Combinatorial and probabilistic properties of systems of numeration

Abstract : Let G = (G(n))(n) be a strictly increasing sequence of positive integers with G(0) = 1. We study the system of numeration defined by this sequence by looking at the corresponding compactification K-G of N and the extension of the addition-by-one map tau on K-G (the 'odometer'). We give sufficient conditions for the existence and uniqueness of tau-invariant measures on K-G in terms of combinatorial properties of G.
Type de document :
Article dans une revue
Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2016, 36 (02), pp.422 - 457. <10.1017/etds.2014.69>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01487856
Contributeur : Aigle I2m <>
Soumis le : lundi 13 mars 2017 - 11:02:38
Dernière modification le : mardi 14 mars 2017 - 01:10:15

Identifiants

Collections

Citation

Guy Barat, Peter Grabner. Combinatorial and probabilistic properties of systems of numeration. Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2016, 36 (02), pp.422 - 457. <10.1017/etds.2014.69>. <hal-01487856>

Partager

Métriques

Consultations de la notice

26