ropke, S., and Cordeau, J. Branch and cut and price for the pickup
and delivery problem with time windows. Transportation Science 43, 3
(2009), 267–286.

[20] Santos, D., and Xavier, E. Dynamic taxi and ridesharing: A framework
and heuristics for the optimization problem. In Proceedings of the Twenty-
Third International Joint Conference on Artificial Intelligence (2013), IJ-
CAI 13’, AAAI Press, pp. 2885–2891.

[21] Santos, D., and Xavier, E. Taxi and Ride Sharing: A Dynamic Dial-
a-Ride Problem with Money as an Incentive. Expert Systems with Appli-
cations 42, 19 (2015), 6728–6737.

[22] Savelsbergh, M., and Sol, M. The General Pickup and Delivery Prob-
lem. Transportation Science 29, 1 (feb 1995), 17–29.

[23] Wang, X., Dessouky, M., and Ordonez, F. A Pickup and Delivery
Problem for Ridesharing Considering Congestion. Transportation letters
(2015).

37

