Some Properties of Interpolations Using Mathematical Morphology

Aditya Challa, Student Member, IEEE, Sravan Danda, Student Member, IEEE, B. S. Daya Sagar, Senior Member, IEEE and Laurent Najman

Abstract—The problem of interpolation of images is defined as - given two images at time \(t = 0 \) and \(t = T \), one must find the series of images for the intermediate time. This problem is not well posed, in the sense that without further constraints, there are many possible solutions. However, restricting the domain of application allows us to choose the ‘right’ solution. We thus focus on the interpolation problem from the perspective of geoscience and remote sensing. One approach to obtain a solution to image interpolation problem is with the use of operators from Mathematical Morphology (MM). These operators have an advantage of preserving structures since the operators are defined on sets. In this work we review and consolidate existing solutions to the image interpolation problem from the perspective of geoscience and remote sensing. We also summarize several possible extensions and prospective problems of current interest.

Index Terms—Image Interpolation, Mathematical Morphology, Morphological Interpolation.

I. INTRODUCTION

The problem of image interpolation can be stated as - given two images \(I_0 \) (source) and \(I_1 \) (target), find the series of images \(\{Z_\alpha, \alpha \in [0,1]\} \) such that \(Z_0 = I_0 \) and \(Z_1 = I_1 \). Note that this problem differs from the usual interpolation problem - given a function values at few points, find the value of the function at the intermediate points. Image interpolation problem requires the answers to be ‘visually appealing’ which is very hard to characterize rigorously. For instance in figure 1, let the source image be as in (a) and target image be as in (b). A simple linear interpolation \((0.5 \ast I_0 + 0.5 \ast I_1)\) would result in the one as obtained in (c). However, we expect that the ‘structure’ to change from the circle to square gradually.

Image interpolation problem is also sometimes referred to as image morphing which is widely used for special effects and animation. In this work, our aim is to analyze the problem from the perspective of remote sensing and geoscience and, as we shall soon see, the nature of the solutions are very different from that of Image morphing. Several possible applications exist for such a solution. For example, a satellite maps the surface at regular intervals and one might be interested in visualizing the intermediate states. Apart from this the problem of image interpolation is of interest to the Geographic Information Science community [1].

The solution to the image interpolation problem can be approached from various starting points. In this work, we are interested in analyzing the solution obtained using operators from Mathematical Morphology (MM). MM is a theory of non-linear operators on images introduced by Georges Matheron and Jean Serra in the late seventies [2]. These operators are famous for preserving the ‘structure’ as the operators are defined on sets instead of pixels. This makes the subject of morphological operators a good candidate to deal with the problem of image interpolation. The question of why MM operators are ideal for interpolation of geo-spatial variables will be discussed further in section II-E.

Different solutions to the problem of image interpolation via MM operators are proposed in several works [3], [4]. One of the aims of this article is to provide a consolidated theoretical review of the earlier methods and claim that MM operators are suitable for interpolation of geo-spatial variables obtained using remote sensing. We also discuss several extensions and prospective problems for future work.

The main contributions of this article are -

- Theoretical consolidation of the existing methods
- Analysis of existing methods through simple, simulated examples.
- Provide a platform for various extensions and future work.

The methods described in this article are not the only possible solutions to the interpolation problem [5], [6], [3]. Also, in this article we concentrate on binary and greyscale interpolations but these techniques can also be extended to color images as well [7], [8].

In section II we briefly describe the various MM operators used in the remaining portion of the article. In section II-E we provide an argument for the interpolations of geo-spatial variables using MM operators. We next describe several methods of interpolation of binary images in sections III, IV. We then briefly review the interpolation of greyscale images with focus on flat vs non-flat structuring elements in VI. In section VII we provide several problems for future research and briefly describe each of these problems.

II. REVIEW OF MORPHOLOGICAL OPERATORS

In this section we introduce the basic operators of Mathematical Morphology (MM), recall the definitions and setup the notation as required by the rest of the article [9], [10], [11].

Loosely speaking, the basic MM operators - dilation, erosion, opening and closing, are defined on binary images and can be extended to greyscale images. This is achieved on the abstract level by defining the operators on abstract structures.
Geodesic Dilations

dilations and erosions are restricted to a domain, they are
where $X \subseteq X$ where it is a map from
Morphological Dilation
assumed that g gives us erosion. For the remaining part of the paper it is
the dilation and using the assumption -
Then using the assumption -

![Image](a) Source Image. (b) Target Image. (c) Linear interpolation between
(a) and (b).

Fig. 1

Complete Lattices. However, for the purposes of this
article, we only review the basic operators on binary and
greyscale images. Interested readers can refer to [9], [10] for
theoretical details on MM operators and [12], [13] for details
about lattices.

A. Binary Images

A binary image is a map, $I : E \rightarrow \{0, 1\}$. E is called the
domain of definition and is usually taken as \mathbb{R}^2 or \mathbb{Z}^2. Here
\mathbb{R} refers to the real line and \mathbb{Z} denotes the set of integers. For
most of theoretical aspects in this article, we consider $E = \mathbb{R}^2$.
Note that, practically, images are restricted to a finite domain.
However results, henceforth, are stated on infinite domain and
hold true for finite domains as well. This distinction is blurred
for the rest of the article for pedagogical reasons.

An equivalent way of characterizing the binary image is to
look at sets $\{x \in E \mid I(x) = 1\}$. Such sets belong to the space of
$\mathcal{P}(E)$, where $\mathcal{P}(E)$ is the power set - set of all possible
subsets of E. Basic MM operators on binary are maps from
$\mathcal{P}(E) \rightarrow \mathcal{P}(E)$. To define these operators one needs another
set, called structuring element, with a defined origin.

There are several ways to look at the structuring element.
Theoretically, a structuring element is the set to which the set
$\{0\}$ maps to. Then using the assumption - Invariance to translation, we can extend the mapping to all unit sets $\{x\}$. Then using the assumption - Invariance to supremum gives us the
dilation and using the assumption - invariance to infimum gives us erosion. For the remaining part of the paper it is
assumed that B denotes a unit disk with origin at the center.

1) Dilation: The first MM operator we discuss is that of
Morphological Dilation, or simply Dilation, $\delta_B(\cdot)$. Recall that
it is a map from $\mathcal{P}(E)$ to itself. Thus we have
dilation $\delta_B(X) = X \oplus B = \bigcup_{b \in B} X_b = \{x \in E \mid B_x \cap X \neq \emptyset\}$, (1)
where $X \oplus B$ is usual Minkowski addition and X_b is the set
X translated by b.

2) Erosion: Morphological Erosion, or simply Erosion,
$\epsilon_B(\cdot)$ with respect to the structuring element B is defined as
$\epsilon_B(X) = X \ominus B = \bigcap_{b \in B} X_{-b} = \{x \in E \mid B_x \subseteq X\}$, (2)
where $X \ominus B$ is usual Minkowski subtraction. When the
dilations and erosions are restricted to a domain, they are
called Geodesic Dilations and Geodesic Erosions respectively.

Assume that we have two sets $X \subset Y$. The geodesic dilation
and geodesic erosion are respectively defined by

$$\Delta_{Y,B}(X) = \delta_B(X) \cap Y$$
$$\epsilon_{X,B}(Y) = \epsilon_B(Y) \cup X$$

B. Greyscale Images

A greyscale image is defined as a function $I : \mathbb{R}^2 \rightarrow \mathbb{R}$,
where $\mathbb{R} = \mathbb{R} \cup \{-\infty, \infty\}$. An equivalent way of looking at the
greyscale image is using the umbra [10] defined as

$$U(I) = \{(x, t) \mid I(x) \leq t\}$$

Note that $U(I) \subset \mathbb{R}^3$. Using these sets, the definitions of
dilation and erosion for binary images can be extended to
greyscale images as well. The main distinction being how the
structuring element is extended from \mathbb{R}^2 to \mathbb{R}^3.

The most important point to note is that - all dimensions
are not created equal. Observe that two dimensions correspond
to the spatial co-ordinates while the third corresponds to the
greyscale value. The spatial co-ordinates can be handled the
same way as before. The greyscale value on the other hand, can be
handled in two ways - with/without changing the maximum
greyscale value in the image. This results in non-flat and flat
structuring elements respectively.

1) Flat Structuring Elements: Given a set $B \subset \mathbb{R}^2$, a flat
structuring element is defined as

$$g(x) = \begin{cases} 0 & x \in B \\ -\infty & x \notin B \end{cases}$$

2) Non-Flat Structuring Elements: Given a set $B \subset \mathbb{R}^2$, a
non-flat structuring element is defined as

$$g(x) = \begin{cases} i_x & x \in B \\ -\infty & x \notin B \end{cases}$$

where i_x can take any value in \mathbb{R}.

3) Grayscale Operators: Grayscale Morphological Dilation
with respect to the structuring element $g(x)$, $\delta_g(\cdot)$ is defined as

$$\delta_g(f)(x) = \sup\{f(h) + g(x-h) \mid h \in E\}$$

Grayscale Morphological Erosion with respect to the structuring
element $g(x)$, $\epsilon_g(\cdot)$ is defined as

$$\epsilon_g(f)(x) = \inf\{f(h) - g(x-h) \mid h \in E\}$$

The importance of the distinction between flat and non-
flat structuring elements and greyscale operators are further
discussed in section VI. Unless otherwise mentioned, in what
follows the dilation and erosion operators refer to operators
on binary images.

C. Hausdorff Distances

Another concept used in the remaining portion of the article
is that of distance between sets. There are various distances
which can be defined on two sets. Dilation distance, $\overline{d}(X,Y)$
is defined as inf\{$\lambda \mid \delta_{AB}(X) \supseteq Y\$. Hausdorff Dilation
distance is defined as $d(X,Y) = \sup\{\overline{d}(X,Y), \overline{d}(Y,X)\}$.
The following are the list of properties which follow from the definition -

1) \(d(X, Y) = d(Y, X) \)
2) \(d(X, Y) = 0 \) if and only if \(X = Y \).
3) \(d(X, Y) \leq d(X, Z) + d(Y, Z) \).
4) If we have that \(X \subseteq Y \), then \(d(X, Y) = \overline{d}(X, Y) \)

We can also define the dual distance operator, Erosion distance as \(\overline{e}(X, Y) \) is defined as \(\inf\{\lambda \mid \epsilon_{\lambda B}(X) \subseteq Y\} \). And the Hausdorff Erosion distance is defined as \(e(X, Y) = \sup\{\overline{e}(X, Y), \overline{e}(Y, X)\} \).

D. Influence Zones

If \(Z_1 \) and \(Z_2 \) are two sets in \(\mathbb{R}^2 \), then the influence zone of \(Z_1 \) with respect to \(Z_2 \) is defined as

\[
IZ(Z_1 \mid Z_2) = \{ x : \overline{d}(Z_1, x) < \overline{d}(Z_2, x) \} \tag{10}
\]

Similarly, influence zone of \(Z_2 \) with respect to \(Z_1 \) is defined as

\[
IZ(Z_2 \mid Z_1) = \{ x : \overline{d}(Z_2, x) < \overline{d}(Z_1, x) \} \tag{11}
\]

One can give a simpler characterization for the influence zone. Fix a point \(x \). Now \(x \in IZ(Z_1 \mid Z_2) \) if and only if we have that \(x \in Z_1 + \lambda B \) and \(x \notin Z_2 + \lambda B \). That is \(x \in (Z_2 + \lambda B)^c \). Thus we have

\[
IZ(Z_1 \mid Z_2) = \bigcup_{\lambda \geq 0} (Z_1 + \lambda B) \cap (Z_2 + \lambda B)^c \tag{12}
\]

We can also define the Skeleton by Influence Zone (SKIZ) as

\[
SKIZ(Z_1, Z_2) = \{ x : \overline{d}(Z_2, x) = \overline{d}(Z_1, x) \} \tag{13}
\]

E. Interpolation of Geo-Spatial Variables

1) Why Geo-Spatial variables?: Considering images as points in \(\mathbb{R}^n \), where \(n^2 \) is the number of pixels in the image, the problem of image interpolation can be restated as - Find a path in \(\mathbb{R}^n \) between two points. This problem, of course, has infinitely many solutions. To get a unique solution, one needs to place some constraints on the paths. Usual constraints are 1) the path should be smooth and 2) the interpolates visually appealing. However, ‘visually appealing’ is very hard to characterize. Instead constraining the domain in image space allows to pick a unique path. Thus, in this article we focus on geospatial variables.

2) Advantage of MM operators: Recall that MM operators (Binary) act by increasing/decreasing the set of pixels. This means that they act by changing the structure of the set, and hence one has a control over the structure. As noted in section I, we expect the solution to the interpolation problem to act on the structure of the set. The images in figure 2 are generated using geodesic dilation. Contrasting them with that of figure 1 we find that interpolates in figure 2 are ‘smoother’.

3) Why MM operators on Geo-Spatial variables?: Apart from the fact that MM operators operate on the structure of the sets, they also simulate many geophysical processes. This is another reason why MM operators are ideal for interpolating Geo-spatial variables. For instance constrained water flow can be simulated by geodesic dilation.

III. FIRST ATTEMPTS

In this section we review the two methods as described in [4]. Recall that we are interested in constraints so that we can pick uniquely the path between the two images. One such constraint is given by Hausdorff distances.

Rigorously speaking, consider the space \(K \) of all non empty compact sets, with the metric given by Hausdorff distance. If \(X \) and \(Y \) are two sets, then we shall be interested in shortest path between \(X \) and \(Y \) in this space. One of the shortest paths is given by the First Hausdorff Interpolates defined below.

Definition 1 (First Hausdorff Interpolates). Let \(X \) and \(Y \) be two sets. Let \(\rho = d(X, Y) \) (Hausdorff distance). Let \(B \) denote the disk structuring element with radius 1. Then the first Hausdorff interpolates, \(\{ Z_\alpha : \alpha \in [0, 1] \} \) is defined as

\[
Z_\alpha = \delta_{\alpha \rho B}(X) \cap \delta_{(1-\alpha) \rho B}(Y) \tag{14}
\]

The interpolates defined in definition 1 satisfy

\[
d(Z_\alpha, X) = (\alpha) \rho \quad d(Z_\alpha, Y) = (1 - \alpha) \rho \tag{15}
\]

The proof of this can be found in [4]. The above relation implies that the first Hausdorff interpolates falls on the shortest path between the sets \(X \) and \(Y \).

An example of the first Hausdorff interpolate is given in figure 3. It is observed that these interpolates even though theoretically sound, suffer from the problem of ‘thick’ interpolates as illustrated in figure 3. There are two ways around this problem - 1) Observe that the sets \(X \) and \(Y \) are simple translations of each other. Thus negating the affine transformations might reduce this effect. 2) A simpler solution
is to restrict the interpolates to the convex hull of sets X and Y. This also reduces the problem of ‘thick’ interpolates.

Definition 2 (Second Hausdorff Interpolates). Let X and Y be two sets. Let $\rho = d(X, Y)$ (Hausdorff distance). Let B denote the disk structuring element with radius 1. Then the second Hausdorff interpolates, $\{Z_\alpha : \alpha \in [0, 1]\}$ is defined as

$$Z_\alpha = \delta_{\alpha \rho B}(X) \cap \delta_{(1-\alpha)\rho B}(Y) \cap ((1-\alpha)X \oplus (\alpha)Y) \quad (16)$$

The second method above makes up the Second Hausdorff Interpolates as defined in definition 2. The corresponding second Hausdorff interpolates for figure 3 are shown in figure 4. Second Hausdorff interpolates also satisfy (15).

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
</tr>
</tbody>
</table>

Fig. 4. Second Hausdorff Interpolates. (a) Source Image. (b) - (g) Second Hausdorff Interpolate. (h) Target Image.

IV. INTERPOLATIONS THROUGH MEDIAN

In this section we look at yet another method to calculate the interpolates. To start with we propose a series of simplifications which reduces and simplifies the problem of finding image interpolates, and then propose a solution to this simplified version of the interpolation problem. We also analyze various properties and explain their significance. This section is a consolidation of ideas from [3], [4], [14], [15].

A. Series Of Simplifications

Here, we reduce to the problem of finding image interpolates to a simpler problem, which would be easier to solve. Recall that binary images can be described as sets in $P(E)$. In this section, we assume that the problem is to find the interpolates between sets X and Y, which are in fact binary images on domain E.

1) $X \cap Y \neq \emptyset$: Consider the case when a set X is deformed by a translation in space to $X_h = X + \{h\}$. The ideal interpolates must be of that of a translation, i.e $Z_\alpha = X + \{\alpha h\}$. Morphological operators are not equipped to handle such transformations. Indeed, the dilation and erosion operators are extended assuming translation to invariance. Hence, if the operators assume translation invariance, they cannot simulate translation. Hence it makes sense to negate the translation before calculating the interpolates and then adjust the solution accordingly. In fact we negate all affine transformations.

Proposition 1. Let \mathcal{T} denote an affine transformation. Let X and Y be two sets. If $\mathcal{T}(X) \cap Y = \emptyset$ for all \mathcal{T} then either X is empty or Y is empty.

The above proposition is easy to see. Proposition 1 and negating the affine transformations allows the assumption

$$X \cap Y \neq \emptyset \quad (17)$$

to hold true. The ‘ideal’ affine transformation is obtained by

$$\mathcal{T}^* = \arg \max Area(\mathcal{T}(X) \cap Y) \quad (18)$$

the affine transformation which maximizes the area of intersection between X and Y. This problem is computationally hard, but there exists several approximations [14]. We assume that any affine transformation has 3 parts - translation, rotation and scaling, that is

$$\mathcal{T} = T_h R_\theta S_\lambda \quad (19)$$

We can accordingly define,

$$\mathcal{T}^{-(1-\alpha)} = T_{-(1-\alpha)h} R_{-(1-\alpha)\theta} S_{-(1-\alpha)\lambda} \quad (20)$$

How to reconstruct the Interpolates? Let interpolates between $\mathcal{T}(X)$ and Y be $\{Z'_\alpha\}$. Then the interpolates between X and Y is obtained by

$$Z_\alpha = \mathcal{T}^{-(1-\alpha)}(Z'_\alpha) \quad (21)$$

To check this, observe that $Z_0 = \mathcal{T}^{-(1)}(Z'_0) = \mathcal{T}^{-(1)}(X) = X$. And similarly we have $Z_1 = Y$.

2) $X \subseteq Y$: Intuitively, an interpolation method between two sets X and Y must gradually remove features from X and gradually incorporate features from Y. The features in $X \cap Y$ must remain unchanged. Taking this heuristic into account, to calculate the interpolates between X and Y, one can calculate the interpolates between X and $X \cap Y$, $\{U_\alpha\}$, and interpolates between Y and $X \cap Y$, $\{W_\alpha\}$. Then the interpolates between X and Y are given by, $\{Z_\alpha\}$, where,

$$Z_\alpha = U_{1-\alpha} \cup W_\alpha \quad (22)$$

Thus we need only develop a method to calculate the interpolates between X and Y under the assumption $X \subseteq Y$, and any such method extends to the general case using (22).

To assess the reasonability of the above simplification, consider the case when the interpolates U_α and W_α are...
Proof. Firstly, note that would increase the value of area and without loss of generality assume that \(\rho \leq \rho_2 \). Then we can deduce that \(\alpha \). Hence we can have, \(d(X, Z_{0.5}) = d(Y, Z_{0.5}) \) (23)

Before proceeding with the proof, the assumption \(d(X,Y) = \rho_2 \) needs to be justified. Firstly, note that \(d(X,Y) \leq \rho_2 \) since we have that \(d(X \cap Y, Y) = \rho_2 \). The assumption implies that there exists no point in \(X \cap Y \) closer to \(Y \) than in \(X \cap Y \) and vice versa. This intuitively follows from the previous simplification which maximizes the area of \(X \cap Y \). Since otherwise, one can find an affine transformation which would increase the value of area of \(X \cap Y \).

Theorem 2 provides a justification for this construction in that, under some conditions, the ‘middle’ element constructed is equidistant from both \(X \) and \(Y \). Proposition 3 states an interesting property of the construction above.

Proposition 3. Let \(\{U_\alpha\} \) and \(\{W_\alpha\} \) be as described above. Let the interpolates be defined by (22). Then we have

\[
d(X \cap Y, Z_{0.5}) = d(Y \cup Y, Z_{0.5})
\] (29)

Proof. Assume, without loss of generality that \(\rho_1 \leq \rho_2 \). Then we have that

\[
d(X \cap Y, Z_{0.5}) = \sup\{d(X \cap Y, W_{0.5}), d(X \cap Y, U_{0.5})\}
\] = \sup\{0.5\rho_1, 0.5\rho_2\} = 0.5\rho_2

Also, we have that

\[
d(X \cap Y, Y) = \sup\{d(X \cap Y, X), d(X \cap Y, Y)\} = \rho_2
\]

Thus, we have that \(d(X, Z_{0.5}) \leq \sup\{\alpha \rho_1, \alpha \rho_2\} \)

Taking \(\alpha = 0.5 \) we have

\[
d(Z_{0.5}, X \cup Y) = \sup\{d(Z_{0.5}, X), d(Z_{0.5}, Y)\} \leq 0.5\rho_2
\]

Using triangle inequality,

\[
\rho_2 = d(X \cap Y, X \cup Y)
\]

\[
\leq d(X \cap Y, Z_{0.5}) + d(Z_{0.5}, X \cup Y)
\]

\[
\leq 0.5\rho_2 + 0.5\rho_2 = \rho_2
\]

From this we can deduce that

\[
d(X \cap Y, Z_{0.5}) = d(X \cup Y, Z_{0.5}) = 0.5\rho_2
\]

3) Construct only medians: Any \(\alpha \in [0, 1] \) can be written in binary code. Thus, if one has a method to generate only the interpolate \(Z_{0.5} \), one can generate the interpolate for any \(\alpha \). For example, let \(\alpha = 5/8 \). The following steps would generate \(Z_\alpha \).

(i) Generate interpolate between \(Z_0 \) and \(Z_1 \), we get \(Z_{0.5} \).
(ii) Generate interpolate between \(Z_{0.5} \) and \(Z_1 \), we get \(Z_{0.75} \).
(iii) Generate interpolate between \(Z_{0.5} \) and \(Z_{0.75} \), we get \(Z_{0.625} = Z_\alpha \).

The interpolate \(Z_{0.5} \) is referred to as the median interpolate. Thus, if one has the method to generate the median interpolate, one can generate the interpolate for any \(\alpha \). However, note that any such method to produce the median must satisfy the consistency property 1. In simplest case this means - the median between \(Z_{0.25} \) and \(Z_{0.75} \) must equal the median between \(Z_0 \) and \(Z_1 \).

Property 1 (Consistency of Median). Let \(Z_{\alpha_1} \) and \(Z_{\alpha_2} \) be two interpolates. Then the median between \(Z_{\alpha_1} \) and \(Z_{\alpha_2} \) must be \(Z_{(\alpha_1+\alpha_2)/2} \)

Proposition 4. Suppose \(X \subseteq X' \subseteq Y' \subseteq Y \) and \(m(X,Y) \) denotes the median between \(X \) and \(Y \) then

\[
m(X,Y) = m(X', Y') \Rightarrow m(X,Y) = m\left(m(X', X''), m(Y, Y') \right)
\]

\[
m(Z_0, Z_1) = m(Z_{0.25}, Z_{0.75})
\] (34)

if (33) and (34) holds true then the property 1 holds as well.
Proof. Here we only provide the intuitive idea of why the proposition is correct. Let $Z_0 = X \subset Y = Z_1$. Indicate the median, $m(Z_{\alpha_1}, Z_{\alpha_2})$ by $Z_{(\alpha_1+\alpha_2)/2}$. Thus $Z_{0.5} = m(Z_0, Z_1)$. Assume that,

$$Z_{0.5} = m(Z_{0.25}, Z_{0.75}) = m(Z_0, Z_1) = m(Z_{0.5}, Z_{0.5})$$ \hspace{1cm} (35)

Using (33) we get,

$$Z_{0.5} = m(Z_{0.125}, Z_{0.875}) = m(Z_0, Z_1) = m(Z_{0.375}, Z_{0.625})$$ \hspace{1cm} (36)

One can continue this to show that, for all $\epsilon < 0.5$

$$Z_{0.5} = m(Z_{0.5-\epsilon}, Z_{0.5+\epsilon})$$ \hspace{1cm} (37)

This can be generalized to any α, that is

$$Z_\alpha = m(Z_{\alpha-\epsilon}, Z_{\alpha+\epsilon})$$ \hspace{1cm} (38)

by observing that sets X and Y are arbitrary. So, the first time we encounter α, we can name the sets Z_0 and Z_1 and proceed accordingly. \hfill \square

Note that consistency of the medians is a desired property. However, the heuristic is still valid and can be followed to reduce the computational costs.

B. Median

In [4] the definition 3 of median is proposed.

Definition 3 (Median). Given two sets $X \subseteq Y$, the median $m(X, Y)$ is defined as

$$m(X, Y) = \bigcup_{\lambda \geq 0} \{(X \ast \lambda B) \cap (Y \circ \lambda B)\}$$ \hspace{1cm} (39)

The medians defined above can also be characterized in terms of influence zones as shown in proposition 5.

Proposition 5. Let $X \subseteq Y$ be two sets and B be the circular structuring element. Let the median be defined as in (39). Then we have that

$$m(X, Y) = \text{IZ}(X \mid Y^c)$$ \hspace{1cm} (40)

Proof. We have

$$\text{IZ}(X \mid Y^c) = \bigcup_{\lambda \geq 0} \{(X \ast \lambda B) \cap (Y^c \circ \lambda B)^c\}$$

$$= \bigcup_{\lambda \geq 0} \{(X \ast \lambda B) \cap (Y \circ \lambda B)^c\}$$

$$= m(X, Y)$$

The first equality follows from (12) The second equality comes from the duality between dilation and erosion operators [10]. \hfill \square

Another property we expect from such a median is duality. That is, we expect that $m(X, Y) = (m(Y^c, X^c))^c$ to hold. The medians do not satisfy this property, but one can show that they are ‘close enough’. The dual median is defined as

$$M(X, Y) = (m(Y^c, X^c))^c$$ \hspace{1cm} (41)

Proposition 6. Let $X \subseteq Y$ be two sets. Let $m(X, Y)$ be the median as defined in (39). Let $M(X, Y)$ be the dual median as defined in (41). Then we have

$$M(X, Y) = \bigcap_{\lambda > 0} \{(Y \ast \lambda B) \cup (X \circ \lambda B)\}$$ \hspace{1cm} (42)

and

$$M(X, Y) \setminus m(X, Y) = \{x \mid \overline{a}(X, x) = \overline{a}(Y, x)\}$$ \hspace{1cm} (43)

Proof. Equation (42) can be obtained by set transformations. To show (43) - Since, we have that, from proposition 5.

$$m(X, Y) = \text{IZ}(X \mid Y^c) = \{x \mid \overline{a}(X, x) < \overline{a}(Y^c, x)\}$$

and

$$M(X, Y) = (m(X^c, Y^c))^c = (\text{IZ}(Y^c \mid X))^c = \{x \mid \overline{a}(Y^c, x) < \overline{a}(X, x)\}^c$$

Thus we have,

$$M(X, Y) \setminus m(X, Y) = \{x \mid \overline{a}(X, x) = \overline{a}(Y, x)\}$$ \hspace{1cm} (44)

Thus although, duality does not hold, we have that the median and the dual median only differ in the boundary.

Recall that we have stated earlier that it is favorable for medians to satisfy the consistency property 1. Although, the medians defined above satisfy this property for simple sets, it is still an open question as to whether it is true for all sets $X \subseteq Y$. We discuss further on this in the section VII.

Another problem with the medians arises in the case of non-convex shapes. Consider the sets X and Y as in figure 5 (a) and (b). One expects the median to be close to figure 5(e) while the median calculation results in 5(c).

V. MEYER’S METHOD

We now describe another method to calculate the interpolates between two images, due to F. Meyer, as described in [3]. Given two sets X and Y, we are required to find a median. As mentioned earlier, we assume that $X \subseteq Y$. Let x be a point in the set $Y \setminus X$. Recall $\overline{a}(X, x) = \inf \{\lambda \mid x \in X \ast \lambda B\}$. For this section we denote $\overline{a}(X, x) = d_\alpha(x, X)$ to be consistent with the notation in [3]. Let $d_\alpha(x, Y) = \inf \{\lambda \mid x \notin Y \circ \lambda B\}$. Define

$$f(x) = \begin{cases} 1 & x \in X \\ \frac{d_\alpha(x, Y)}{d_\alpha(x, Y) + d_\alpha(x, X)} & x \in Y \setminus X \\ 0 & x \in Y^c \end{cases}$$ \hspace{1cm} (45)

We thus have a greyscale image with values in $[0, 1]$. To calculate the interpolate, we take

$$Z_\alpha = \mathbb{T}_\alpha(f)$$ \hspace{1cm} (46)

where, $\mathbb{T}_\alpha(.)$ is a threshold operator and f is the greyscale image obtained by (45). This formulation gives us an easy and efficient way to calculate the medians. An example is shown in figure 5(d). Note that, (45) suffers from the same problem as that of median in definition 3.
An alternative simple solution was proposed in [16] to get the interpolates in these kind of situations. Assume that $X \subseteq Y$. Let $d(X,Y) = \rho$. For all $x \in Y \setminus X$. Define

$$f(x) = \begin{cases} 1 & x \in X \\ 1 - \frac{d_3(X,x)}{\rho} & x \in Y \setminus X \\ 0 & x \in Y^c \end{cases} \quad (47)$$

Thresholding the greyscale image in (47) gives the interpolates. This method works better in cases as in figure 5. The median image in figure 5(e) is obtained using this method. Meyer’s method is related to the one in definition 3 as shown in following proposition.

Proposition 7. Let $X \subseteq Y$ be two sets. The median calculated by (39), is the same as one obtained by (46), taking $\alpha = 0.5$.

Proof. The proof follows from the fact that, at $\alpha = 0.5$ we have that the median consists of

$$\{x : d_3(X,x) \leq d_8(x,Y)\} \quad (48)$$

In other words, the Meyer’s median is equal to $IZ(X|Y^c)$, which from proposition 5 equals the one in (39).

Note that although the median elements for both Meyer’s method and median obtained by (39) are the same, in general this need not be true for all interpolates.

The main advantage of Meyer’s method is that one can calculate all the interpolates at one shot and this saves a lot of computation.

VI. GREYSCALE IMAGES

Recall that the operators of binary images are extended to greyscale images using subgraphs. An important point to note is that not all the three dimensions can be treated the same. Two dimensions belong to the spatial domain, and the third gives the value domain. This impacts the way structuring elements would be handled. This results in two kinds of structuring elements - flat and non-flat as discussed in II-B.

In this section we first look at how the interpolation methods discussed above extend to greyscale images. We then analyze the distinction between flat and non-flat structuring elements.

Firstly, note that simply replacing the binary dilation/erosion with greyscale dilation/erosion will enable to extend the interpolations in definitions 1 and 2 to greyscale images as well. Since greyscale images are just sets (subgraphs) in a different space, all the properties generalize accordingly.

For the median calculation in definition 3, one needs to verify if the series of simplifications in section IV-A are still valid. The assumption 1, $X \cap Y \neq \emptyset$, trivially holds for greyscale images since we consider the subgraphs. This is because of having a value domain. Assumption 2, $X \subseteq Y$ also holds for greyscale images, since we were still considering sets, although in higher dimensions. Assumption 3, that medians are enough, also would apply greyscale images. Thus, if f_1 and f_2 are two 1-d greyscale images, we assume that $f_1 \geq f_2$ and the problem of interpolation drops to finding the median element.

A. Flat vs Non-Flat structuring elements

We say that we get ‘thin’ interpolates between two sets $X \subseteq Y$ if the $SKIZ(X,Y^c)$ has measure 0. Otherwise they are called ‘thick’ interpolates. It is easy to see that in binary images we are assured of getting thin interpolates using influence zones. This does not extend to greyscale images. Recall that

$$SKIZ(X,Y^c) = \{x \mid d(X,x) = d(Y^c,X)\} \quad (49)$$

In case of binary images, for any X and x we have that $d(X,x) < \infty$. Intuitively, this is the reason why one gets thin interpolates. However, if we consider a greyscale image and a flat structuring element, then it is possible that $d(X,x) = \infty$. Thus, thin interpolates are not assured when considering greyscale images and using flat structuring elements. However, a transformation on the greyscale value domain would allow us to obtain thin interpolates.

Proposition 8. Let $f_1(x) \geq f_2(x)$ for all x, be two greyscale images defined on finite domain $E \subseteq \mathbb{R}^2$. If $\inf f_1 \leq \sup f_2$, then $SKIZ(f_2,f_1)$ has the measure 0, when influence zones are calculated using flat structuring elements.

The proof for the proposition above follows from noting that in case we have $\inf f_1 \leq \sup f_2$, then for all x either $d(f_2,x) < \infty$ or $d(f_1,x) < \infty$. This implies that case when $d(f_2,x) = d(f_1,x) = \infty$ does not happen, and hence the proposition follows.

The above proposition implies that under some regularity conditions, thick boundaries do not appear even with flat
structuring elements. It is not tough to see that, there exists a transformation on the value domain, under which one can guarantee $\inf f_1 \leq \sup f_2$. A simple transformation is to take

$$f(x) \rightarrow \frac{f(x) - \min(f)}{\max(f) - \min(f)}$$

(50)

Note that this transformation results in the changes to brightness and contrast in an image. We assume that whenever the method uses flat structuring elements, this transformation is suitably applied.

In summary, the procedure to calculate the median according to definition 3 is

1) Let f_1 and f_2 be two greyscale images.
2) Calculate $\tilde{f} = \min(f_1, f_2)$.
3) Calculate the medians between f_1 and \tilde{f}, $\{x_\alpha\}$ and f_2 and \tilde{f}, $\{y_\alpha\}$. If using flat structuring elements, appropriately scale f_1 and f_2.
4) The median between f_1 and f_2 is then given by $\sup \{x_{1-\alpha}, y_\alpha\}$.
5) Repeat the above steps iteratively to get the interpolates.

Which to choose- Flat or Non-Flat? Usually, Non-flat structuring elements are preferred since they do not result in thick interpolates. However, the proposition 8 states that even flat structuring elements do not result in thick interpolates under some conditions. In practice, it has been observed that non-flat structuring elements gives smoother interpolates as illustrated in the following example.

Example - Simulated shoreline interpolation: As an example to illustrate the difference between flat and non-flat structuring elements, we simulate shorelines at two distinct times and calculate the interpolates. Evolving shorelines has also been studied in [17], using medians to extrapolate the shorelines. We simulate the shorelines by considering two 1-dimensional functions

$$f_1 = N(2, 0.5) + N(4, 1) + N(7, 1.5)$$

$$f_2 = N(1, 1) + N(3, 0.5) + N(8, 1.5)$$

where,

$$N(\mu, \sigma) = \exp\left\{\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2\right\}$$

(51)

The functions f_1 and f_2 are shown in figures 6 (a) and (b). The median obtained by flat/non-flat structuring elements is plotted in figures 6 (c) and (d) respectively. It can be seen that the median calculated using non-flat structuring element takes into account the shape of \tilde{f} better than the median using flat structuring element, between 4 and 8 on the x-axis. This is because, in that patch the flat structuring element cannot go below the minimum. This in effect shows that proposition 8 is not enough to justify the use of flat structuring elements instead of non-flat structuring elements.

$$L^\infty(f_1, f_2) = \sup_x |f_1(x) - f_2(x)|$$

(52)
To analyze the difference further, hierarchical medians were generated to the level 4 (which gives 16 interpolates in total) for both flat and non-flat structuring elements. Then distance measured by L^∞ (52) is calculated between successive interpolates and plotted in figures 6 (e) and (f). From this, one can deduce that non-flat structuring elements gives smoother interpolates compared to the flat structuring elements.

VII. EXTENSIONS AND FUTURE WORK

As stated earlier, another important aim of this paper is to provide a platform for various extensions and future work. In this section, we pose several questions and discuss possible questions to be answered.

A. Graph based Interpolation

A graph $\mathcal{G} = (V, E)$ is a tuple of a vertex set V and an edge set $E \subseteq V \times V$. An image can be represented as a graph, taking the set of pixels as the vertex set and edges between two adjacent pixels. Recently, MM operators are generalized to graphs [18], [19], [20]. So, a natural question arises - Can we extend the morphological interpolates to graphs as well? We briefly review the question here.

The basic MM operators, dilation and erosion, can be extended to the graphs using the lattice definitions - dilation defined as the operator which preserves the supremum and erosion being the operator which preserves the infimum. There are in fact two different kinds of dilations/erosions one can define - $\delta^*, \delta^x, \epsilon^*, \epsilon^x$. (Complete details can be found in [18]). The operators δ^*, ϵ^* map the set of edges to a set of vertices while the operators δ^x, ϵ^x map a set of vertices to a set of edges.

Defining,

$$\Delta(X) = \delta^*(\delta^x(X))$$

$$\mathcal{E}(X) = \epsilon^*(\epsilon^x(X))$$

allows us to define the dilation and erosion operators on the set of vertices to vertices. All the above methods to obtain binary interpolates can be directly extended to graphs using these operators instead.

There is also another possibility of extending the operators using only δ^x or δ^*. Each of these operators can be thought of as half-dilations. To represent these, one has to use a different representation of the image using cubical complexes as established in [21].

For greyscale images, one can think of them as binary images in higher dimension, construct a graph and then proceed as above. However, an alternate solution would be to extend the graph based MM operators to weighted graphs and accordingly define the interpolates. The topic of analyzing the graph based interpolations and greyscale operators on graphs is a topic of further research.

B. Problem of median being consistent

Recall that in property 1 we stated that any median must be consistent, and in proposition 4 we have given an equivalent condition for the property to hold. It can be easily seen that the median obtained by using (47) follows this property. However, it still an open question whether medians proposed in definition 3 satisfies this property or not. Apart from this, other equivalent conditions to the consistency property 1 might provide better insights into the interpolation problem.

C. Loss function for judging interpolates

An important task is to have an ability of judging interpolates obtained via a loss function. This would allow us to compare different methods of interpolation and maybe obtain new interpolation methods as well. The basic criteria for such a function is

- It should have higher values for non-smooth interpolates compared to smoother interpolates
- Should be independent of the number of interpolates obtained.

As a starting point, one can consider the following metric. Let $d(I_1, I_2)$ be any metric to measure the distance between two images. For instance L^∞ measure in (52). Let $Z = \{I_0 = Z_0, Z_1, Z_2, \cdots, Z_n = I_1\}$ be a set of interpolates. Define,

$$D(Z) = \sup_{0 \leq i < n-1} d(Z_i, Z_{i+1})$$

This satisfies the condition to penalize non-smooth interpolates. However, increasing the number of interpolates can reduce this metric. Finding a right metric to judge interpolates is also a subject of future research.

Another advantage of having a loss function is that, one can pose the problem of interpolation as an optimization problem which would allow us solve the interpolation problem making use of the vast number of techniques in the area of optimization.

VIII. CONCLUSION

In this article we reviewed a method to get the solution to the problem of image interpolation - Given two images I_1 and I_2 find the suitable intermediate images. We have reviewed the basic methods for morphological interpolations from the view of geoscience and remote sensing, and provided a theoretical consolidation of various ideas available in the literature. Apart from this, we have also stated and discussed briefly several problems and directions for future work.

IX. ACKNOWLEDGEMENTS

We would like to thank Prof. Jean Serra for providing us with references to his work. The authors AC and SD would like to thank Indian Statistical Institute for the fellowship provided to pursue the research. BSDS would like to acknowledge the support received from the Indian Space Research Organization (ISRO) with the grant number ISRO/SSPO/Ch-1/2016-17.
REFERENCES

Laurent Najman received the Habilitation à Diriger les Recherches in 2006 from University the University of Marne-la-Vallée, a Ph.D. of applied mathematics from Paris-Dauphine University in 1994 with the highest honor (Flicitations du Jury) and an “Ingénieur” degree from the Ecole des Mines de Paris in 1991. After earning his engineering degree, he worked in the central research laboratories of Thomson-CSF for three years, working on some problems of infrared image segmentation using mathematical morphology. He then joined a start-up company named Animation Science in 1995, as director of research and development. The technology of particle systems for computer graphics and scientific visualization, developed by the company under his technical leadership received several awards, including the “European Information Technology Prize 1997” awarded by the European Commission (Esprit programme) and by the European Council for Applied Science and Engineering and the “Hottest Products of the Year 1996” awarded by the Computer Graphics World journal. In 1998, he joined OCE Print Logic Technologies, as senior scientist. He worked there on various problem of image analysis dedicated to scanning and printing. In 2002, he joined the Informatics Department of ESIEE, Paris, where he is professor and a member of the Institut Gaspard Monge, Université Paris-Est Marne-la-Vallée. His current research interest is discrete mathematical morphology.