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263 Avenue Général Leclerc, 35042 Rennes cedex, FRANCE

mouhamadou.ba@irisa.fr

Abstract. Heterogeneity of data and data formats in bioinformatics entail mis-
matches between inputs and outputs of different services, making it difficult to
compose them into workflows. To reduce those mismatches, bioinformatics plat-
forms propose ad’hoc converters, called shims. When shims are written by hand,
they are time-consuming to develop, and cannot anticipate all needs. When shims
are automatically generated, they miss transformations, for example data compo-
sition from multiple parts, or parallel conversion of list elements.
This article proposes to systematically detect convertibility from output types to
input types. Convertibility detection relies on a rule system based on abstract
types, close to XML Schema. Types allow to abstract data while precisely ac-
counting for their composite structure. Detection is accompanied by an automatic
generation of converters between input and output XML data. We show the appli-
cability of our approach by abstracting concrete bioinformatics types (e.g., com-
plex biosequences) for a number of bioinformatics services (e.g., blast). We illus-
trate how our automatically generated converters help to resolve data mismatches
when composing workflows. We conducted an experiment on bioinformatics ser-
vices and datatypes, using an implementation of our approach, as well as a survey
with domain experts. The detected convertibilities and produced converters were
validated as relevant from a biological point of view. Furthermore the automati-
cally produced graph of potentially compatible services exhibited a connectivity
higher than with the ad’hoc approaches. Indeed, the experts discovered unknown
possible connexions.

1 Introduction

Heterogeneity of data and data formats in bioinformatics entail mismatches between
inputs and outputs of different services, making it difficult to compose them into work-
flows [1]. Formats to represent input and output data can be textual or based on XML
technologies. Textual formats, often specific to a few services, have the advantage to be
human readable [2]. XML formats despite verbosity are used for their expressiveness.
To deal with these different formats in scientific workflows, special services, called
shims are used for conversion of data between services. Generally, they have to be
manually defined (see, for example, Emboss [3], Galaxy [4], Mobyle [5]). Services
for conversion of data represent more than 30% of services in life science workflows



according to the analysis of Wassink et al [6] on the Taverna Workflows. When com-
posing services, users can get lost in specific parsers and shims required to transfer data
between services. It is difficult to find appropriate shims because they are often mixed
with other services. Users can be forced to create new shims, it is time-consuming and
error prone. To avoid using shims, some developers implement their services so that
they support several formats. It is a burden for service developers because they have to
integrate several format conversions in each tool, and each format conversion may be
duplicated across many services.

Formats based on XML technologies are proposed as standards to describe data
types independently of tools [7, 8]. BioXSD, for example, represents basic bioinformat-
ics data [9]. It also allows meta-information to be added from ontologies, increasing the
accuracy of representations. Yet, XML-based formats alone are not sufficient to solve
the problem of data matching. On the one hand, most formats are textual, thus it is
important to be able to match services using XML and textual formats. On the other
hand, even if all formats were XML standardized, it remains to solve the n:m matching
problem [10], namely matching and conversion between two composite structures, i.e.
XML trees.

Work related to data mismatches in scientific workflows addresses, among others,
classifying mismatches, matching and resolving mismatches. For example, Li et al. [11]
classify service composition mismatches. The classification of mismatches enables to
understand problems and to find appropriate solutions. Besides approaches that address
verifying matching between services (e.g., Lebreton al. [12]), there are approaches that
resolve data mismatches by means of shims to insert between services. Among them,
some approaches search shims in existing libraries [13, 14] and other approaches au-
tomatically generate shims [15, 16]. Many approaches use ontologies to verify match-
ing between service parameters. However, they do not generally guarantee parameter
compatibility at syntactic level. Approaches that find shims, for example Elizondo et
al. [13] and Hull et al. [14], fix data mismatches but expect the shims to be provided by
third-parties. Approaches that generate shims automatically provide data transformers
to insert between services. For example, Kaslev et al. [16] generate transformations at
workflow execution time. Dibernado et al [17] provide possible transformations during
workflow construction. However, these approaches miss transformations such as data
composition from multiple parts, or parallel conversion of list elements.

This article proposes a new approach to generate shims to help compose services.3

It supports complex data representations and transformations. It systematically detects
convertibility from output types to input types. Convertibility detection relies on ab-
stract types, close to XML Schema, abstracting data while precisely accounting for their
composite structure. The main contribution is the definition of convertibility rules that
exploit composition and decomposition as well as specialization and generalization of
types. Furthermore, the rules automatically generate a complete constructive specifica-
tion of the conversion from output to input types. That specification enables to generate
executable converters between input and output XML data. We report an experiment on
bioinformatics services with an implementation of our approach. We manually specified
the inputs and outputs of services using abstract types, where each service is understood

3 It is a revised and extended version of Ba et al. [18].



as a function from input(s) to output(s) as proposed by Missier et al [19]. The detected
convertibilities and produced converters were analyzed with a team of the GenOuest 4

bioinformatics platform. They have been reckoned relevant from a biological point of
view. We also led a survey with domain experts, that shows the relevance of connections
established between bioinformatics services. When adding a new service, with our ap-
proach, it is sufficient to define or reuse abstract types for input and output data, and the
new service will be automatically integrated in the global system. At present, in order
to achieve the same goal, many converters have to be manually developed for services
which are not immediately compatible. That is significantly heavier than specifying a
few abstract types. Furthermore, identifying the compatible services by hand is already
a challenge while our approach does it automatically. As a consequence, our approach
automatically produces a graph of potentially compatible services with a connectivity
higher than with the ad’hoc approaches.

In the following, Section 2 introduces the abstract representation of types. Section 3
defines convertibility between abstract types by a rule system, and proves that it forms a
reflexive and transitive relationship. Section 4 shows how to instantiate our method and
provides a use case in bioinformatics. Section 5 presents an experiment in bioinformat-
ics, and a survey with domain experts. Section 6 compares our approach with related
work. Section 7 gives some perspectives.

2 Representation of Types

In this section we present the language used to describe the types of data. It is defined
from an open set of primitives and a fixed set of type constructors. From a semantic
point of view, a type denotes a set of XML values. An XML value is a sequence of
XML nodes. An XML sequence may be empty or contain a single node. An XML
node is either an XML element or a textual element (CDATA). An XML element is
made of a tag and a content, which is a sequence of XML nodes. Our language of
types follows the main XML Schema constructs, but to simplify the presentation we
use regular expressions inspired by the work of Hosoya et al. [20]. In the following,
types are denoted by uppercase letters (e.g., T , T1) and function XML(T ) defines the
semantics of type T by a set of XML values.

– Primitive types: T = p, where p is a primitive type. Primitive types are the basic
ingredients to build other types. Their structure is atomic, they are not decompos-
able. XML instances of a primitive type are CDATA (text). For example, int is a
primitive type representing integers.

– Constructor tag: t[T1] where t is a tag. This expression denotes XML el-
ements whose tag is t and whose content is of type T1 : XML(t[T1]) =
{<t> x1 </t>| x1 ∈ XML(T1)}. Tags provide semantics for data and can be
bound to concepts of ontologies. In XML Schema, constructor tag can be expressed
by a tag or by the attribute name of tag xs:element.

– Constructor empty: ε. The empty XML sequence: XML(ε) = {ε}.

4 http://www.genouest.org/



– Constructor tuple: T1T2. This type expression denotes XML sequences that
are the concatenation of instances of T1 and instances of T2 : XML(T1T2) =
{x1x2 | x1 ∈ XML(T1), x2 ∈ XML(T2)}. That constructor is used to define com-
posite types and sequences. In XML Schema, constructor tuple can be expressed
by tags xs:complexType and xs:sequence.

– Constructor union: T1|T2. This type expression denotes the union of instances
of T1 and instances of T2 : XML(T1|T2) = XML(T1) ∪ XML(T2). Constructor
union can be used, for example, to consider several different types and make some
treatments without distinction. In XML Schema, that constructor can be expressed
by tag xs:choice.

– Constructor list: T1+. This type expression denotes the non-empty sequences
of instances of type T1 (homogeneous lists): XML(T1+) = {x1 . . . xn | n ≥
1 ∧ x1, . . . , xn ∈ T1}. In XML Schema, that constructor can be expressed by the
minOccurs and maxOccurs attributes associated with tag xs:sequence.

– Constructor optional: T1?. This type expression is equivalent to T1|ε.

For abbreviation it is possible to bind a name to a type expression. For example, in the
expression T = T1T2, there is a type name T allowing to simplify the re-use of type
expressions, where the name T can be used to refer to T1T2. We do not allow recursive
type expressions yet.

3 Convertibility Rules

By using type theory in the context of workflows, we follow the same line as previous
work on web services such as the one of Chen et al. [21]. The novelty of our approach
lies in the definition of a rule system to prove convertibility between types, and to apply
the proof-as-program paradigm [22] to automatically derive executable converters from
convertibility proofs.

In order to motivate the following convertibility rules, we list a few typical cases
where there is a mismatch between two types A and B (A 6= B), whereas there is a
semantic match, i.e. A can be converted to B.

– A and B use tags that are different but have the same meaning, for example
Integer and Int.

– B may be replaced by A, for example Float by Long.
– B is a concatenation of some components ofA, for example person[name tel
email] from person[name contact[address tel email]].

– A is subsumed by B, for example protein seq by biological seq.

3.1 Rule System

Figure 1 lists all the rules that specify when a type A is convertible to a type B. They
also define associated converters as functions from A to B. Those rules form a natural
deduction system whose judgements are in the form f : A → B, i.e. f is a converter
from an XML value of type A to an XML value of type B, and hence A is convertible
to B. A judgement f : A → B holds true if and only if it is possible to build a



fp : p1 →p p2
f : p1 → p2 f(x) = fp(x)

(PRIMITIVE)

ta →t tb f1 : A→ B

f : ta[A]→ tb[B] f(x) = element(tb, f1(content(x)))
(TAGCHANGE)

f1 : A→ B

f : t[A]→ B f(x) = f1(content(x))
(TAGREMOVAL)

f : A→ ε f(x) = ε
(EMPTY)

f1 : A→ B1 f2 : A→ B2

f : A→ B1B2 f(x) = concat(f1(x), f2(x))
(CONCAT)

f1 : A1 → B

f : A1A2 → B f(x) = (let x1, x2 = select(x,A1, A2) in f1(x1))
(LEFTSELECTION)

f2 : A2 → B

f : A1A2 → B f(x) = (let x1, x2 = select(x,A1, A2) in f2(x2))
(RIGHTSELECTION)

f1 : A1 → B f2 : A2 → B

f : A1|A2 → B f(x) = (case (x : A1) then f1(x) | (x : A2) then f2(x))
(PRECHOICE)

f1 : A→ B1

f : A→ B1|B2 f(x) = f1(x)
(LEFTPOSTCHOICE)

f2 : A→ B2

f : A→ B1|B2 f(x) = f2(x)
(RIGHTPOSTCHOICE)

f1 : A→ B

f : A+→ B + f(x) = map(f1, x)
(MAP)

f1 : A→ B

f : A+→ B f(x) = (let x1 = choose(x,A) in f1(x1))
(CHOICE)

f1 : A→ B

f : A→ B + f(x) = f1(x)
(SINGLETON)

Fig. 1. Convertibility rules and definitions of generated converters. For example, rule TagChange
reads as follows: if tag ta is convertible to tag tb and if f1 is a converter from A to B, then there is
a converter f from ta[A] to tb[B] such that applying f to a data x involves extracting its content,
applying f1 to the content, then re-encapsulate the result with tag tb.



Function Input Output Description
content XML XML returns the content of an XML element
element tag, XML XML builds an XML element given a tag and

an XML content
concat XML, XML XML returns the concatenation of two XML

sequences
select XML, type, type XML, XML splits an XML sequence in two parts

matching given types
map converter, XML XML applies a converter to each node of an

XML sequence and returns the concate-
nation of the results

choose XML, type XML returns any element matching a given
type from an XML sequence

Table 1. Utility functions on XML values.

proof tree with that judgement at the root, and where each node instantiates a rule. The
deduction system works by structural induction on couples of types (A,B), covering
all combinations of type constructors for which convertibility is possible. The rules
depend on conversion axioms for tags (ta →t tb), and on converters between primitive
types (fp : p1 →p p2). Those base conversions depend on the application domain,
and correspond, for instance, to well-known conversion functions (e.g., from floats to
integers). By default, we assume that t →t t for every tag t, and fp : p →p p with
fp(x) = x for every primitive type p. The definitions of converters in rules make use
of utility functions on XML values, which are described in Table 1. Figure 2 shows a
convertibility proof.

Primitive rule. Rule (PRIMITIVE) allows the use of a primitive converter fp when the
two types are primitive types. That rule handles the conversion of the leaves of XML
trees (CDATA nodes).

Tag rules. These rules handle the conversion from and to XML elements.
Rule (TAGCHANGE) defines converters from an XML element x to another XML
element element(tb, f1(content(x))) by applying a domain-dependent tag conver-
sion (here, from ta to tb), and by recursively applying a converter f1 to the content
of x. Function content gives access to the content of an XML element, and func-
tion element builds the new element from the converted tag and converted content.
Rule (TAGREMOVAL) define converters from an XML element to an XML sequence
by ignoring the tag, and recursively converting the content.

Empty and tuple rules. These rules handle conversions of XML sequences, i.e. con-
structors empty and tuple. Rule (EMPTY) says that any XML value x can be con-
verted to the empty XML sequence ε. Rule (CONCAT) defines converters that first
apply the converters f1 and f2 to the source value x, and then concatenates the two
results f1(x) and f2(x) with function concat , hence producing an XML sequence.



Rules (LEFTSELECTION) and (RIGHTSELECTION) define converters that select respec-
tively the left and right part of the source data, an XML sequence, and convert it to the
target data. This is useful when only a part of the source data is necessary to produce
the target data. The selection of the parts (function select) is guided by the sub-types of
the source sequence.

Union rules. These rules handle conversions from and to unions of types.
Rule (PRECHOICE) defines converters that produce a target data using a different
converter depending on the type of source data (A1 or A2). This is useful when the
source data can have different structures (union type). Rules (LEFTPOSTCHOICE)
and (RIGHTPOSTCHOICE) choose a converter to a target sub-type, when the target
type is an union. This is useful when the target data has several acceptable structures.

List rules. The remaining rules handle conversions from and to lists. Rule (MAP) de-
fine converters from a source list to a target list where a same converter is applied to
each element of the list. Function map is used to perform iteration over list elements,
and concatenation of converted elements. Rule (CHOICE) defines converters that first
choose an element of a list, and then recursively apply a converter to it. This is useful
when a single element is expected while a list is provided. Rule (SINGLETON) defines
converters that produce singleton lists from a source element, after recursively apply-
ing a converter to it. This is useful when a list is expected while a single element is
provided.

For a given couple (A,B) of type expressions, several rules may be applicable. In
that case, it is sufficient that one of them leads to a success to prove the convertibility
from A to B. Figure 2 details the proof of convertibility between two kinds of biolog-
ical sequence lists. In the source list, sequences are made of a nucleotide sequence, a
species name, and a version number, while in the target list, sequences are made of an
organism, and a nucleotide sequence. Another difference is that nucleotide sequences
are lowercase in the source list (primitive type acgt), and uppercase in the target list
(primitive type ACGT). In the proof (Figure 2), we assume that a primitive converter
is available to convert from lowercase to uppercase (see step 1.2.2.1.2.), and domain
knowledge tells us that tag species can be replaced by organism (see step 1.2.1.1.1.1.).
Each item in Figure 2 is the conclusion of a rule, and the sub-items are the hypotheses
of the rule. At each item, the converter function is defined with calls to the converter
function of sub-items. After inlining the definition of intermediate functions in the main
function f , we obtain the full definition of f in Figure 3.

Our rule system exhibits two kinds of non-determinism: (1) in the generation of
converters, and (2) in the definition of converters. Firstly, given two types A and B,
the system may generate several converters from A to B, i.e. several solutions to
the conversion problem. This is a common feature of rule systems. For example,
a converter f : AA → A can be produced by either Rule (LEFTSELECTION) or
Rule (RIGHTSELECTION): in the former, the left part of the source value is selected,
while in the latter, the right part is selected. In practice, one converter must be chosen,
which could be done through user interaction. Secondly, a generated converter may pro-
duce several target values for a same source value. This non-determinism comes from



seq[ns[acgt] species[string] version[int]]+→ seq[organism[string] ns[ACGT]]+
(MAP) f(x) = map(f1, x)

1. seq[ns[acgt] species[string] version[int]]→ seq[organism[string] ns[ACGT]]
(TAGCHANGE) f1(x) = element(seq, f1.2(content(x)))

1.1. seq→t seq
1.2. ns[acgt] species[string] version[int]→ organism[string] ns[ACGT]
(CONCAT) f1.2(x) = concat(f1.2.1(x), f1.2.2(x))

1.2.1. ns[acgt] species[string] version[int]→ organism[string]
(RIGHTSELECTION) f1.2.1(x) = (let x1, x2 = select(x) in f1.2.1.1(x2))

1.2.1.1. species[string] version[int]→ organism[string]
(LEFTSELECTION) f1.2.1.1(x) = (let x1, x2 = select(x) in f1.2.1.1.1(x))

1.2.1.1.1. species[string]→ organism[string]
(TAGCHANGE) f1.2.1.1.1(x) = element(organism, f1.2.1.1.1.2(content(x)))

1.2.1.1.1.1. species→t organism
1.2.1.1.1.2. string→p string
(PRIMITIVE) f1.2.1.1.1.2(x) = x

1.2.2. ns[acgt] species[string] version[int]→ ns[ACGT]
(LEFTSELECTION) f1.2.2(x) = (let x1, x2 = select(x) in f1.2.2.1(x1))

1.2.2.1. ns[acgt]→ ns[ACGT]
(TAGCHANGE) f1.2.2.1(x) = element(ns, f1.2.2.1.2(content(x)))

1.2.2.1.2. acgt→p ACGT
(PRIMITIVE) f1.2.2.1.2(x) = uppercase(x)

Fig. 2. An example proof tree of convertibility between two kinds of sequence lists.

f(x) = map(f1, x)
where f1(x) = element(seq, concat(

let x1, x2 = select(content(x), ns[acgt], (species[string] version[int]))
in let x21, x22 = select(x2, species[string], version[int])

in element(organism, content(x21)),
let x1, x2 = select(content(x), ns[acgt], (species[string] version[int]))

in element(ns, uppercase(content(x1)))))

Fig. 3. The generated converter for example of Figure 2



some utility functions, and the case construct. Function select may find different ways
to split the source value in two parts. Function choose has as many results as elements
in the list. The case construct has two results when the two conditions are satisfied,
when x matches both types A1 and A2. This second form of non-determinism could
be used to express iteration in a workflow. For example, assuming that service S1 pro-
duces lists of sequences, and service S2 consumes one sequence at a time, the converter
generated by Rule (CHOICE) could be a way to express that S2 must be iterated over
the results of S1, and the output of S2 could be considered to be the list of individual
results. It will meet needs for job iteration in bioinformatics workflows [23].

3.2 Properties: Reflexivity and Transitivity

Two important properties of the convertibility relationship are reflexivity and transitiv-
ity. First, every type A is convertible to itself and it suffices to take the identity function
as a converter. Second, for any types A,B,C, if A is convertible to B, and B is con-
vertible to C, then A is convertible to C and it suffices to compose the two converters
from A to B and from B to C to obtain a converter from A to C. We formalize those
two properties in the following theorems, and give their proofs. In those theorems, we
assume that tag convertibility (→t) and primitive convertibility (→p) are reflexive and
transitive. As a consequence, unlike the approach of Kaslev et al. [16], we do not need
rules for transitivity and reflexivity in our rule system. This makes convertibility proofs
simpler and more efficient.

Theorem 1. Let A be a type expression. There is a proof in the rule system of the
judgement f : A→ A where f(x) = x.

Proof. We proceed by induction on type A, considering the six type constructors as
different cases. For each of the type constructor, the property is verified because:

1. A = p (primitive): from assumption on primitives (p →p p), and by applying
Rule (PRIMITIVE).

2. A = t[A1] (tag): from induction hypothesis on A1 (A1 → A1), and assumption on
tags (t→t t), and by applying Rule (TAGCHANGE).

3. A = ε (empty): from Rule (EMPTY).
4. A = A1A2 (tuple): from induction hypothesis on A1 (A1 → A1)

and A2 (A2 → A2), by applying Rule (LEFTSELECTION) to the first, and
Rule (RIGHTSELECTION) to the second, and finally by applying Rule (CONCAT)
to the consequences of the two previous rules.

5. A = A1|A2 (union): from induction hypothesis on A1 and A2, by
applying Rule (LEFTPOSTCHOICE) to the first (introducing A2), and
Rule (RIGHTPOSTCHOICE) to the second (introducing A1), and finally by
applying Rule (PRECHOICE) to the consequences of the two previous rules.

6. A = A1+ (list): from induction hypothesis on A1, and by applying Rule (MAP).

In each case, it can be shown that the produced converter function is equivalent to the
identity function. For instance, in the tag case, assuming f1 : A1 → A1 is equivalent to
the identity function (induction hypothesis), it can be shown that the resulting function
f(x) = element(t, f1(content(x))) is equivalent to element(t, content(x)) which is
equal to x because x has type t[A1]. �



Theorem 2. Let A,B,C be expression types. If there are proofs in the rule system of
the judgements f1 : A→ B and f2 : B → C, then there is also a proof of the judgement
f : A→ C where f(x) = f2(f1(x)).

Proof. We proceed by induction on the rules that are used at the root of the proofs
of A → B and B → C. As there are 13 distinct rules, there are potentially 169 dis-
tinct cases to consider. Fortunately, many cases have similar proofs and can be grouped
together based on the distinction between three kinds of rules:

– Constructors (C): rules where only the target type changes between premises
and conclusion (Rules (CONCAT), (LEFTPOSTCHOICE), (RIGHTPOSTCHOICE),
(SINGLETON), (EMPTY)),

– Destructors (D): rules where only the source type changes between premises and
conclusion (Rules (TAGREMOVAL), (LEFTSELECTION), (RIGHTSELECTION),
(PRECHOICE), (CHOICE)),

– Transformers (T ): rules where both source and target change but use the same kind
of type (Rules (PRIMITIVE), (TAGCHANGE), (MAP)).

Using that grouping, we arrive at 6 meta-cases described using the above group codes
C,D, T andX to mean any rule. Applying unification constraints on the middle typeB,
those meta-cases then decompose themselves in 21 elementary cases:

1. X - C:
(a) X - (CONCAT): the proof of B → C by Rule (CONCAT) implies that C =

C1C2, and that we have proofs for B → C1, and B → C2. By induction
hypothesis on A,B,C1 and A,B,C2, we obtain A→ C1 and A→ C2. Then,
by applying Rule (CONCAT) on those judgements, we finally obtain A→ C.

(b) X - (LEFTPOSTCHOICE): we have C = C1|C2, and B → C1. By in-
duction hypothesis on A,B,C1, we obtain A → C1. Then, by applying
Rule (LEFTPOSTCHOICE) on the later, we obtain A→ C1|C2.

(c) X - (RIGHTPOSTCHOICE): similar to previous case.
(d) X - (SINGLETON): we have C = C1+ and B → C1. By induction hypothesis

on A,B,C1, we obtain A → C1, from which we obtain A → C by applying
Rule (SINGLETON).

(e) X - (EMPTY): we have C = ε. We directly obtain A → C by applying
Rule (EMPTY) (everything is convertible to ε).

2. D - X :
(a) (TAGREMOVAL) - X : we have A = t[A1] and A1 → B. By induction hypoth-

esis on A1, B, C, we obtain A1 → C. By applying Rule (TAGREMOVAL) on
the latter, we obtain A→ C.

(b) (LEFTSELECTION) - X : we have A = A1A2, and A1 → B. By
induction hypothesis on A1, B,C, we obtain A1 → C. By applying
Rule (LEFTSELECTION) on the latter, we obtain A→ C.

(c) (RIGHTSELECTION) - X : similar to previous case.
(d) (PRECHOICE) -X : we haveA = A1|A2,A1 → B, andA2 → B. By induction

hypothesis on A1, B,C and A2, B,C, we obtain A1 → B and A2 → B. By
applying Rule (PRECHOICE), we obtain A→ C.



(e) (CHOICE) - X : we have A = A1+ and A1 → B. By induction hypothesis on
A1, B,C, we obtain A1 → C. By applying Rule (CHOICE) to the latter, we
obtain A→ C.

3. C - D:
(a) (CONCAT) - (LEFTSELECTION): we have B = B1B2, and the judgements (1)

A→ B1, (2) A→ B2, (3) B1 → C. By induction hypothesis on A,B1, C and
judgements (1) and (3), we obtain A→ C.

(b) (CONCAT) - (RIGHTSELECTION): similar as previous case.
(c) (LEFTPOSTCHOICE) - (PRECHOICE): we have B = B1|B2 and the judge-

mentsA→ B1,B1 → C, andB2 → C. By induction hypothesis onA,B1, C,
we obtain A→ C.

(d) (RIGHTPOSTCHOICE) - (PRECHOICE): similar to previous case.
(e) (SINGLETON) - (CHOICE): we have B = B1+, and the judgements A → B1

and B1 → C. By induction hypothesis on A,B1, C, we obtain A→ C.
4. T - T :

(a) (PRIMITIVE) - (PRIMITIVE): we haveA = p1,B = p2,C = p3, and p1 →p p2
and p2 →p p3. From assumptions on primitives, we obtain p1 →p p3. By
applying Rule (PRIMITIVE) on the latter, we obtain A→ C.

(b) (TAGCHANGE) - (TAGCHANGE): we have A = tA[A1], B = tB [B1], C =
tC [C1], and tA →t tB , tB →t tC , A1 → B1, B1 → C1. From assumptions on
tags, we obtain tA →t tC . By induction hypothesis on A1, B1, C1, we obtain
A1 → C1. By applying Rule (TAGCHANGE) to the two latter judgements, we
obtain A→ C.

(c) (MAP) - (MAP): we have A = A1+, B = B1+, C = C1+, and A1 → B1,
B1 → C1. By induction hypothesis on A1, B1, C1, we obtain A1 → C1. By
applying Rule (MAP) to the latter, we obtain A→ C.

5. C - T :
(a) (SINGLETON) - (MAP): we have B = B1+, C = C1+, and A → B1, B1 →

C1. By induction hypothesis on A,B1, C1, we obtain A → C1. By applying
Rule (SINGLETON) to the latter, we obtain A→ C.

6. T - D:
(a) (TAGCHANGE) - (TAGREMOVAL): we have A = tA[A1], B = tB [B1], and

A1 → B1, B1 → C. By induction hypothesis on A1, B1, C, we obtain A1 →
C. By applying Rule (TAGREMOVAL) to the latter, we obtain A→ C.

(b) (MAP) - (CHOICE): we have A = A1+, B = B1+, and A1 → B1, B1 →
C. By induction hypothesis on A1, B1, C, we obtain A1 → C. By applying
Rule (CHOICE) to the latter, we obtain A→ C.

In each case, it can be shown that the produced converter function is equivalent to
the composition of the two converters from A to B, and from B to C. For instance,
in the X - (CONCAT) case, assuming f1 : A → B, and f2 : B → C, we have
f2(x) = concat(f ′2(x), f

′′
2 (x)) where f ′2 : B → C1 and f ′′2 : B → C2. By appli-

cation of three rules as indicated in the proof, we obtain for f : A → C, the definition
f(x) = concat(f ′2(f1(x)), f

′′
2 (f1(x))). From the definition of f2, that definition can be

simplified into f(x) = f2(f1(x)), which is indeed the composition of f1 and f2. �



3.3 Implementation

We implemented our rule system in a program that decides the convertibility between
any two type expressions, and generates converters from data matching the first type
expression to data matching the second type expression. The algorithm is directly de-
rived from the above rules and combines pattern matching on type expressions to iden-
tify constructors, and recursive calls on type sub-expressions. The examination of rules
shows that recursive calls always involve smaller couples of expressions, which en-
sures termination of the program in all cases. The computation time required to decide
convertibility may be important when the input type is very large, because of the non-
deterministic nature of the rule system. However, convertibility is computed once for a
set of types. In practice, types are not very large, and we have not encountered any dif-
ficulty in our experiments to compute all convertibilities for a set of bioinformatic ser-
vices (see Section 5.1). Generated converters are efficient. Most rules imply a constant
cost per XML node, and hence a linear complexity over the input data. The two cases
that may imply additional costs concern node duplication (see Rules LEFTSELECTION
and RIGHTSELECTION) and choice handling (see Rule PRECHOICE). Node duplica-
tion corresponds to the situation where a node of the input data is converted to several
nodes of the output data. In this case, the duplicated node is processed several times,
thus exceeding linear complexity. However, the number of duplications is bounded by
the number of constructors in the output type. Choice handling corresponds to the sit-
uation where a node can have one of two types (A1 or A2), and the correct type has to
be identified by the converter at execution time. Type identification requires one addi-
tional node processing for each choice, thus exceeding linear complexity. However, the
number of choices is equal to the number of constructor union in the input type, and
the additional processing may only concern a fragment of the input data. In practice,
input and output types of bioinformatics services make a limited use of duplications
and choices, thus in the worst case, the complexity of converters is in the size of the
input data multiplied by a small constant. Our generated converters are represented in
XQuery, a suitable language to process XML documents, which makes the converters
executable. To account for non-determinism, the result of our program is a collection
of converters. Each converter will be a function from an XML value to an XML value.
In the case of non-deterministic converters, only one value is produced so far. The pro-
duction of several values is left to future implementation.

4 Instantiation and Use Case

This section presents how we instantiate our type abstraction to bioinformatics data. It
also presents a use case that shows how our approach can be used to detect and resolve
data mismatches in bioinformatics workflows.

4.1 Instantiation to Bioinformatics

Depending on application requirements and on the nature of the data in
bioinformatics platforms, many formats are available. To represent genomics



> Accession = accession[string]
> SSeq = simpleSequence[string]
> ProtSeq = ns[sSeq]
> DNASeq = as[sSeq]
> Bioseq = DNASeq | ProtSeq
> CBioseq = complexBiosequence[

seq[Bioseq]
species[string] source[string] name[string]
version[string] note[string]?]

> CProtSeq = complexProteinSequence[
seq[ProtSeq]
species[string] source[string] name[string]
version[string] note[string]?]

> BioseqList = CBioseq+

Fig. 4. Examples of bioinformatics types

data, various textual formats (e.g., FastQ, BED)5 and XML formats (e.g.,
BioXSD6, phyloXML7) are provided. Textual formats are the most commonly
used. In addition to data formats, ontologies, such as EDAM8 have been pro-
posed to organize and classify resources including data types and formats.
Our work starts from these resources to define input and output types of services. We
abstract data types by focusing on the information contents and composite structure of
data. Figure 4 shows simple examples of types defined manually from existing bioin-
formatic formats. Accession and SSeq are simple types representing, respectively, an
accession number and a raw sequence, defined with a constructor tag and a primitive.
In the same way, DNASeq (representing nucleotide sequences) and ProtSeq (repre-
senting amino acid sequences) are defined using SSeq , they specialize the sequences.
Their union forms Bioseq , a biological sequence generalizing the sequences. CBioseq
and CProtSeq are composite types holding several types through constructor tuple.
They are biological sequences containing required (e.g., sequence[Bioseq ]) and op-
tional (e.g., note[string ]?) contents, CProtSeq being more specific than CBioseq .
CBioseqList defines a list of CBioseq using constructor list. The other types we use
are defined in the same way as the above types. Labels are inspired from the EDAM
ontology.

Compared to data types and formats used on platform EMBOSS9, our types can
define accession numbers allowing to represent, for example, sequence and database
references. They can represent raw sequences as in plain text format, single sequences
as in gcc format, one or several sequences (e.g., alignment of sequences) as in FASTA
format, as well as a simple sequence associated to its annotations and features as in

5 http://genome.ucsc.edu/FAQ/FAQformat.html/
6 http://bioxsd.org/
7 http://www.phyloxml.org/
8 http://edamontology.org
9 http://emboss.sourceforge.net/docs/Themes



EMBL format. Our types can also represent lists of files and differentiate the nature
of information contained in files, for example, nucleotide sequence versus amino acid
sequence. We take into account data types and formats commonly used for inputs and
ouputs of services on platform EMBOSS. Most platforms we visited use the same cat-
egories of data types and formats. Compared to XML formats such as BioXSD, our
abtraction represents contents at a higher abtraction level. We only consider informa-
tion relevant for our matching between input and output data of services. We ignore,
for example some type attributes and type restrictions irrelevent for current input and
ouput data used in services. If necessary, they can easily be added.

Abstraction of types is straightforward for XML formats thanks to XML schemas.
For textual formats, informal specifications must be studied to derive a structural rep-
resentation. Our experiment with genomics types shows that type expressions recur
frequently, they can easily be reused after being defined once. Since the most common
data types are defined, there are increasingly less types to define. The BioXSD initiative
defines several data types for common bioinformatics web services. Specialized XML
formats, such as phyloXML [8] for phylogenetic data and PDBML [24] for systems
biology, exist for sub-domains of bioinformatics. Moreover, XML alternatives are pro-
vided for some textual formats (e.g., GFF [25]) and some platforms define their own
XML format (e.g., Uniprot XML [26]). For our experiment, the abstraction of types is
done manually but the spreading of the above mentioned solutions will facilitate the
task. We can even expect automatic or semi-automatic abstraction processes.

The defined types represent inputs and outputs of current genomics services. In our
approach, adding a new service requires two steps. Firstly, identify the abstract types
used as inputs and outputs of the service. Secondly, implement, if they do not already
exist, the converters between XML schemas and each format, since our types define an
XML. Unlike other approaches, it is not necessary to define converters for all pairs of
formats, but only two for each format (from and to XML).

4.2 Use Case : Resolving Data Mismatches in a Bioinformatics Workflow

Fig. 5. Workflow at user level (wu).

We now present a workflow (w), constructed with our approach. It compares a
consensus sequence produced from an alignment of a list of sequences with another
sequence obtained from an accession number. The workflow consumes sequence lists
(tabular form) and references (accessions) to DNA sequences. It produces sequence



alignments. In the following, we describe three representations of workflow w, at three
different levels. The workflow at user level is what the user expects to see but we show
that it is underspecified, and cannot be executed as such. The workflow at execution
level is fully specified and executable, but it is over-detailed for the user because it
confuses genuine services and shims. We finally introduce the workflow at a abstract
level, from which both user level and execution level representations can be derived
automatically.

Figure 5 shows the workflow at a user level (wu). Boxes represent tasks and ellipses
represent input and output data of the workflow. It is an interconnection of inputs and
outputs of services from bioinformatics platforms. We assume that a service performs
one task, it may have one or several inputs and one or several outputs. To simplify, we
do not take into account parameters used to manage service behaviour (e.g., algorithm
parameters). The workflow uses the following services:

– matcher compares two biological sequences. It takes as inputs two biological se-
quences in fasta files and returns as output a MSF alignment.

– getDNA retrieves a DNA sequence from a database. It takes an accession number
and returns an embl file containing a DNA sequence.

– cons creates a consensus sequence from a multiple alignment. It takes a MSF align-
ment and returns a fasta containing a biological sequence.

– clustalW makes a multi-alignment of sequences. It takes a multi Fasta containing
a list of sequences and returns an alignment.

Workflow wu shows an ideal view where users have specified only the indispensable
information to describe what has to be achieved. However, this view is not directly
executable because the workflow uses services whose inputs and outputs do not imme-
diately match. It is necessary to insert shims services to address data mismatches as
generally done in the existing platforms.

Fig. 6. Executable workflow (wx).

Figure 6 shows an executable workflow (wx) where shims have been inserted
because of the following mismatches. First mismatch (tabular2multiFasta): the con-
crete lists of sequences the workflow will consume are in tabular form with additional
columns, they must be adapted to feed the input of clustalW. Second mismatch (clusta-
lAln2MSF): the output of task clustalW must be adapted to match the input of task
cons. Last mismatch (embl2Fasta): task getDNA provides an output that must be fed
into the input of task matcher, the output of getDNA contains more information and is



more specific. In existing approaches, to obtain an executable workflow, users must find
and insert format converters between domain tasks for which the formats are different.
Data are seen through their formats and they are not decomposable. There is no sepa-
ration between data, formats and services and no separation between domain services
and shim services.

Fig. 7. Abstract workflow (wa) in our system.

Figure 7 shows the abstract workflow generated by our system (wa). Ellipses are
data types, boxes are domain tasks, and diamonds are generated converters used as
shims. Our system sees service inputs and outputs through their composite abstract
types. Each service is represented with its input and output types as follows:

– Alignment represents the output type of the service matcher, the input type of the
service cons and the output type of the service clustalW. It also represents the output
type of the workflow.

– CBioSeq represents the two input types of the service matcher and the output type
of the service cons.

– TFasta = seqs[id [string ] seq [Bioseq ]]+ represents the input type of the service
clustalW.

– Accession represents the input type of the service getDNA, and also an input type
of the workflow.

– CDNAFeatSeq = seq [CDNASeq Features] represents the output type of
getDNA.

– TTab = seqs[id [string ] C2 [string ] C3 [string ] C4 [string ] seq [Bioseq ]]+ repre-
sents an input type of the workflow.

Our system separates data types, formats and services. It detects and resolves mis-
matches letting users focus on domain tasks. The generated shims fix the data mis-
matches presented above. The first generated shim, TTab2TFasta, corresponds to the
resolution of the tabular2multiFasta mismatch, by transforming each element (row) of
the list (table). Transforming each element involves selecting and concatenating sub-
elements (fields). The second shim, CDNAFeatSeq2CBioseq, fixes the embl2Fasta mis-
match by recognizing a DNA sequence as a biological sequence after ignoring ad-
ditional information. The clustalAln2MSF mismatch is fixed by reflexivity because
clustalAln and MSF correspond to the same abstract type. By ignoring derivable and
optional information our system recognises them as equal. Figure 8 shows a generated
XQuery source code of shim CDNAFeatSeq2CBioseq. It is similar to the theoretical
example provided at Figure 2.



Fig. 8. Example of source code of the shim converting data matching CDNAFeatSeq to data
matching CBioseq. It is simplified and represented using XQuery. Functions my:content and
my:select are utility functions, their source code is not shown here.

From our abstract workflow (wa), it is possible to obtain the workflow at user
level (wu) by hiding intermediate types and generated shims. It is also possible to pro-
duce the executable workflow (wx) by inserting converters between concrete formats
and XML (e.g., XML from/to each of tabular, multi Fasta, embl and Fasta).

Note that although the users do not have to interfere to generate the converters, they
can still check them because all steps of the generation are traceable. In our system, for-
mats are concrete serialization of data, they are not bound to particular data or services.
Their use is flexible, for example changing input/output formats do not affect service
compatibility or service implementation.

5 Experiments

This section presents a graph of convertibilities where connections between bioinfor-
matics services are detected. It also presents a survey with domain experts to check the
relevance of graph connections.

5.1 Convertibility between Bioinformatics Services

Service Source Inputs Outputs task
Blast BioXSD biosequence biosequence search

database URI
Blastp EMBL-EBI Fasta sequence (typed) BlastResult search

database URI
ClustalWFastaCollection BioMoby Fasta files MSF alignment

ClustalW BioXSD biosequence (≥ 2) alignment alignment
maskfeat EMBOSS EMBL sequence Fasta sequence handling

Table 2. Examples of services

We selected 30 services from platforms EMBOSS [3], EBI (European Bioinfor-
matics Institute) [27], BioMoby [28] and services adopting the BioXSD format. Other



Type Type in our representation Represents
Fasta sequence ComplexProteinSequence (typed) sequences

| ComplexBiosequence
BlastResult, Fasta files ListOfComplexBiosequences a list of sequences

| ListOfBiosequences
EMBL sequence AnnotatedSequence an annotated sequence

BioXSD biosequence Biosequence one sequence
| ComplexBiosequence

BioXSD Alignment, MSF SequenceAlignment an alignement of sequences
Database URI DatabaseReference a reference to a database

Table 3. Examples of formats and types

variations and similar categories are provided in platforms but, as mentioned above,
their input and output types do not change in general, and they would add little to our
experiment. Tables 2 and 3 show exemples of services and types.

Fig. 9. Excerpt of the graph of links between services

From our selection of services, using our matching algorithm, we automatically
generated a graph of the connections between services. Each connection is a con-
vertibility, proved by our rule system, from an output type of a service to an input
type of another service. Figure 9 shows an excerpt from the obtained graph. The



complete graph and service list are available online10. The graph shows services, in-
put/output types and conversions between types. Services are represented by rectan-
gles, input/output types by ellipses and conversions by diamonds. Services are asso-
ciated with their inputs and outputs respectively by incoming and outgoing arrows.
Similarly, each conversion is associated with a source type and target type, it mate-
rializes an automatically detected conversion between two types. Connectivity of ser-
vices in the graph materializes processing chains where output data are transformed
according to the need of the service inputs. Conversions from external formats to our
representation are not shown in the graph. Our algorithm finds direct links when the
services use the same representation (the same type) to define the same data. This
is the case, for example, with the link between services Blast and ClustalW. Indi-
rect links correspond to a conversioni. In the following, each conversioni(A,B)
specifies a function to transform data of type A to data of type B. With conver-
sion0(ListOfComplexBiosequences, ListOfBiosequence), a list of simple sequences is
derived from a list of complex sequences. The function converts each element of
the list and produces a new list of the converted elements. The elements of the list
are converted using Rule (LEFTSELECTION) (or Rule (RIGHTSELECTION)), and the
new list is produced by Rule (MAP). Conversion1(ListOfComplexBiosequences, Biose-
quence) combines rules (CHOICE) and (LEFTSELECTION) (or (RIGHTSELECTION))
to go from a list of complex protein sequences to each simple biological sequence
of the list. A simple biological sequence being a component of a complex biologi-
cal sequence. Conversion2(ComplexProteinSequence, Biosequence) shows the gener-
alization and specialization of types. Our algorithm detects that a sequence of pro-
teins is also a biological sequence. The conversion uses (LEFTPOSTCHOICE) (or
(RIGHTPOSTCHOICE)) to obtain a complex biological sequence from the complex pro-
tein sequence and uses Rule (LEFTSELECTION) (or (RIGHTSELECTION)) to obtain a
biological sequence from the complex biological sequence. Our algorithm also indi-
vidually considers the elements of a list. With conversion3(ListOfBiosequences, Biose-
quence) each element of a list of sequences can be selected, it is done by rule (CHOICE).
With conversion4(AnnotedSequence, Biosequence), a simple sequence is derived from
an annotated sequence. A composite type is decomposed and some components are se-
lected to feed services. This conversion corresponds to rules (LEFTSELECTION) and
(RIGHTSELECTION). In above conversions, rules (TAGCHANGE), (TAGREMOVAL)
and (PRIMITIVE) are used to convert between primitives and tags.

The complete graph contains 264 links between services out of the 900 possible
links between 30 services (30x30). Our program therefore finds numerous links, but
remains specific enough to be useful. Among those links, 88 are direct links, i.e., do not
imply any conversion. Our convertibility relation therefore enables a three-fold increase
of the number of links between services. The 30 services use 26 different types, among
which 10 types are in fact ad-hoc and not decomposable (e.g., pictures, reports). Our
program has identified 27 possible conversions between the 16 composite types, out of
the 256 possible ones (16x16). This again shows that our approach is both productive
and specific.

10 http://www.irisa.fr/LIS/Members/moba/graph/view



We presented the graph of the experiment to developers and users of the GenOuest
bioinformatics platform. They pointed out that “it is remarkable that the central role of
sequence alignment is so visible in the graph”. They stated that “the produced graph
has a pedagogical interest”. Indeed, in a typical course handout11, a graph produced by
hand related to a library of bioinformatics services contains similar services and con-
nections as our graph. However, being more complete in the modelling of input and
output data, our approach offers more flexibility on input and output types. Thus our
algorithm provides more explicit connections and differentiation between categories of
services. It also reveals possible conversions between input and output data, that creates
new connections. Moreover, our graph is machine processable, it shows a proof of the
connections created between services and can quickly take into account new changes on
data types and services. With a growing set of currently over 1500 available tools, it is
unlikely that people can produce the graph by hand. Our main objective is to guide biol-
ogists when composing workflows. One perspective is to take into account other aspects
of services. When constructing a workflow, input and output types play a central role
in the selection of services by setting constraints on applicable services, but are not the
only criteria for selection biologist. It is also necessary to represent the services by their
functional and non-functional properties (e.g., bioinformatics task performed, quality
of results, provenance, efficiency, popularity). The GenOuest developers nevertheless
mentioned that a user with domain knowledge would already find useful support in the
produced graph to select services for a workflow among the possibilities given by the
graph. Thus, they validated that the graph generated by our approach detects relevant
information and produces, in a systematic way, knowledge usually acquired by experi-
ence. The costly step of the approach is the production of abstract types, currently done
by hand. They highlighted some interesting perspectives. Our data abstractions could be
enriched from ontologies, especially EDAM, which will significantly facilitate the type
abstraction step and allow integrating others facets. In addition, data in Genomics (e.g.,
phylogenetic trees) and in others domains (e.g., metabolism) have to be added to the
experiment.

5.2 Survey with Domain Experts

We evaluated the graph produced at Section 5.1 by asking domain experts to judge
about the relevance of generated connections between services. For two services s1 and
s2 in the graph, if the type of an output port of s1 is convertible to the type of an in-
put port of s2, we suggested to experts to connect the input of s2 to the output of s1.
We prepared 25 questions, each question being a suggestion to connect two services.
Suggestions involved 18 services. The 25 questions concerned all connections on ports
of 3 services (output port of blastp, input port of blast and input port of cons). For
each question, it was possible to give one among 6 answers: “Yes, I knew”, “Yes, I dis-
cover”, “It may be feasible”, “It is not feasible”, “No, I disagree”, and “I do not know”.
For questions we provided the description of services and a brief explanation of con-
vertibility that involved the suggestion. To the 25 questions, we added general questions

11 Presentation of services of Wisconsin Package- Olivier Collin - CNRS Roscoff - Formation
Génopole Ouest - november 2002



about user status, background knowledge, the services they know by their names, and
their opinion about the relevance of suggestions. The survey was submitted to experts
of bioinformatics data, services and workflows via a mailing list.

We collected responses from 6 participants. Among the participants, one did no
provide any answer on suggestions, and therefore has been removed from the results
on suggestions. One did not finish the survey, thus for him we just consider answered
questions. All participants work in bioinformatics. Four of them are computer scientists,
four are users of services and workflows, four are developers of workflows, five are de-
velopers of services, one is a developer of Workflow Management Systems (WfMS)
and one is a researcher. Each participant knew on average 7 services among the 18 ser-
vices proposed as suggestions. 3 of the services were known to all participants, 7 were
known to no participants. The number of known services may look surprisingly low
for domain experts. It can be explained by the fact that participants are actually expert
in one among many bioinformatics platforms. The same task is often implemented by
different services (with different names) across different platforms.

Fig. 10. Reponses of 5 participants to the list of link suggestions between services. ‘Cross-
platform’ means services that are from different platforms. ‘SL’/’SR’ respectively count the num-
ber of participants who already knew the left/right service. Values in last the 5 columns are re-
sponses of participants for each suggestion. The responses are represented by (++) for “Yes, I
knew”, (+) for “Yes, I discover”, (o) for “It may be feasible”, (-) for “It is not feasible”, (--) for
“No, I disagree” and (?) for “I do not know”. Crosses represent missing responses.



Fig. 11. Pie chat of all participant responses to all suggestions, per response type.

Figure 10 and Figure 11 show the results of the survey. The table of Figure 10
lists the responses for each participant and for each suggestion. The left column of the
table contains suggestions established between services, for example ‘blastp> blast’
meant that the system suggested that service blast could consume the output of the
service blastp; ‘clustalW < cons’: the system suggested that clustalW could produce
the input of the service cons. The second column of the table tells if connected services
come from different platforms. Columns SL and SR contain the number of participants
who know the tool of either the left part (SL) or the right part (SR). From column four
to column eight, are the responses of the participants. The responses are represented by
(++) for “Yes, I knew”, (+) for “Yes, I discover”, (o) for “It may be feasible”, (-) for “It
is not feasible”, (--) for “No, I disagree” and (?) for “I do not know”. Missing responses
are represented by crosses. Figure 11 aggregates results. It provides the percentage by
response type for all responses.

The results show that participants found that 83% of suggested connections are ac-
ceptable. They already knew 20% and discovered 42% of suggested connections. They
judged that 21% of suggested connections may be feasible. However, they found that
12% of suggested connections as not really feasible. They are in total disagreement
with 3% of suggested connections. The participants have no opinion for 2% of sug-
gested connections.

Despite knowing only a few (at most 15%) of the suggested services, participants
still recognized most suggestions (83%) as acceptable. That paradoxical observation
deserves an explanation. Many services are unknown to participants by their name,
because belonging to another platform than the one they are used to, but their functions
are known to them. For example, ‘emma’ has the same function as ‘ClustalW’, but
only the latter is known by the participants. Thanks to the short description that we
provided in the survey, and to online information, participants were able to recognize
the function of unknown services, and to evaluate them accordingly. For example, the
table of Figure 10 shows that ‘emma’ is evaluated very similarly to ‘ClustalW’. This
also explains the high proportion of “Yes, I discover” responses (42%), which is much



higher than we expected. It implies two positive results. Firstly, our suggestions cover
many relevant service connections that would not be considered by domain experts in
the construction of a workflow by lack of knowledge about services. Secondly, most of
our suggestions are recognized as relevant by domain experts.

6 Related Work

The development of automatic solutions for service composition is a response to the
time-consuming and error prone methods currently used in some platforms to manage
service selection and service mediation during composition of services. Mediating in-
compatible services requires identifying categories of mismatches. The work of Li et
al. [11] provides a multi-dimensional classification of mismatches. It identifies syntactic
and semantic mismatches of functional and non-functional properties. That systematic
classification of service composition mismatches helps understand the problem. It also
helps find appropriate solutions for each case (Sirin et al [29], Lin et al [30], Kong-
denfha et al [31]). Our work concerns signature mismatches that occur on the structure
and on the semantics of service parameters.

There are several approaches that provide solutions for data mismatches in scien-
tific workflows. Besides approaches that address verifying matching between services,
there are approaches that resolve data mismatches by means of shims to insert between
services in workflows. They can be divided in two categories: A first category relies on
semantic annotations to search shims in existing libraries. A second category takes into
account syntactic descriptions of data types to automatically generate shims.

Some approaches that address service matching use ontologies such as EDAM [32]
and myGrid ontology [33]. They provide methods to access semantic compatibility of
workflow components. However, they do not generally guarantee compatibility at syn-
tactic level. For example, Lebreton et al. [12] propose to verify the semantic compati-
bility of service parameters for web service composition. They address input and output
matching but they do not provide solutions to resolve data mismatches that can occur
on the data structure. Another approach, by Stroulia et al. [34], uses the structure of
data types, messages, operations and textual descriptions to assess similarity between
WSDL (Web Service Description Language) specifications. However, it is not designed
to adapt data between services.

Compared to previous works, approaches that find shims address resolving data
mismatches in workflows. They generally rely on data types, formats and service de-
scriptions. For example, Velasco-Elizondo et al. [13] use data format descriptions to au-
tomatically identify relevant shims. In the same manner, the approach of Hull et al [14]
relies on the description of shims and data types to retrieve shims transforming data be-
tween services. These approaches, besides seeing data as not decomposable, also expect
the shims to be provided by third-parties.

In contrast to approaches that search shims, approaches that generate shims auto-
matically provide data transformers to insert between services. They are characterized
by the data complexity they support and the transformations between data they offer.
Browers et al [15] support structural data transformations based on ontological infor-
mation. Their approach links a structural type to a corresponding semantic type. The



semantic type is defined with concepts of ontologies. However, the transformations that
they offer rely on contextual paths. They do not allow transforming XML documents
whose elements are not already attached to domain concepts. They also, do not seem
to take into account recursion, which is required for some complex data. In Conveyor,
Linke et al. [35] propose generic object-oriented type system to manage nodes, includ-
ing data types, in workflows. They use interfaces, abstract classes and inheritances to
express relations between types but do not mention automated methods ensuring com-
position and decomposition of complex data types.

Kashlev et al [16] use rules to automatically insert shims as coercions into exe-
cutable workflows. Their approach and the approach of Dibernado et al [17] are close to
our work. The first one because it uses rules, and the second one because it is applied to
compose bioinformatics services. We differ from the approach of Kashlev et al. [16] on
some points. We envision to mediate data at workflow construction time, not at execu-
tion time. We allow more complex data representations, for example type constructors
union, tag and list. Thus, we offer additional transformations between input and output
data. For example, the approach of Kashlev et al. [16] requires different labels for ele-
ments of a tuple while our abstraction authorizes to define a tuple where elements use
the same label. This allows us to meet some bioinformatics data representations such as
representing lists of biological sequences, and enables parallel transformation on lists.
We differ from the approach of Dibernado et al. [17] because we allow decomposing
as well as composing data. Dibernado et al. [17] provide the data transformation during
workflow composition. They allow generating shims according to connected services.
However, they decompose data but do not allow to compose them.

Compared to presented approaches, our approach offers richer type abstractions
and more complex transformations between data. It relies on rules that allow to system-
atically reason on input and output types for managing mismatches during workflow
composition. In addition, our approach does not prevent to use existing shims, it pro-
vides systematic and automatic mechanisms to re-use some of them (e.g., converters
for upper case, lower case or substitution). Unlike many approaches, our approach does
not only provide the solution in XML, it also provides mechanisms to link existing tex-
tual representations. Furthermore, our approach may easily benefit from mechanisms of
matching based on ontologies.

Besides the automatic approaches, platforms such as Galaxy [4] use shims libraries
to manage links between services. Matching between inputs and outputs is based on
data formats. Services, in their implementation, take into account several formats. When
a format is not provided, a format converter defined by hand is used. These techniques
make a strong dependency between services and formats, which mixes domain tasks
and tasks for the data adaptation. In addition, as discussed above, textual formats do not
promote automation. Separating data types and formats is the subject of much work,
for example Kalas et al. [9]. To facilitate interoperability of tools, common XML-based
formats are proposed to represent bioinformatics data. At present, few implementations
use these technologies. A generalization of their use would strengthen our approach, as
it would facilitate the specification of abstract data types. Possibilities offered by XML
technologies to represent complex data and relationships associated to domain ontolo-



gies may be used to provide a pivot language for conversion between heterogeneous
data formats.

7 Perspectives

In the future, we plan to use our convertibility approach to propose an guided approach
for composing real-world workflows. Our approach is appropriate for users of plat-
forms such as Taverna [1] and Galaxy [4] that need to benefit more from automation.
It can also be used to manage creation, re-use and conversion of parameters in work-
flow engines such as Bpipe [36], Snakemake [37] that use low-level programming. For
our approach to be more beneficial, we will cope with data consistency and deal with
non-determinism. We will integrate data consistency checking compared to types. Er-
rors due to the non-compliance between data and constraints are common in automated
platforms. For example, little changes in textual formats used to represent input data
may cause a program to abort. An advantage of our approach is that it offers means
to verify the compliance of data compared to their data type. Enriching abstractions
with ontologies will allow to reduce non-determinism. It will be necessary, however, to
integrate users in the process to manage multiple choices.

8 Conclusion

Data mismatches between services make it difficult to create scientific workflows. Man-
ually defined shims proposed to fix data mismatches are time consuming and error
prone. Existing approaches that automatically insert shim services in workflows are
limited in the transformations they provide.

In this paper, we presented an approach that systematically detects convertibility
from output types to input types. We have defined convertibility rules that exploit
(de)composition as well as specialization and generalization of types. The rules also
automatically generate converters between input and output XML data that can be used
as shims. An experiment on bioinformatics services, as well as a survey with domain
experts, showed that the detected convertibilities and produced converters are relevant
from a biological point of view. Furthermore, the automatically produced graph of po-
tentially compatible services exhibited a connectivity higher than with the ad’hoc ap-
proaches.
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