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Calculating with hyperbolas and parabolas 

Dominique TOURNÈS 

IREM et Laboratoire d’informatique et de mathématiques (LIM, EA 2525), Université de la Réunion 

SPHERE, UMR 7219, CNRS et Université Paris-Diderot 

Abstract: Graphical tables (abaques and nomograms) can give rise to original activities for 
16 to 18 year olds with a strong historical and cross-curricular element. These activities lend 
themselves to a practical way of dealing with information and highlighting the changes in 
presentation (graphic, numerical, algebraic and geometric) as well as offering a motivating 
topic area for the usual functions required by the programme of study. They also allow the 
active use of the basic techniques of geometry in an unusual setting. This chapter deals with 
practical work trialled in a class of 16 year olds, based on two types of multiplication abaques 
situated in their historical and cultural background: a concurrent-line abaque using a family 
of hyperbolas and an alignment nomogram with a plotted parabola. The use of these 
graphical tables allowed the students to revisit their knowledge of inverse square functions, to 
use freely equations of straight lines and curves, and to anticipate the graphical methods for 
solving second degree equations. 

Keywords: Abaque, Nomogram, Hyperbola, Parabola, Multiplication abaque, Multiplication 
nomogram, Graphical table, Nomography, John Clark, Léon-Louis Lalanne, Julius Mandl, 
Junius Massau, August Ferdinand Möbius, Maurice d’Ocagne, Louis-Ézéchiel Pouchet. 

 

Abaques and nomograms 

Before the widespread use of electronic calculators and computers, people frequently 
had recourse to numerical tables which brought together the results of numerous calculations 
carried out once and for all so as to spare the user from repeating tedious calculations. In an 
analogue way, graphical tables allowed people to find the result of certain calculations with 
minimum effort. In general, a graphical table appears as a network of marked lines or marked 
points, with suitably graduated scales, moveable or not, giving, simply by reading off, the 
required value depending on those of the parameters. Without doubt such tables have been in 
evidence since the Middle Ages on astrolabes and sundials. In any case, the first ones which 
were specifically designed for calculation are to be found in connection with linear or circular 
slide rules, these graphic equivalents of the logarithmic tables invented by the British in the 
17th century. From the beginning of the 19th century, graphical tables, initially called 
‘abaques’, then ‘nomograms’, spread progressively in numerous professional bodies 
(engineers, artillerymen, navigators, industrialists, physicians etc.) to the point of becoming, a 
century later, the main instruments of graphical calculation. An entirely separate discipline, 
called ‘nomography’, even arose around their study and use. Hardly burdensome, scarcely 
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encumbering, and sufficiently precise for current needs and practice, the abaques held sway 
most of all through the swift calculations they afforded, essential speed for the professionals 
having to use them in real time for complex formulae. 

Nowadays, nomography has seen an inescapable decline, even if it continues to be used 
in certain areas of activity. Abaques are often found in technical manuals, catalogues of 
mechanical parts or catalogues of electrical components. Physicians and chemists still use 
such graphs, for example to calculate quickly the dose of a drug dependent on various 
parameters to be taken into account such as the sex, age, height or weight of the patient. 

The first objective of this chapter is to show that nomography, although belonging 
chiefly to the past, retains a strong educational interest. In it the teacher can find a rich source 
of inspiration to devise motivating activities for all levels of ability. By way of illustration, I 
will describe some of these activities, as they were tried out on a class of 16 year olds. 

To study nomography in depth, one can refer to numerous publications by Maurice 
d’Ocagne, in particular the 1891 work, which fulfilled the role of founding work in the 
discipline (Ocagne, 1891).  

Let us begin by defining the basic mathematical notions which are hidden behind 
graphical tables. The central problem of nomography is that of the flat two-dimensional 
representation of the relationships between three variables F( , , ) 0.α β γ =  The general idea of 
abaques known as ‘concurrent-line abaques’, is to make this relationship appear as the result 
of the elimination of two auxiliary variables between the three equations, each only 
dependent on one of the three main variables: 

  

F(α,β ,γ ) = 0⇔∃ (x, y)
F1(x, y,α) = 0
F2(x, y,β ) = 0
F3(x, y,γ ) = 0

⎧

⎨
⎪

⎩
⎪

 

The abaque is therefore formed from three families of marked curves from the respective 
equations 1F ( , , ) 0x y α = , 2F ( , , ) 0x y β =  and 3F ( , , ) 0x y γ = , drawn on a plane equipped with 
Cartesian coordinates x and y (Figure 8.1). For each value of the parameter ,α the first 
equation determines a curve which is marked on the graph by writing the value of α near to 
it. Similarly for the other two families. 

 
Figure 8.1. Concurrent-line abaque from (Ocagne, 1891). 
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On the abaque, a solution ( , , )α β γ of the equation simply corresponds to the crossing at 
the same point of three curves, one from each family, associated respectively with the values 
,α  β  and .γ  If we give ourselves the values of any two of the variables, for example α  and 
,β  we find directly the value of the curve from the third family which passes through the 

crossing point of the curves of the first two families having the values α  and β  (in Figure 
8.1, for example, we read 2γ =  when 3α =  and 4β = ). In between the values marked on 
the abaque, we interpolate visually. 

The most common approach, which applies to any relationship of the three variables, 
simply consists of taking x α= and y β=  for the first two equations. In this case, the curves 
parameterised by α are parallel to the axis of the ordinates and the curves parameterised by 
β are parallel to the axis of the abscissae. In practice, all that is required is to construct the 
curves of the equation F( , , ) 0α β γ =  on squared paper. It amounts to the topographical 
representation of a surface by its contour lines. Louis-Ézéchiel Pouchet (1748-1809), a cotton 
manufacturer from Rouen, was one of the first to employ this idea. In 1795, he represented 
the multiplication αβ γ=  by taking x α=  and y β= , and by drawing the hyperbolas 
xy γ=  corresponding to particular values of .γ   

A little later, about 1843, a civil engineer in the Department of Bridges and Highways, 
Léon-Louis Lalanne (1811-1892) had the idea of geometric anamorphosis: by placing on the 
axes non-regular graduations, that is by taking ( )x ϕ α=  and ( )y ψ β=  for the first two 
equations where ϕ  and ψ  are suitably chosen functions, one manages in certain cases to 
make it so that the curves of the third family should also be straight lines. This was how 
Lalanne managed to turn into straight lines the hyperbolas of equal value used by Pouchet: 
indeed all it takes is to write logx α=  and logy β=  for the equation αβ γ=  to become 

log .x y γ+ =  
In 1884 the Belgian engineer Junius Massau (1852-1909), professor at the University of 

Ghent, studied more generally the conditions which would allow one to arrive at abaques in 
which the curves of the three families are straight lines, provided that parallels were no 
longer used on the coordinate axes. We then talk of ‘concurrent-straight-line abaques’ 
(Figure 8.2). 

 
Figure 8.2. Concurrent-straight-line abaque from (Ocagne, 1891). 
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. 

When writing that the equations of the three bundles of curves are equations of straight 
lines, Massau reached the condition 

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

( ) ( ) ( ) 0 ( ) ( ) ( )
( , ) ( ) ( ) ( ) 0 ( ) ( ) ( ) 0.

( ) ( ) ( ) 0 ( ) ( ) ( )

f x g y h f g h

x y f x g y h f g h

f x g y h f g h

α α α α α α

β β β β β β

γ γ γ γ γ γ

+ + =

∃ + + = ⇔ =

+ + =

⎧
⎪
⎨
⎪
⎩  

So when the initial equation F( , , ) 0α β γ =  can be placed in such a determinant, called 
‘Massau’s determinant’, it can be represented by a concurrent-straight-line abaque. 

The following advancement in nomography happens in 1884 when Philibert Maurice 
d’Ocagne (1862-1938), a young engineer in the Department of Bridges and Highways, 
imagines a new type of abaque. By exploiting the advances in projective geometry, notably 
the principle of duality, he transforms the concurrent-straight-line abaques into abaques with 
aligned points. Indeed, if the nullity of Massau’s determinant expresses the concurrence of 
three straight lines, this nullity equally expresses the alignment of three points, that is the 
points of the parameters ,α  β and γ taken respectively on the parameterised curves 

1

1

1

1

( )
( )
( )
( )

fx h
gy h

α
α

α
α

⎧ =⎪⎪
⎨
⎪ =
⎪⎩

 ,  

2

2

2

2

( )
( )
( )
( )

fx h
gy h

β
β

β
β

⎧ =⎪⎪
⎨
⎪ =
⎪⎩

 and 

3

3

3

3

( )
( )
( )
( )

fx h
gy h

γ
γ

γ
γ

⎧ =⎪⎪
⎨
⎪ =
⎪⎩

 . 

Thus the three systems of marked straight lines become three marked curves, forming what 
d’Ocagne calls an ‘alignment nomogram’ (Figure 8.3). To solve an equation F( , , ) 0α β γ =  
represented by such a nomogram is simple: if, for example, the values of α  and β are 
given, one draws a straight line passing through the marked points α  and β  on the first 
two curves and this straight line meets the third curve at a point whose value is .γ  In 
practice, so as not to spoil the abaque, the line is not actually drawn on the paper: one either 
uses a transparency marked with a fine straight line, or a thin thread which one stretches 
between the points to be joined. 

 
Figure 8.3. Alignment nomogram from (Ocagne, 1891). 
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The alignment nomograms are easier to read and, most of all, take up less space than 
the old concurrent-line abaques which allows for the setting out of several on the same piece 
of paper. If d’Ocagne introduced the new term ‘nomogram’ it was mainly to distinguish 
himself from his predecessors. Later, some authors continued to use the word ‘abaque’ to 
indicate any kind of graphical table. From the start of the 20th century, alignment nomograms 
won the day through their ease of constructions and use, and became the most widespread 
abaques in all areas. Some still remain in current use, like the one in Figure 8.4, which allows 
a physician to evaluate quickly the bodily surface area of an adult patient according to height 
and weight (the line marked on the figure shows, for example, that a patient 170 cm tall 
weighing 65 kg has a body surface area of 1.75 m2). 

 
Figure 8.4. Body surface area of an adult. 

Graphical tables with 16-18 year olds 

As we have already seen, graphical tables (linear or circular slide rules, abaques and 
nomograms) have been among the instruments of calculation most commonly used before the 
appearance of electronic calculators, and they remain in use today in certain sectors. 
Consequently, it seemed to me quite pertinent to bring them back into current favour and to 
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exploit them educationally to practise certain points in the programmes of study for 16-18 
year olds. Indeed, for 16 year olds, they are valuable for active reading of information, 
emphasising the networking of registers (graphic, numerical, algebraic and geometrical), they 
offer a motivating area of application of the topics in the programme (affine functions, square 
function, reciprocal function, polynomials of the second degree, homographic functions) and 
they allow the practice of the first techniques of coordinate geometry in a rich context 
(alignment of points, intersection of straight lines or curves, graphical solution of equations). 
At ages 17 and 18 they can equally be used to give meanings to questions often treated in a 
purely technical way: representation and reading of contours, simple examples of functions of 
two variables, logarithmic scales. 

This is why the IREM of Réunion set up a working group on abaques and nomograms 
with the following objectives: 

• historic research of ancient graphical tables and methods of graphical representation 
of equations likely to be studied with the basic equipment owned by 16-18 year olds; 

• construction of precise graphical tables on large sheets of paper; 
• simulation of abaques and nomograms with dynamic geometry software; 
• conception and trialling practical tasks with 16-18 year olds, hinging on the use of 

graphical tables, both in paper form and dynamic electronic form, and on the justification of 
underlying mathematical properties. 

It was one of the trials carried out in this context that I am going to recount here (On the 
Réunion IREM website accounts of other trials on abaques and nomograms can be found 
under the leadership of M. Alain Busser, teacher at the lycée Roland-Garros (Le Tampon)). It 
took place at the Bellepierre High School, at Saint-Denis in Réunion. It was Mr Jean-Claude 
Lise’s class and I am most grateful for his welcome and collaboration. I devised and led two 
sessions of practical work of two hours each with the whole class (35 students). As the 
students had just studied the reciprocal function and the square function, I chose to base my 

input on the methods of graphical calculation using the hyperbola 1y x=  and the parabola 
2.y x=  First I will describe the activities carried out during the two sessions. I will then 

elaborate on the historical elements which inspired these activities.  

Calculating with hyperbolas 

At the start of the first session, we set off from the multiplication table, familiar to the 
students since primary school. While analysing this table (Figure 8.5), we wondered how we 
could improve it to access more numbers directly. Curves appeared linking equal products. 
The students, fresh from their teacher’s lesson on the reciprocal function, immediately 
recognised hyperbolas. After a brief review of the properties of curves, we realised that they 
could allow the creation of a ‘continuous’ table. 
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Figure 8.5. Multiplication table. 

To achieve that, all it needed was to have a network of hyperbolas xy k= , drawn 
permanently on a sheet of squared paper and marked by the values of the product k. Armed 
with such a graphical table, a multiplication is carried out in the following manner 
(Figure 8.6): if you want to calculate the product, let us say of 6 and 2, you follow the vertical 
line of the equation 6x =  and the horizontal line of the equation 2y =  until they intersect 
at A; then we see that this point A is on the hyperbola value 12, so 6 2 12.× =  The abaque 
functions in the opposite way to carry out a division: to divide 12 by 2, you look along the 
hyperbola value 12 until arriving at its point of intersection A with the horizontal line of the 
equation 2y = ; we then see that the vertical passing through A corresponds to the abscissa 6, 
so 12 2 6.÷ =   

 
Figure 8.6. How to use a hyperbolic abaque for multiplication. 
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Once the principle of this graphical multiplication table had been elucidated, the class 
was able to practise its use: I gave out an abaque on A3 paper to each pair of students to 
encourage discussion (Figure 8.7). The students settled quickly: we did a whole series of 
calculations, learning how to interpolate visually between the lines of the abaque when the 
numbers did not correspond to the lines already drawn, we estimated the accuracy, we 
wondered what to do when the numbers were outside the range [0, 10], or how to change the 
zone of the abaque to have greater accuracy when the number range is [0, 1]. 

 
Figure 8.7. Multiplication abaque. 

The first hour ended by examining an extended version of the abaque (Figure 8.8), still 
on A3 paper, allowing working in positive and negative numbers. It was an opportunity for a 
brief review of negative numbers and the rule of signs. 
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Figure 8.8. Extended multiplication abaque. 

During the second hour we tackled equations of the second degree. I gave the students 
some second degree expressions to work with and to factorise, thus clarifying the idea that 
the solution of the equation 2 0z sz p− + =  still amounted to finding two numbers x and y 
such that x y s+ =  and .xy p=  Being 16 years old, you are hardly used to working with 
parameters, so I had planned to work solely with numerical examples, but one student said: 
“You are drawing conclusions based on a few examples, but who says that it is generally true 
with other numbers?”. Pleasantly surprised by such maturity, I therefore continued with 
calculations in a more general form. 

Given that the abaque directly provides the hyperbola of the equation ,xy p=  it just 
remains to draw the straight line of equation x y s+ =  to read off graphically the abscissae of 
the points of intersection of the hyperbola and straight line, and thus to solve the second 
degree equation 2 0z sz p− + = . For example (see Figure 8.6), to solve the equation 
2 8 12 0z z− + = , we draw the straight line of equation 8x y+ =  and we read the abscissae of 

its point of intersection with the hyperbola of value 12: the solutions are therefore 2 and 6. 
Drawing the straight line of the equation 8x y+ =  is very simple, since all that is needed is to 
join the points on the axes of the coordinates (8, 0) and (0, 8). If you do not want to damage 
the abaque by writing on it, you can use a ruler or a taut string between these two points. 

Curiously, the more the students were at ease with the hyperbolas, the more they 
seemed to have forgotten everything about straight lines. It took quite a time to recall how to 
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calculate the equation of a straight line between two given points, but after a while we 
managed and the students were able to immerse themselves in the activity again. Some, 
having become experts, quickly solved several equations and discovered all the different 
possible situations (two roots, a double root, no roots). Others even protested because they 
did not think the abaque was accurate enough: they wanted me to make them one with many 
more hyperbolas! 

I had intended to end this first session by solving systems such as 5 2x y+ =  and 
3xy = − , also to exploit the second and fourth quadrants of the extended abaque, but we did 

not have time to get that far. 

Calculating with parabolas 

During the second session, I suggested that the students should work with the parabola 
of the equation 2,y x=  which they had studied recently as a curve representative of the 
square function. First of all, with numerical examples, I asked them to determine an equation 
for the straight line passing through two points A and B of the parabola, the first with a 
negative abscissa and the second positive, then to calculate the ordinate of the point of 
intersection, C, of this straight line with the y-axis (Figure 8.9). This work took a lot of time 
for the same reasons as in the first session with the hyperbolas, as the majority of students 
still had not completely mastered straight line equations. In spite of everything, we managed 
to observe that the ordinate of C seemed to be the product (give or take the sign) of the 
abscissae of A and B. Once this conjecture had been clarified, I took it upon myself to 
demonstrate the general case on the board. 

 
Figure 8.9. How to use a parabolic abaque for multiplication. 

For that, let the three points in question be A 2( , )a a− , B 2( , )b b and C (0, )c , with 0a >  

and 0b > . The gradient of the straight line AB is 
2 2

( )
b a b ab a
−

= −
− −

 . Using this for the gradient 

of AC we can obtain the equation 
2

0 ( )
c a b aa
−

= −
− −

 and hence .c ab=  Therefore the parabola, 
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together with its vertical axis, is a graphical multiplication table. Whereas the hyperbolic 
multiplication table was an abaque (the result being obtained by the concurrence of three 
lines), the new parabolic table is a nomogram (the result being obtained by the alignment of 
three points). Once the points of the parabola and the vertical axis have been marked with the 
values of ,  a b− and c, this nomogram can be used with a ruler or taut thread which is simply 
placed on the points A and B, which allows the product required to be read directly on the 
vertical axis. 

To learn how to use this table, I first gave out to each pair of students a nomogram 
using the parabola 2y x=  on A3 paper so they could follow the theoretical work as closely as 
possible. We quickly realised that this nomogram was not well adapted to calculations 
because of the rapid increase in the square function. I then gave them a second nomogram 

using the parabola
2

10
xy = , suitably graduated (Figure 8.10) which allowed them to work 

efficiently in the interval [1, 10]. This interval can always be reached by multiplying or 
dividing the given numbers by powers of 10. 

 
Figure 8.10. Parabolic multiplication nomogram. 

The second hour was dedicated to a return to second degree equations. On the parabolic 
nomogram (see Figure 8.9), we have at our direct disposal from the points of the abscissae 
a−  and b, a graphical construction of the sum a b+ and the product ab. From it we deduce a 

new solution of the equation 2 0z sz p− + = : we place the ruler on point C of the abscissa p 
and we pivot the ruler around this point until we reach a sum for a b+  equal to s; the 
numbers a and b are then the required solutions. 

The session ended by a comparison of the two techniques studied: hyperbolic 
multiplication abaque with concurrent lines versus parabolic nomogram with aligned points. 
The majority of students preferred the first method, the second seeming less precise. 
Generally speaking, they liked this work on graphical tables very much although they found 
it quite difficult. They even asked me when I was going to come back for other sessions of 
similar practical work. 
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Some history of graphical tables using hyperbolas and parabolas 

In conclusion, let us give some information on the historic sources of the previously 
described activities. As already mentioned earlier, the hyperbolic multiplication abaque is an 
invention of Louis-Ézéchiel Pouchet. The context is that of the French Revolution’s attempts 
to impose a new system of weights and measures. To help the population get used to the 
reform, article 19 of the law of 18 Germinal year III of the French Revolution prescribed a 
simplification of the conversion tools: “Instead of the conversion tables between the old and 
new measures, which had been ordered by the decree of 8 May 1790, it will be done by 
graphical scales to estimate those conversions without needing any calculation.” It was in 
response to this that Pouchet drew up a book on metrology which went through three 
editions, including graphical tables which became more and more elaborate. In the third 
edition of his book (1797), he suggested real abaques for the first time, that is, graphs from 
which you could read the results of calculations directly without any manipulation (Pouchet, 
1797). These tables allowed basic calculations to be carried out: addition, subtraction, 
multiplication, division, squaring, square rooting, the rule of three and converting units. 

Then we had to wait until 1891 for Lieutenant Julius Mandl of the Imperial Corps of 
Austrian Engineers to come up with the idea of using Pouchet’s multiplication abaque to 
solve equations of the second, third and fourth degrees (Mandl, 1891). Mandl’s article was 
almost translated into English in 1893 by Major W. H. Chippindall of the Royal Engineers 
(Chippindall, 1893).  

The solving of the second degree equation 2 0,x Ax B+ + =  by the intersection of the 
hyperbola xy B=  given by the abaque and the straight line ,x y A+ = −  shown by a ruler or a 
taut thread was explained earlier. For the third degree equation 3 2 0,x Ax Bx c+ + + =  the 
roots prove the relationships: 

1 2 3

1 2 1 3 2 3

1 2 3 .

x x x A
x x x x x x B
x x x C

+ + = −⎧
⎪

+ + =⎨
⎪ = −⎩

 

Supposing 2 3x x z+ =  and 2 3 ,x x y= the previous system becomes  

1

1

1

x z A
x z y B
x y C

+ = −⎧
⎪

+ =⎨
⎪ = −⎩

 

The elimination of z between the first two equations leads to the relationship 
2
1 1 .y x Ax B= + +  So the root 1x  appears as being the abscissa of a point of intersection of the 

equation xy C= −  and of the parabola with equation 2 .y x Ax B= + +  Through symmetry it is 
the same for the other two roots 2x  and 3.x  The previous parabola with equation 

22

4 2
A Ay B x

⎛ ⎞ ⎛ ⎞− − = +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 has its vertex at 
2

,2 4
A AB

⎛ ⎞
− −⎜ ⎟
⎝ ⎠

. For the graphical solution we have 

a parabola permanently drawn on a transparent sheet. Therefore all you have to do is to place 

this parabola on the abaque with its vertex at the point with coordinates 
2

,2 4
A AB

⎛ ⎞
− −⎜ ⎟
⎝ ⎠

 and 
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read the coordinates of where it intersects the hyperbola with equation xy C= −  on the 
abaque. This solution of the third degree equation, undoubtedly too difficult for a class of 16 
year olds, should be beneficial for older students. In his article, Mandl finally explains how to 
solve the fourth degree equation thanks to Pouchet’s abaque and the transparency with the 
fixed parabola. Without going into details, it is enough to say that we resort in a classical 
manner to the successive solving of a third degree equation and several second degree 
equations by methods we have already seen. 

Let us move on to the origins of the parabolic multiplication nomogram, used during 
the second session of practical work. For the first time we meet something like it in 1841, in 
the work of August Ferdinand Möbius (1790-1868) (Figure 8.11): on each of the parabolas 
shown in the table, if we draw a straight line joining two of the numbers marked on the 
parabola then the straight line passes through their product on the line at the top of the table 
(Möbius, 1841). However it does not seem that Möbius’ work was noticed, nor that it had any 
influence on later authors. 

 
Figure 8.11. One of Möbius’ tables from (Möbius, 1841). 

Then it was the engineer John Clark (A person about whom we know practically 
nothing except that he was a mathematics teacher at the Polytechnic School in Cairo at the 
time.) who brought to light in 1905 the parabolic multiplication nomogram as we presented it 
to the 16 year old students (Clark, 1907, 1908). He achieved it by a seemingly complex route 
but whose value lies in the fact that this method can be used for a whole range of 
relationships with three variables. The main idea is to try to construct nomograms using a 
straight line and a doubly marked conic, called ‘conic nomograms’. In the case of the 
multiplication ,αβ γ=  we can write, when α  and β  are distinct: 
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2

2

2

2

0
( , ) ( , ) 0

0

1
1 0.

0 1

x y x
x y y x y y x

x x

αβ α α

αβ γ α β β β

γ γ

α α

β β

γ

⎧= + + =⎧
⎪⎪

= ⇔ ∃ = − − ⇔ ∃ + + =⎨ ⎨
⎪ ⎪= − + =⎩ ⎩

⇔ =

−

 

The nullity of this last determinant fully expresses the alignment of the three points, of 
which two, marked by α  and β , are on the parabola with equation 2y x= and whose third, 
marked by ,γ− lies on the y-axis. 

In conclusion 

This trial reassured me that nomography is a choice area for rich and attractive practical 
activities with students of age 16 onwards. Practising the principle notions of the programme 
of study in a non-routine context, permanent interaction between algebra and geometry, 
simple and inexpensive materials and the clear enthusiasm of the students are so many 
arguments which, I hope, will convince teachers to explore this avenue. 

 
Acknowledgements: My thanks to Janet and Peter Ransom, who translated my text from the 
French.  
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