G. Liti, D. Carter, A. Moses, J. Warringer, L. Parts et al., Population genomics of domestic and wild yeasts, Nature, vol.26, issue.7236, pp.337-378, 2009.
DOI : 10.1038/nature07743

R. Cho, M. Campbell, E. Winzeler, L. Steinmetz, A. Conway et al., A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycle, Molecular Cell, vol.2, issue.1, pp.65-73, 1998.
DOI : 10.1016/S1097-2765(00)80114-8

S. Chu, J. Derisi, M. Eisen, J. Mulholland, D. Botstein et al., The Transcriptional Program of Sporulation in Budding Yeast, Science, vol.282, issue.5389, pp.699-705, 1998.
DOI : 10.1126/science.282.5389.699

L. De-godoy, J. Olsen, J. Cox, M. Nielsen, N. Hubner et al., Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast, Nature, vol.66, issue.7217, pp.1251-1255, 2008.
DOI : 10.1038/nature07341

C. Geijer, I. Pirkov, W. Vongsangnak, A. Ericsson, J. Nielsen et al., Time course gene expression profiling of yeast spore germination reveals a network of transcription factors orchestrating the global response, BMC Genomics, vol.13, issue.1, p.554, 2012.
DOI : 10.1073/pnas.95.25.14863

M. Granovskaia, L. Jensen, M. Ritchie, J. Toedling, Y. Ning et al., High-resolution transcription atlas of the mitotic cell cycle in budding yeast, Genome Biology, vol.11, issue.3, p.24, 2010.
DOI : 10.1186/gb-2010-11-3-r24

U. Nagalakshmi, Z. Wang, K. Waern, C. Shou, D. Raha et al., The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing, Science, vol.265, issue.12, pp.1344-1353, 2008.
DOI : 10.1146/annurev.micro.59.031805.133833

P. Picotti, B. Bodenmiller, L. Mueller, B. Domon, and R. Aebersold, Full Dynamic Range Proteome Analysis of S. cerevisiae by Targeted Proteomics, Cell, vol.138, issue.4, pp.795-806, 2009.
DOI : 10.1016/j.cell.2009.05.051

URL : http://doi.org/10.1016/j.cell.2009.05.051

M. Primig, R. Williams, E. Winzeler, G. Tevzadze, A. Conway et al., The core meiotic transcriptome in budding yeasts, Nat Genet, vol.26, pp.415-438, 2000.

R. Lavigne, E. Becker, Y. Liu, B. Evrard, A. Lardenois et al., Direct Iterative Protein Profiling (DIPP) - an Innovative Method for Large-scale Protein Detection Applied to Budding Yeast Mitosis, Molecular & Cellular Proteomics, vol.11, issue.2, pp.111-012682, 2012.
DOI : 10.1074/mcp.M111.012682

URL : https://hal.archives-ouvertes.fr/hal-00682837

E. Becker, Y. Liu, A. Lardenois, T. Walther, J. Horecka et al., Integrated RNA- and protein profiling of fermentation and respiration in diploid budding yeast provides insight into nutrient control of cell growth and development, Journal of Proteomics, vol.119, pp.30-44, 2015.
DOI : 10.1016/j.jprot.2015.01.015

URL : https://hal.archives-ouvertes.fr/hal-01122122

A. Lee, S. Onge, R. Proctor, M. Wallace, I. Nile et al., Mapping the Cellular Response to Small Molecules Using Chemogenomic Fitness Signatures, Science, vol.263, issue.34, pp.208-219, 2014.
DOI : 10.1371/journal.ppat.1000939

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254748

E. Winzeler, D. Shoemaker, A. Astromoff, H. Liang, K. Anderson et al., Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis, Science, vol.285, issue.5429, pp.901-907, 1999.
DOI : 10.1126/science.285.5429.901

A. Enyenihi and W. Saunders, Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae, Genetics, vol.163, pp.47-54, 2003.

A. Deutschbauer, R. Williams, A. Chu, and R. Davis, Nonlinear partial differential equations and applications: Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae, Proceedings of the National Academy of Sciences, vol.153, issue.3, pp.15530-15535, 2002.
DOI : 10.1073/pnas.92.26.12490

M. Hillenmeyer, E. Fung, J. Wildenhain, S. Pierce, S. Hoon et al., The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes, Science, vol.2, issue.4, pp.362-367, 2008.
DOI : 10.1038/sj.tpj.6500116

A. Neiman, Sporulation in the Budding Yeast Saccharomyces cerevisiae, Genetics, vol.189, issue.3, pp.737-65, 2011.
DOI : 10.1534/genetics.111.127126

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3213374

H. Weidberg, F. Moretto, G. Spedale, A. Amon, and F. Van-werven, Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability, PLOS Genetics, vol.9, issue.7, p.1006075, 2016.
DOI : 10.1371/journal.pgen.1006075.s007

J. Grassl, C. Scaife, J. Polden, C. Daly, M. Iacovella et al., Analysis of the budding yeast pH 4-7 proteome in meiosis, PROTEOMICS, vol.425, issue.3, pp.506-525, 2010.
DOI : 10.1002/pmic.200900561

R. Kumar, S. Dhali, R. Srikanth, S. Ghosh, and S. Srivastava, Comparative proteomics of mitosis and meiosis in Saccharomyces cerevisiae, Journal of Proteomics, vol.109, pp.1-15, 2014.
DOI : 10.1016/j.jprot.2014.06.006

C. Scaife, P. Mowlds, J. Grassl, J. Polden, C. Daly et al., 2-D DIGE analysis of the budding yeast pH 6-11 proteome in meiosis, PROTEOMICS, vol.8, issue.24, pp.4401-4415, 2010.
DOI : 10.1002/pmic.201000376

F. Wen, Y. Guo, Y. Hu, W. Liu, Q. Wang et al., Distinct temporal requirements for autophagy and the proteasome in yeast meiosis, Autophagy, vol.3, issue.4, pp.671-88, 2016.
DOI : 10.1073/pnas.1304380110

L. Berchowitz, A. Gajadhar, F. Van-werven, D. Rosa, A. Samoylova et al., A developmentally regulated translational control pathway establishes the meiotic chromosome segregation pattern, Genes & Development, vol.27, issue.19, pp.2147-63, 2013.
DOI : 10.1101/gad.224253.113

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3850098

G. Zubenko and E. Jones, Protein degradation, meiosis and sporulation in proteinasedeficient mutants of Saccharomyces cerevisiae, Genetics, vol.97, pp.45-64, 1981.

A. Klar and H. Halvorson, Proteinase activities of Saccharomyces cerevisiae during sporulation, J Bacteriol, vol.124, pp.863-872, 1975.

L. Berchowitz, G. Kabachinski, M. Walker, T. Carlile, W. Gilbert et al., Regulated Formation of an Amyloid-like Translational Repressor Governs Gametogenesis, Cell, vol.163, issue.2, pp.406-424, 2015.
DOI : 10.1016/j.cell.2015.08.060

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600466

G. Brar, M. Yassour, N. Friedman, A. Regev, N. Ingolia et al., High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling, Science, vol.12, issue.6, pp.552-559, 2012.
DOI : 10.1016/S1097-2765(03)00446-5

A. Lardenois, I. Stuparevic, Y. Liu, M. Law, E. Becker et al., The conserved histone deacetylase Rpd3 and its DNA binding subunit Ume6 control dynamic transcript architecture during mitotic growth and meiotic development, Nucleic Acids Research, vol.43, issue.1, pp.115-143, 2015.
DOI : 10.1093/nar/gku1185

URL : https://hal.archives-ouvertes.fr/hal-01122128

H. Neil, C. Malabat, Y. Aubenton-carafa, Z. Xu, L. Steinmetz et al., Widespread bidirectional promoters are the major source of cryptic transcripts in yeast, Nature, vol.320, issue.7232, pp.1038-1080, 2009.
DOI : 10.1038/nature07747

Z. Xu, W. Wei, J. Gagneur, F. Perocchi, S. Clauder-munster et al., Bidirectional promoters generate pervasive transcription in yeast, Nature, vol.35, issue.7232, pp.1033-1040, 2009.
DOI : 10.1038/nature07728

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766638

V. Pelechano and L. Steinmetz, Gene regulation by antisense transcription, Nature Reviews Genetics, vol.4, issue.12, pp.880-93, 2013.
DOI : 10.1038/nsmb.2392

W. Wei, V. Pelechano, A. Jarvelin, and L. Steinmetz, Functional consequences of bidirectional promoters, Trends in Genetics, vol.27, issue.7, pp.267-76, 2011.
DOI : 10.1016/j.tig.2011.04.002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123404

M. Wery, M. Kwapisz, and A. Morillon, Noncoding RNAs in gene regulation Wiley interdisciplinary reviews Systems biology and medicine, pp.728-766, 2011.
DOI : 10.1002/wsbm.148

K. Guisbert, K. Zhang, Y. Flatow, J. Hurtado, S. Staley et al., Meiosis-induced alterations in transcript architecture and noncoding RNA expression in S. cerevisiae, RNA, vol.18, issue.6, pp.1142-53, 2012.
DOI : 10.1261/rna.030510.111

A. Lardenois, Y. Liu, T. Walther, F. Chalmel, B. Evrard et al., Execution of the meiotic noncoding RNA expression program and the onset of gametogenesis in yeast require the conserved exosome subunit Rrp6, Proceedings of the National Academy of Sciences, vol.9, issue.19, pp.1058-63, 2011.
DOI : 10.1186/1471-2105-9-86

URL : https://hal.archives-ouvertes.fr/hal-00682830

F. Sinturel, A. Navickas, M. Wery, M. Descrimes, A. Morillon et al., Cytoplasmic Control of Sense-Antisense mRNA Pairs, Cell Reports, vol.12, issue.11, pp.1853-64, 2015.
DOI : 10.1016/j.celrep.2015.08.016

URL : https://hal.archives-ouvertes.fr/hal-01216461

M. Wery, M. Descrimes, N. Vogt, A. Dallongeville, D. Gautheret et al., Nonsense-Mediated Decay Restricts LncRNA Levels in Yeast Unless Blocked by Double-Stranded RNA Structure, Molecular Cell, vol.61, issue.3, 2016.
DOI : 10.1016/j.molcel.2015.12.020

URL : https://hal.archives-ouvertes.fr/hal-01311517

N. Selevsek, C. Chang, L. Gillet, P. Navarro, O. Bernhardt et al., Proteome by SWATH-mass spectrometry, Molecular & Cellular Proteomics, vol.14, issue.3, pp.739-788, 2015.
DOI : 10.1074/mcp.M113.035550

J. Silva, M. Gorenstein, G. Li, J. Vissers, and S. Geromanos, Absolute Quantification of Proteins by LCMSE: A Virtue of Parallel ms Acquisition, Molecular & Cellular Proteomics, vol.5, issue.1, pp.144-56, 2006.
DOI : 10.1074/mcp.M500230-MCP200

J. Grossmann, B. Roschitzki, C. Panse, C. Fortes, S. Barkow-oesterreicher et al., Implementation and evaluation of relative and absolute quantification in shotgun proteomics with label-free methods, Journal of Proteomics, vol.73, issue.9, pp.1740-1746, 2010.
DOI : 10.1016/j.jprot.2010.05.011

J. Vizcaino, E. Deutsch, R. Wang, A. Csordas, F. Reisinger et al., ProteomeXchange provides globally coordinated proteomics data submission and dissemination, Nature Biotechnology, vol.9, issue.3, pp.223-229, 2014.
DOI : 10.1021/pr300247u

R. Development and C. Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2012.

G. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, p.3, 2004.
DOI : 10.2202/1544-6115.1027

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.8477

J. Hartigan and M. Wong, Algorithm AS 136: A K-Means Clustering Algorithm, Applied Statistics, vol.28, issue.1, pp.100-108, 1979.
DOI : 10.2307/2346830

G. Ontology and C. , Gene Ontology Consortium: going forward, Nucleic Acids Res, vol.43, pp.1049-56, 2015.

D. Martin, C. Brun, R. E. Mouren, P. Thieffry, D. Jacq et al., GOToolBox: functional analysis of gene datasets based on Gene Ontology, Genome Biology, vol.5, issue.12, p.101, 2004.
DOI : 10.1186/gb-2004-5-12-r101

URL : https://hal.archives-ouvertes.fr/inserm-00095249

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J R Statist Soc B, vol.57, pp.289-300, 1995.

A. Lardenois, A. Gattiker, O. Collin, F. Chalmel, and M. Primig, GermOnline 4.0 is a genomics gateway for germline development, meiosis and the mitotic cell cycle, Database, vol.2010, issue.0, p.30, 2010.
DOI : 10.1093/database/baq030

URL : https://hal.archives-ouvertes.fr/hal-00639961

T. Darde, O. Sallou, E. Becker, B. Evrard, C. Monjeaud et al., The ReproGenomics Viewer: an integrative cross-species toolbox for the reproductive science community, Nucleic Acids Research, vol.43, issue.W1, pp.109-125, 2015.
DOI : 10.1093/nar/gkv345

URL : https://hal.archives-ouvertes.fr/hal-01146120

M. Costanzo, S. Engel, E. Wong, P. Lloyd, K. Karra et al., genome database provides new regulation data, Nucleic Acids Research, vol.42, issue.D1, pp.717-742, 2014.
DOI : 10.1093/nar/gkt1158

URL : http://doi.org/10.1093/nar/gkt1158

N. Coordinators, Database resources of the National Center for Biotechnology Information, Nucleic Acids Res, 2015.

H. Thorvaldsdottir, J. Robinson, and J. Mesirov, Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration, Briefings in Bioinformatics, vol.14, issue.2, pp.178-92, 2013.
DOI : 10.1093/bib/bbs017

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603213

S. Mitchell, S. Jain, M. She, and R. Parker, Global analysis of yeast mRNPs, Nature Structural & Molecular Biology, vol.27, issue.1, pp.127-160, 2013.
DOI : 10.1038/nsmb.2468

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537908

M. Graille, J. Baltaze, N. Leulliot, D. Liger, S. Quevillon-cheruel et al., Structure-based Functional Annotation, Journal of Biological Chemistry, vol.281, issue.40, pp.30175-85, 2006.
DOI : 10.1074/jbc.M604443200

J. Friedman, A. Mourier, J. Yamada, J. Mccaffery, and J. Nunnari, MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. eLife, 2015.
DOI : 10.7554/elife.07739

URL : http://doi.org/10.7554/elife.07739

M. Vukotic, S. Oeljeklaus, S. Wiese, F. Vogtle, C. Meisinger et al., Rcf1 Mediates Cytochrome Oxidase Assembly and Respirasome Formation, Revealing Heterogeneity of the Enzyme Complex, Cell Metabolism, vol.15, issue.3, pp.336-383, 2012.
DOI : 10.1016/j.cmet.2012.01.016

K. Von-der-malsburg, J. Muller, M. Bohnert, S. Oeljeklaus, P. Kwiatkowska et al., Dual Role of Mitofilin in Mitochondrial Membrane Organization and Protein Biogenesis, Developmental Cell, vol.21, issue.4, pp.694-707, 2011.
DOI : 10.1016/j.devcel.2011.08.026

N. Ramaswamy, L. Li, M. Khalil, and J. Cannon, Regulation of yeast glycogen metabolism and sporulation by Glc7p protein phosphatase, Genetics, vol.149, pp.57-72, 1998.

M. Abdullah, E. Hoffmann, V. Cotton, and R. Borts, A role for the MutL homologue MLH2 in controlling heteroduplex formation and in regulating between two different crossover pathways in budding yeast. Cytogenetic and genome research, pp.180-90, 2004.

N. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo et al., Global landscape of protein complexes in the yeast Saccharomyces cerevisiae, Nature, vol.57, issue.7084, pp.637-680, 2006.
DOI : 10.1016/0092-8674(85)90117-5

G. Tevzadze, H. Swift, and R. Esposito, Spo1, a phospholipase B homolog, is required for spindle pole body duplication during meiosis in Saccharomyces cerevisiae, Chromosoma, vol.109, issue.1-2, pp.72-85, 2000.
DOI : 10.1007/s004120050414

T. Felder, E. Bogengruber, S. Tenreiro, A. Ellinger, I. Sa-correia et al., Dtr1p, a Multidrug Resistance Transporter of the Major Facilitator Superfamily, Plays an Essential Role in Spore Wall Maturation in Saccharomyces cerevisiae, Eukaryotic Cell, vol.1, issue.5, pp.799-810, 2002.
DOI : 10.1128/EC.1.5.799-810.2002

S. Ishihara, A. Hirata, S. Nogami, A. Beauvais, J. Latge et al., Homologous Subunits of 1,3-Beta-Glucan Synthase Are Important for Spore Wall Assembly in Saccharomyces cerevisiae, Eukaryotic Cell, vol.6, issue.2, pp.143-56, 2007.
DOI : 10.1128/EC.00200-06

S. Irniger, The Ime2 protein kinase family in fungi: more duties than just meiosis. Molecular microbiology, pp.1-13, 2011.

J. Heymont, L. Berenfeld, J. Collins, A. Kaganovich, B. Maynes et al., TEP1, the yeast homolog of the human tumor suppressor gene PTEN/MMAC1/TEP1, is linked to the phosphatidylinositol pathway and plays a role in the developmental process of sporulation, Proceedings of the National Academy of Sciences, vol.287, issue.5460, pp.12672-12679, 2000.
DOI : 10.1126/science.287.5460.2026

C. Lin, C. Kim, S. Smith, and A. Neiman, A Highly Redundant Gene Network Controls Assembly of the Outer Spore Wall in S. cerevisiae, PLoS Genetics, vol.215, issue.8, p.1003700, 2013.
DOI : 10.1371/journal.pgen.1003700.s007

K. Sakaki, K. Tashiro, S. Kuhara, and K. Mihara, Response of Genes Associated with Mitochondrial Function to Mild Heat Stress in Yeast Saccharomyces cerevisiae, Journal of Biochemistry, vol.134, issue.3, pp.373-84, 2003.
DOI : 10.1093/jb/mvg155

A. Christodoulidou, P. Briza, A. Ellinger, and V. Bouriotis, Yeast ascospore wall assembly requires two chitin deacetylase isozymes, FEBS Letters, vol.140, issue.2, pp.275-284, 1999.
DOI : 10.1016/S0014-5793(99)01334-4

C. Sansam and R. Pezza, Connecting by breaking and repairing: mechanisms of DNA strand exchange in meiotic recombination, FEBS Journal, vol.5, issue.13, pp.2444-57, 2015.
DOI : 10.1111/febs.13317

L. Krisak, R. Strich, R. Winters, J. Hall, M. Mallory et al., SMK1, a developmentally regulated MAP kinase, is required for spore wall assembly in Saccharomyces cerevisiae., Genes & Development, vol.8, issue.18, pp.2151-61, 1994.
DOI : 10.1101/gad.8.18.2151

B. Bajgier, M. Malzone, M. Nickas, and A. Neiman, SPO21 Is Required for Meiosis-specific Modification of the Spindle Pole Body in Yeast, Molecular Biology of the Cell, vol.12, issue.6, pp.1611-1632, 2001.
DOI : 10.1091/mbc.12.6.1611

G. Tevzadze, J. Pierce, and R. Esposito, Genetic Evidence for a SPO1-Dependent Signaling Pathway Controlling Meiotic Progression in Yeast, Genetics, vol.175, issue.3, pp.1213-1240, 2007.
DOI : 10.1534/genetics.106.069252

M. Ishihara, Y. Suda, I. Inoue, T. Tanaka, T. Takahashi et al., Protein Phosphatase Type 1-Interacting Protein Ysw1 Is Involved in Proper Septin Organization and Prospore Membrane Formation during Sporulation, Eukaryotic Cell, vol.8, issue.7, pp.1027-1064, 2009.
DOI : 10.1128/EC.00095-09

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708458

J. Batisse, C. Batisse, A. Budd, B. Bottcher, and E. Hurt, Purification of Nuclear Poly(A)-binding Protein Nab2 Reveals Association with the Yeast Transcriptome and a Messenger Ribonucleoprotein Core Structure, Journal of Biological Chemistry, vol.284, issue.50, pp.34911-34918, 2009.
DOI : 10.1074/jbc.M109.062034

D. Green, K. Marfatia, E. Crafton, X. Zhang, X. Cheng et al., Nab2p Is Required for Poly(A) RNA Export in Saccharomyces cerevisiae and Is Regulated by Arginine Methylation via Hmt1p, Journal of Biological Chemistry, vol.277, issue.10, pp.7752-60, 2002.
DOI : 10.1074/jbc.M110053200

V. Cid, R. Cenamor, M. Sanchez, and C. Nombela, A mutation in the Rho1-GAP-encoding gene BEM2 of Saccharomyces cerevisiae affects morphogenesis and cell wall functionality, Microbiology, vol.144, issue.1, pp.25-36, 1998.
DOI : 10.1099/00221287-144-1-25

N. Grandin and S. Reed, Differential function and expression of Saccharomyces cerevisiae B-type cyclins in mitosis and meiosis., Molecular and Cellular Biology, vol.13, issue.4, pp.2113-2138, 1993.
DOI : 10.1128/MCB.13.4.2113

K. Tibbles, S. Sarkar, B. Novak, and P. Arumugam, CDK-Dependent Nuclear Localization of B-Cyclin Clb1 Promotes FEAR Activation during Meiosis I in Budding Yeast, PLoS ONE, vol.3, issue.11, p.79001, 2013.
DOI : 10.1371/journal.pone.0079001.s005

M. Williamson, J. Game, and S. Fogel, Meiotic gene conversion mutants in Saccharomyces cerevisiae. I. Isolation and characterization of pms1-1 and pms1-2, Genetics, vol.110, pp.609-655, 1985.

H. Guo and M. King, A Quality Control Mechanism Linking Meiotic Success to Release of Ascospores, PLoS ONE, vol.336, issue.6, p.82758, 2013.
DOI : 10.1371/journal.pone.0082758.s001

E. Ragni, A. Coluccio, E. Rolli, J. Rodriguez-pena, G. Colasante et al., GAS2 and GAS4, a Pair of Developmentally Regulated Genes Required for Spore Wall Assembly in Saccharomyces cerevisiae, Eukaryotic Cell, vol.6, issue.2, pp.302-318, 2007.
DOI : 10.1128/EC.00321-06

R. Hontz, R. Niederer, J. Johnson, and J. Smith, Genetic Identification of Factors That Modulate Ribosomal DNA Transcription in Saccharomyces cerevisiae, Genetics, vol.182, issue.1, pp.105-124, 2009.
DOI : 10.1534/genetics.108.100313

K. Byrne and K. Wolfe, The Yeast Gene Order Browser: Combining curated homology and syntenic context reveals gene fate in polyploid species, Genome Research, vol.15, issue.10, pp.1456-61, 2005.
DOI : 10.1101/gr.3672305

H. Fares, L. Goetsch, and J. Pringle, Identification of a developmentally regulated septin and involvement of the septins in spore formation in Saccharomyces cerevisiae. The Journal of cell biology, pp.399-411, 1996.

G. Muthukumar, S. Suhng, P. Magee, R. Jewell, and D. Primerano, The Saccharomyces cerevisiae SPR1 gene encodes a sporulation-specific exo-1,3-beta-glucanase which contributes to ascospore thermoresistance., Journal of Bacteriology, vol.175, issue.2, pp.386-94, 1993.
DOI : 10.1128/jb.175.2.386-394.1993

K. Ismail, T. Sakamoto, T. Hasunuma, and A. Kondo, Time-based comparative transcriptomics in engineered xylose-utilizing Saccharomyces cerevisiae identifies temperature-responsive genes during ethanol production, Journal of Industrial Microbiology & Biotechnology, vol.385, issue.12, pp.1039-50, 2013.
DOI : 10.1007/s10295-013-1293-3

O. Denisenko and K. Bomsztyk, Yeast hnRNP K-Like Genes Are Involved in Regulation of the Telomeric Position Effect and Telomere Length, Molecular and Cellular Biology, vol.22, issue.1, pp.286-97, 2002.
DOI : 10.1128/MCB.22.1.286-297.2002

N. Paquin, M. Menade, G. Poirier, D. Donato, E. Drouet et al., Local Activation of Yeast ASH1 mRNA Translation through Phosphorylation of Khd1p by the Casein Kinase Yck1p, Molecular Cell, vol.26, issue.6, pp.795-809, 2007.
DOI : 10.1016/j.molcel.2007.05.016

K. Rabitsch, A. Toth, M. Galova, A. Schleiffer, G. Schaffner et al., A screen for genes required for meiosis and spore formation based on whole-genome expression, Current Biology, vol.11, issue.13, pp.1001-1010, 2001.
DOI : 10.1016/S0960-9822(01)00274-3

T. Walther, F. Letisse, L. Peyriga, C. Alkim, Y. Liu et al., Developmental stage-dependent metabolic regulation during meiotic differentiation in budding yeast, BMC Biology, vol.139, issue.1, p.60, 2014.
DOI : 10.1186/s12915-014-0060-x

URL : https://hal.archives-ouvertes.fr/inserm-01094132

C. Hongay, P. Grisafi, T. Galitski, and G. Fink, Antisense Transcription Controls Cell Fate in Saccharomyces cerevisiae, Cell, vol.127, issue.4, pp.735-780, 2006.
DOI : 10.1016/j.cell.2006.09.038

URL : http://doi.org/10.1016/j.cell.2006.09.038

M. Lybecker, B. Zimmermann, I. Bilusic, N. Tukhtubaeva, and R. Schroeder, The double-stranded transcriptome of Escherichia coli, Proceedings of the National Academy of Sciences, vol.9, issue.4, pp.3134-3143, 2014.
DOI : 10.1038/nmeth.1923

M. Portal, V. Pavet, C. Erb, and H. Gronemeyer, Human cells contain natural double-stranded RNAs with potential regulatory functions, Nature Structural & Molecular Biology, vol.472, issue.1, pp.89-97, 2015.
DOI : 10.1083/jcb.153.7.1341

Y. Kassir, N. Adir, E. Boger-nadjar, N. Raviv, I. Rubin-bejerano et al., Transcriptional regulation of meiosis in budding yeast, Int Rev Cytol, vol.224, pp.111-71, 2003.
DOI : 10.1016/S0074-7696(05)24004-4

R. Surosky and R. Esposito, Early meiotic transcripts are highly unstable in Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.12, issue.9, pp.3948-58, 1992.
DOI : 10.1128/MCB.12.9.3948

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC360277/pdf

R. Surosky, R. Strich, and R. Esposito, The yeast UME5 gene regulates the stability of meiotic mRNAs in response to glucose., Molecular and Cellular Biology, vol.14, issue.5, pp.3446-58, 1994.
DOI : 10.1128/MCB.14.5.3446

A. Mitchell, Control of meiotic gene expression in Saccharomyces cerevisiae, Microbiol Rev, vol.58, pp.56-70, 1994.

L. Jin, K. Zhang, Y. Xu, R. Sternglanz, and A. Neiman, Sequestration of mRNAs Modulates the Timing of Translation during Meiosis in Budding Yeast, Molecular and Cellular Biology, vol.35, issue.20, pp.3448-58, 2015.
DOI : 10.1128/MCB.00189-15

F. Van-werven, G. Neuert, N. Hendrick, A. Lardenois, S. Buratowski et al., Transcription of Two Long Noncoding RNAs Mediates Mating-Type Control of Gametogenesis in Budding Yeast, Cell, vol.150, issue.6, pp.1170-81, 2012.
DOI : 10.1016/j.cell.2012.06.049

URL : https://hal.archives-ouvertes.fr/hal-00877439

A. Yamashita, Y. Shichino, and M. Yamamoto, The long non-coding RNA world in yeasts, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1859, issue.1, 2015.
DOI : 10.1016/j.bbagrm.2015.08.003

E. Hiriart and A. Verdel, Long noncoding RNA-based chromatin control of germ cell differentiation: a yeast perspective Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology, pp.653-63, 2013.

V. Choudhary and R. Schneiter, Pathogen-Related Yeast (PRY) proteins and members of the CAP superfamily are secreted sterol-binding proteins, Proceedings of the National Academy of Sciences, vol.351, issue.5, pp.16882-16889, 2012.
DOI : 10.1074/jbc.274.5.3235

T. Ohno, J. Awaya, and S. Omura, Inhibition of Sporulation by Cerulenin and Its Reversion by Exogenous Fatty Acids in Saccharomyces cerevisiae, Antimicrobial Agents and Chemotherapy, vol.9, issue.1, pp.42-50, 1976.
DOI : 10.1128/AAC.9.1.42

R. Keber, D. Rozman, and S. Horvat, Sterols in spermatogenesis and sperm maturation, The Journal of Lipid Research, vol.54, issue.1, pp.20-33, 2013.
DOI : 10.1194/jlr.R032326

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3520525

M. Kim, S. Pinto, D. Getnet, R. Nirujogi, S. Manda et al., A draft map of the human proteome, Nature, vol.41, issue.7502, pp.575-81, 2014.
DOI : 10.1038/nature13302

D. Djureinovic, L. Fagerberg, B. Hallstrom, A. Danielsson, C. Lindskog et al., The human testis-specific proteome defined by transcriptomics and antibody-based profiling, MHR: Basic science of reproductive medicine, vol.20, issue.6, pp.476-88, 2014.
DOI : 10.1093/molehr/gau018

F. Jumeau, E. Com, L. Lane, P. Duek, M. Lagarrigue et al., Human Spermatozoa as a Model for Detecting Missing Proteins in the Context of the Chromosome-Centric Human Proteome Project, Journal of Proteome Research, vol.14, issue.9, pp.3606-3626, 2015.
DOI : 10.1021/acs.jproteome.5b00170

URL : https://hal.archives-ouvertes.fr/hal-01187320

S. Chocu, B. Evrard, R. Lavigne, A. Rolland, F. Aubry et al., Forty-four novel protein-coding loci discovered using a proteomics informed by transcriptomics (PIT) approach in rat male germ cells, Biol Reprod, vol.91, p.123, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01121802