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An Object Store Service for a Fog/Edge Computing
Infrastructure based on IPFS and Scale-out NAS
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CNRS, LS2N, UMR 6004,
Polytech Nantes,
rue Christian Pauc, BP 50609,
44306 Nantes Cedex 3, France

Abstract—Fog and Edge Computing infrastructure have been
proposed to address the latency issue of the current Cloud
Computing platforms. While a couple of works illustrated the
advantages of these infrastructures in particular for the Internet
of Things (IoT) applications, elementary Cloud services that
can take advantage of the geo-distribution of resources have
not been proposed yet. In this paper, we propose a first-class
object store service for Fog/Edge facilities. Our proposal is built
with Scale-out Network Attached Storage systems (NAS) and
IPFS, a BitTorrent-based object store spread throughout the
Fog/Edge infrastructure. Without impacting the IPFS advantages
particularly in terms of data mobility, the use of a Scale-out NAS
on each site reduces the inter-site exchanges that are costly but
mandatory for the meta-data management in the original IPFS
implementation. Several experiments conducted on Grid’5000
testbed are analyzed and confirmed, first, the benefit of using
an object store service spread at the Edge and secondly, the
importance of mitigating inter-site accesses. The paper concludes
by giving few directions to improve the performance and fault
tolerance criteria of our Fog/Edge Object Store Service.

I. INTRODUCTION

The Internet of Things (IoT) brings new constraints: a huge
number of limited devices with a need of low latency com-
puting. While largely adopted, the Cloud computing paradigm
is not well suited because it relies on only a small number of
datacenters located far away from users. The Fog computing
paradigm has been proposed by Cisco to cope with this latency
requirement [1]]. The idea is to deploy dedicated servers in
micro/nano datacenters geographically spread at the Edge of
the network, that is, close to the end-users.

Figure [I] illustrates a Fog/Edge infrastructure. Each Fog
site is composed of a small number of servers providing
computation as well as storage resources to users. Users/IoT
devices that are located in the Edge and in the Extreme Edge
are connected to servers of the closest site, enabling low
latency access. Devices located in the Edge contact directly
the servers located in the Fog whereas those located in the
Extreme Edge have to cross a local network before reaching
the Fog. The one-way network latency to reach the Fog (noted
Lpog) is comprised between 10 and 100 ms (latency of a local
wireless link [2]). The latency between the sites of Fog (noted
L¢ore) 1s comprised between 50 and 100 ms (mean latency of
a Wide Area Network link [3]]). Finally the latency to reach
the Cloud (noted L¢iownq) 1S variable and unpredictable [4].
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Fig. 1: Overview of a Cloud, Fog and Edge infrastructure.

Although using Fog/Edge facilities to deliver more efficient
storage repositories has been discussed as of 2012 [1]], any
solution has been proposed yet. We started to address this
question in a preliminary study [5] with the ultimate goal
of delivering a system similar to the Simple Storage Service
(S3) of Amazon, a widely used service and a building block
for hundred of Cloud services. The main contributions of this
study were:

o A list of properties a Fog Object Store Service should
meet;

o An empirical analysis of three available storage systems,
namely Rados [6]], Cassandra [7]] and InterPlanetary File
System (IPFS) [8].

Among the three tested solutions IPFS filled most of the
criteria expected for a Fog/Edge computing infrastructure.
IPFS can be seen as an object store service built on top of
the BitTorrent protocol [9] and the Kademlia DHT [10]. Both
mechanisms are well-known protocols for their ability to scale
to a large number of nodes. While the BitTorrent protocol is
used to manipulate objects between the different peers of the
system in an efficient manner, the Kademlia DHT is in charge
of storing the objects location.

The main issue of using a DHT for the metadata man-

agement in IPFS is that each time a user wants to access



an object, it generates a remote access if the object is not
available on the requested node. This increases the access
time in addition to generate an important amount of network
traffic between the sites, especially when a large number of
objects is manipulated. In this paper, we propose to tackle
this issue by deploying on each site a local Scale-out Network
Attached Storage system (NAS). This system acts as a storage
backend for the IPFS nodes belonging to the site. This way
allows nodes to access any object stored locally on the site
without using the global DHT. Nodes interact with the DHT
only when the object they looking for has been created on
another site. To validate our proposal, we implemented a
Proof-of-Concept leveraging IPFS on top of RozoFS [11], and
conducted several experiments on the Grid’5000 testbed [12].
We emulated three sites and measured the access times as well
as the amount of network traffic exchanged between the sites
for both local and remote conditions to validate ubiquitous
access. While the results are promising to deliver a well
suited object store service for Fog/Edge infrastructures, we
discuss current limitations of our changes and propose several
directions to improve the performance while reducing as much
as possible all the inter-site exchanges.

The remaining of the paper is organized as follows: Sec-
tion [ presents in details the limitation of using a DHT in IPFS
for the metadata management. Section |III| gives an overview
our solution that couples IPFS to a Scale-out NAS. Section
deals with the experimental evaluations while Section |V] dis-
cusses two additional considerations related to our proposal.
Related work are presented in Section [VI] Finally, Section
concludes this work and gives some perspectives.

II. IPFS: OVERVIEW AND LIMITATION

As briefly introduced, IPFS has been built on top of the Bit-
Torrent protocol and the Kademlia DHT. The former enables
the efficient relocation of objects between peers composing the
infrastructure while the latter is used for the management of
the metadata. The IPFS protocol is depicted in Figure 2| We
underline that IPFS only enables the creation of immutable
objects. Figure 2(a)| depicts the creation of a new object: the
client sends its object to any node on its nearest site. This node
stores the object locally and put the location of the object in
the DHT. Because the DHT does not provide locality, the node
storing this metadata can be located in any node composing
the Fog infrastructure. In our example, node3 belonging to
Site 2 stores the location of the object that has been created
on nodel.

Figure[2(b)|illustrates what happens when the client reads an
object stored on its local site. Each time an IPFS node receives
a request for a particular object, it first, checks whether this
object is available on the node. In this case, the node sends
the object directly to the client. Otherwise, the IPFS node
should rely on the DHT protocol to locate the requested object.
That is, it should (i) compute the hash based on the object id,
(ii) contact the node in charge of the metadata, (iii) retrieve
the object from the node(s) storing it (using the BitTorrent
protocol), (iv) make a local copy while sending the data to the

client, and (v) finally update the DHT in order to inform that
there is a new replica of the object available on that node.

Figure describes what does happen when an object is
requested from another site (because the client can move from
a site to another one or because the object can be accessed by
a remote client). In any case, the client contacts a node on the
site it belongs to. Because the node does not store the object,
the protocol is similar to the previous one involving the extra
communication with the DHT. We underline that, thanks to
the implicit replication performed by the BitTorrent protocol,
if the client wants to read the object a second time on the same
node, the node will be able to satisfy the request without any
interaction as described in Figure 2(b)]

As explained in Section IPES provides better perfor-
mance than an object store deployed in the Cloud computing.
Nevertheless, it does not take advantage of the physical
topology of the Fog infrastructure: When an object is created
or available on one site due to BitTorrent copies, the other
IPFS nodes that belong to this same site are not aware of
the availability of the object and rely on the DHT to locate
the object. This is illustrated by the second get operation on
Figure Although the object is already available on node4
of Site 3, node5 contacts the DHT and retrieves the object

Site 1 Site 2
[client:]  [IPES nodel:|  [IPFS node2:| || [IPES node3:]
put object
| store object
,,,,,,, put
[ location in DHT D

(a) — Write an object.

Site 1 Site 2
’ client: ‘ ’IPFS nodel: ‘ ’ IPFS node2: ‘ ’ IPFS node3:
—— get object
‘ read object
send object
— get object —

find
ocationg |in DH;D

v

D get/read object
send object

2}

bre object

plit
—location|in DHID

Fig. 2: Network exchanges when a client writes or reads an
object using IPFS.
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(b) — Read an object stored locally.
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Fig. 2: Network exchanges when a client writes or reads an object using IPFS (Cont).

from every node that owns a copy. Accessing the DHT to read
an object stored locally on the site has two major drawbacks.
First, it increases the access times as well as the amount of
traffic exchanged between the sites and secondly, it avoids
clients to access the objects stored locally in case of network
partitioning because nodes of the DHT are unavailable. IPFS
provides an efficient way to access objects remotely thanks to
the BitTorrent protocol. But, it does not take the advantage of
the Fog topology for local access. To tackle such a limitation,
we propose to couple IPFS with a Scale-out NAS solution.

III. COUPLING IPFS AND SCALE-OUT NAS SYSTEMS

To improve IPFS in a Fog Computing context, we propose
to deploy a Scale-out NAS system independently on each site.
Each system acts as the default storage backend for all IPFS
nodes that belong to the same site as depicted in Figure[3] This
approach allows each IPFS node of one site to access data
stored by others nodes of the same site without any intrusive
changes in the IPFS code as explained in the two next sections.

A. Protocol Changes

The modifications in the protocol are illustrated in Figure

In Figure we can observe there is no change in the
protocol for the creation of a new object. The difference
appears when a client wants to access an object. Figure
depicts these changes: Any IPFS node on a site can see all the
objects manipulated by the other nodes of the same site thanks
to the Scale-out NAS system. As a consequence, regardless the
node on the local site the request is sent to, the requested node
checks if the object exists in the Scale-out NAS and sends it
to the client if it is available. Contrary to the original IPFS
design, there is no need to access the DHT and to download
the object from the other nodes located on the site.

Similarly, Figure shows how the protocol behaves in
case of remote access. When the client is connected to a
remote site, the request is sent to any node. The node checks

Site 1

Object|
istore

IPFS global DHT oouEAL

Fig. 3: Topology used to deploy an object store on top of a
Scale-Out NAS local to each site.

in the local Scale-out NAS backend if the object is found. If
it does not find the object, it uses the DHT to determine its
location. Then, it downloads the objects from a node located
on the remote site, stores it locally, i.e., in the shared backend
and updates the DHT. Next accesses for this object from
any node of this site will be satisfied without any extra-
communication with the DHT.

To sum up, our approach limits the amount of network
traffic sent in case of local reads: when a client reads an
object available locally on the site, there is no need to access
the DHT, regardless the node the request is sent to. In the
other situations, the scenario as well as the amount of traffic
exchanged between the site remains the same as with the
default approach. We discuss in the next section, the evaluation
we performed to quantify this gain.
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Fig. 4: Sequence diagrams of the network traffics when a client writes or reads an object using IPFS on top of DFS locally
deployed on each site.

B. IPFS Code Modifications

We performed some modifications in the source code of
IPFS[H First, we moved the folder used by IPFS to store the
objects on the Scale-out NAS mountpoint without moving the
local database used by each node. Secondly, we removed the
cache used by the blockstore module of IPFS. The cache is
designed to keep in memory the fact an object exists or not.
This modification is mandatory in order to enforce a node to
check in the Scale-out NAS system before using the DHT

Uhttps://github.com/bconfais/go-ipfs/tree/common_backend_v1a

to locate the requested object. Finally, we modified the way
IPFS requests objects to other nodes. By default, each time an
IPFS node wants to read an object stored remotely, it looks
for the peer responsible for the object by using the DHT and
contacts the nodes storing it. However, it does not request only
this object, but all the previous requested objects for which
the download is not finished yet. This unnecessary increases
the network traffic between sites. The modification consists to
request only the object to the nodes specified in the DHT.

Finally, we disabled the replication of metadata in IPFS
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in order to measure the minimum amount of network traffic
exchanged between the sites that is possible to have. Disabling
the replication of metadata has been done for all the software
architectures we considered. We also removed the limit of the
number of threads created by IPFS in order to get the best
access times as possible.

IV. EXPERIMENTAL EVALUATION

In this experimental evaluation, we compare the perfor-
mance of (i) a Cloud based object-store service, (ii) the default
IPFS solution and (iii) our approach coupling IPFS and Scale-
out NAS systems. We underline the comparison with a Cloud
based solution aims to illustrate the relevance of designing
an object-store service which can benefit from the Fog/Edge
specifics.

The first paragraph presents our experimental protocol, the
second deals with local accesses and finally, the third discusses
results we gathered for remote access scenarios.

A. Material and Method

Our evaluations have been performed using three different
software architectures:

1) IPFS in its default configuration deployed into a regular
Cloud;

2) IPFS in its default configuration deployed across a
Fog/Edge infrastructure;

3) IPFS coupled with independent Scale-out NAS solutions
in a Fog/Edge context.

We selected RozoFS [11] as the Scale-out NAS solution.
RozoFS is a POSIX compliant open-source solution that
achieves good performance in throughput and I/O rate both
for sequential and random access. Similarly to other Scale-
out network file systems, it uses a metadata-server to locate
the data. The distribution of the data across the I/O servers is
realized by the Mojette erasure code that makes the system
fault tolerant (2 Mojette projections out 3 are necessary to
reconstruct the data). More details are given in the article of
Pertin et al. [11]. We emphasize this aspect because it leads
to an overhead in writing (50% overhead in size i.e., one
redundant projection to combat one failure). This aspect is
further discussed in Section [V]

We consider that each storage node acts as both an IPFS
node and a storage node of RozoFS (in fact, IPFS is a client
of RozoFS through the rozofsmount daemon). To avoid
any bias, we used tmpfs as the low level back-end for the
three architectures and drop all caches after each write or
get operation. Finally, we highlight that our proposal can be
coupled with any kind of Scale-out network file systems such
as GlusterFS [13]], Lustre [14]] or even Rados [6]]. We chose
RozoFS because we have a good knowledge of the internal
mechanisms of the system, which helped us for the analysis
of the results. Moreover, RozoFS achieves good performance
regarding 1/O access.

The topology we evaluated corresponds to the one illustrated
in Figure The platform is composed of 3 sites, each
containing 6 nodes: 4 storage nodes, a metadata server for

RozoFS and a client. The Cloud-based IPFS is composed of
12 TPFS nodes (the same number of nodes as used in the Fog
experiments). Topology does not vary so that we do not have
any node churn. The one-way network latencies between the
different nodes have been set in order to be representative to

e local wireless link [2], L;,, = 10ms, latency between
clients and the fog site they belong to;

o wide area network link [3], L.,,e = 50ms, latency
between each fog site;

« and the latency to reach a cloud [15]; L¢cioug = 100ms.

Inside each Fog site and inside the Cloud, the latency between
the servers has been set to Lg;;. = 0.5ms. Latencies were
emulated using the Linux Traffic Control Utility (tc). We did
not modified the throughput of the network links, i.e., 10Gbps
in our testbed for both intra and inter-sites links. According to
Padhye et al. [16], the TCP throughput is depending on packet
loss and link latency. Measuring the throughput using iperf
shows 2.84 Gbps for clients to reach a Fog node, 9.41 Gbps
between the Fog nodes of a same site, and 533 Mbps between
the sites. The measured throughput to reach the Cloud platform
is 250 Mbps.
We performed experiments on two scenarios:

o a first scenario where one client per site writes objects
on the site it belongs to and reads them;

o asecond scenario where one client located on the first site
writes objects and then, another client located on another
site reads them.

The first scenario is designed to evaluate the performance
in terms of locality and isolation between the workloads
whereas the second one enables us to quantify the cost of
accessing objects from another location. For every write and
read operation of each scenario, each client sends the request
to an IPFS node selected randomly on the site it belongs
to in order to balance the load among all the nodes of the
site (for the cloud-based scenario, the selection is performed
throughout the 12 nodes).

Experiments have been performed in the spirit of repro-
ducible research?} We measured access times using our own
benchmark script and the amount of data exchanged between
the sites using iptables. The access time corresponds to
the time to complete the operation from the client point of
view. We highlight that we previously performed experiments
using the Yahoo Cloud System Benchmark [17] with an IPFS
module we developed [S]. However, YCSB adds several bias
that prevent us to finely analyze the results. We voluntary
choose to develop our own benchmark in order to improve
the quality of our analysis.

Each scenario has been run 10 times for consistency in
results.

B. Write/Read Operations from the Same Location

In this section, we discuss the results obtained for the
local access scenario, i.e., when each client manipulates data

2Qur benchmark code as well as results are available at https:/github.com/
bconfais/benchmark:


https://github.com/bconfais/benchmark
https://github.com/bconfais/benchmark

simultaneously from their respective site. We also compare the
access times we get in the case where objects are stored in a
regular Cloud infrastructure.

1) Access Times: Table I shows the mean time to put or get
an object in each software architecture. The number of objects
as well as their size correspond to what is written and read on
each site in parallel.

Table presents the access times for the Cloud architec-
ture. Each client (3 in our experiment) writes objects on their
closest site and reads them. The clients work simultaneously.
Results show significant access times with respect to the
amount of data that is manipulated. Creating a single object
of 256 KB takes 1.72 seconds and it requires up to 3.07
seconds in average for one object of 10 MB. If we increase
the number of access in parallel, the maximum throughput
that can be obtained for write operations is around 36 MB/sec
(100 x 10/27.58). Access times for read operations are better
than the write ones for several reasons. First, some objects
are retrieved without any indirection to the DHT (i.e., when
the IPFS request is sent to the IPFS node that stores the
requested object). Secondly, the TCP throughput is higher
for downloading than uploading with a maximum around
90 MB/sec (100x 10/11.24). This is due to the management of
Linux TCP connections and the block granularity of IPFS for
sending objects. In any case, these values are still important
with respect to the amount of data that is manipulated. It
confirms the impact of the latency on the TCP throughput [16].

Table [I(b)] presents the access times obtained when IPFES is
deployed at the Fog level. Results clearly show the interest
of deploying the object store service on Fog/Edge resources.
First, access times are significantly better with a maximum
throughput per client around 500 MB/sec (4 Gbps). That is,
half of the optimal performance for a 10 Gbps network inter-
face (5 Gbps). Secondly, the impact between the clients is only
related to the DHT traffic whereas in the Cloud architecture,
all accesses are distributed across all nodes.

Tables shows the times to write and read objects using
IPFS on top of RozoFS. First, we observe in the two Fog
architectures, the writing times are in the same order of
magnitude. It takes 3.92 seconds per object to write 100
objects of 10MB with the default approach and 3.97 seconds
using the couple IPFS with RozoFS. In other words, using
a Scale-out NAS system such as RozoFS does not add an
overhead. This is a valuable result because we can erroneously
believe that using a complex software brick such as a Scale-out
network file system can add some penalties. For reading, we
observe the couple IPFS/RozoFS has better access times than
the default approach. This is particularly visible for accessing
a small number of small objects. As an example, it takes
0.14 seconds to read a 10 MB object whereas it requires 0.25
seconds with the original IPFS (almost twice). As previously
described in Figure fi(b)] the use of a Scale-out NAS enables
IPFS nodes to directly satisfy the request wherever the object
has been created on the site. The gain becomes smaller for
large objects as the cost of accessing the DHT becomes less
important regarding the time to send the object to the client.

100
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IPFS on top of RozoFS
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Amount of data sent between fog sites (MB)
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100 x 1TMB

(b) — Read

Fig. 5: Cumulative amount of network traffic exchanged
between all the sites while clients write and read objects
located on their sites.

Moreover, as the probability to contact the node storing the
object is 1/4 in the original IPFS architecture, reading a
large number of objects leads to a less significant gain (over
100 requests, 25 will be directly satisfied). With larger sites
(i.e., composed of a more important number of servers), the
probability to contact the right node directly will decrease
significantly and the gain of using a Scale-out system will
be more visible.

2) Network Traffic: Figures [5(a)] and [5(b)| show the amount
of network traffic exchanged between sites while writing and
reading for the IPFS and IPFS/RozoFS solutions. We do
not present the traffic for the Cloud-based approach as the
traffic is equal to the amount of manipulated data. Moreover,
we observe the amount of traffic sent between the sites is
depending only on the number of accessed objects and not
on the object sizes. So, for a better readability, we arbitrary
choose to present only the results for objects of 1 MB.

Figure [5(a)| presents the value for write operations. As
expected, the same amount of network traffic is sent using
both approaches. In addition to the messages related to the
DHT (heartbeats), the two approaches send the location of the
written objects..

For reading, the traffic generated by the default approach is
mainly the DHT requests: the more objects are manipulated,



Mean writing time (seconds) Mean reading time (seconds)
Size 1l 5s6kB | 1MB | 10MB Size 1l »s6kB | 1MB | 10MB
Number Number
w 1 1.72 2.14 3.07 1 1.47 1.88 3.04
2. [ 10 1.53 2.00 7.97 10 1.35 1.77 522
2 100 2.29 5.55 27.58 100 1.57 2.62 11.24
(a) — Using a centralized Cloud infrastructure to store all the objects.
Mean writing time (seconds) Mean reading time (seconds)
Size 1l 256kB | 1MB | 10MB Size 1l 2s6kB | 1MB | 10MB
Number Number
w |1 0.17 0.22 0.34 1 0.25 0.28 0.54
2. 10 0.17 0.21 0.40 10 0.26 0.27 0.54
2 100 0.33 1.07 392 100 0.29 0.50 1.98
(b) — Using the default approach of IPFS.
Mean writing time (seconds) Mean reading time (seconds)
Size 1l 5s6kB | 1MB | 10MB Size 1l 2s6kB | 1MB | 10MB
Number Number
w 1 0.18 0.23 0.38 1 0.14 0.18 0.31
2. [ 10 0.17 0.22 0.43 10 0.14 0.18 0.36
2 100 0.33 1.08 3.97 100 0.19 0.36 1.83

(c) — Using IPFS on top of a RozoFS cluster deployed in each site.

TABLE I: Mean time (seconds) to write or read one object under different conditions

(the

higher the traffic. In our approach using RozoFS, we only
observe the traffic related to the management of the DHT.
Thus according to the duration of the experiment and because
the amount of data is really low, we can see some fluctuations
monitored by the standard deviation.

To conclude, our approach using a Scale-out NAS is better
than the two other approaches, both for access times and for
the amount of traffic sent in reading. The Scale-out NAS
removes the need to access the DHT when clients read objects
already available somewhere on the site it is connected to.

C. Write from One Location, Read from Another One

In this section, we discuss the results obtained for the remote
access scenario, i.e., when one client creates data on its site
and another client from another site access the created objects
twice. Only read results are presented because writing locally
has been already discussed in the previous section. Also, we
do not consider the Cloud-based architecture in this scenario.
Similarly to the write results, the read values will follow the
same trend as to the one previously presented (there is no
change because all clients are at the same distance from the
Cloud).

1) Access Times: Tables and [[I(b)| show the access
times for the first and the second read operations.

In the first read, the times are in the same order of
magnitude. This is due because the two approaches use the
DHT to retrieve the location of the object and then copy the
object on the second site. This trend corresponds to what we
describe in Figures and the exchanges between the
sites are the same. The requested node looks for the object
location in the DHT and downloads the object from the node
it is stored on. The only difference is the remote node retrieves
the object from the Scale-out NAS before sending it to the

Amount of data sent between fog sites (MB)

Amount of data sent between fog sites (MB)

Fig. 6: Cumulative amount of network traffic exchanged
between all the sites while clients read objects twice.

number on the left indicates the number of operations that are executed in parallel on each client).
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Mean reading time (seconds) Mean reading time (seconds)
First read Second read
Size 1l 256kB | 1MB | 10MB Size 1l 2s6kB | 1MB | 10MB
Number Number
w |1 1.39 1.92 13.07 1 1.01 1.85 3.70
2. [ 10 1.01 1.92 6.43 10 0.70 1.31 5.95
2 100 0.94 2.02 9.76 100 0.71 1.37 6.08
(a) — Using the default approach of IPFS.
Mean reading time (seconds) Mean reading time (seconds)
First read Second read
Size 1l 5s6kB | 1MB | 10MB Size |l 5s6kB | 1MB | 10MB
Number Number
w |1 1.35 3.86 13.21 1 0.15 0.19 0.31
2. [ 10 I.11 2.17 8.40 10 0.14 0.19 0.35
2 100 1.09 2.51 9.22 100 0.33 0.46 1.86

(b) — Using IPFS on top of a RozoFS cluster deployed in each site.

TABLE II: Mean time (seconds) to read one object twice with IPFS using the default approach (a) and using a shared
backend in each site (b).

node that requests it. The object is finally sent back to the
client. According to the presented access times, this indirection
through RozoFS on the remote site does not add an important
overhead.

For the second read, we observe our approach gets better
access times than the default one. As an example, with
RozoFS it takes 1.86 seconds per object to read 100 objects of
10 MB whereas it takes 6.08 seconds in the default approach.
Although the object is copied locally in both approaches, the
probability to contact the right node for the second read (i.e.,
the node that satisfied the first request) is 1/4. If the client
does not contact the right node, the process will be the same
as for the first read. The only difference is the DHT will inform
the node that it can retrieve the object from both the node on
the remote site and from the node that previously retrieved
and copied the object in the first read. In the IPFS/RozoFS
approach, because of the shared back-end, objects are seen
as stored locally by the requested node, the DHT is not
accessed and nothing is downloaded from the remote site. As
a consequence, access times are much faster. This behavior
has been explained in Figure and

a) Network Traffic: Figures and show the
cumulative amount of network traffic exchanged between the
sites during the two reads.

For the first read, the same amount of data is exchanged
between the sites in the two approaches. As previously ex-
plained, the objects must be downloaded from the site they
were created. We highlight the traffic related to the DHT
management is not significant enough in comparison to the
amount of exchanged data to be visible.

For the second read, a lot of traffic is sent between the sites
for the default IPFS approach. As explained in addition to the
DHT request, the object is retrieved from the neighborhood
and once again from the remote node where the object was
created. Our IPFS/RozoFS approach enables the object store
service to satisfy the requests completely by the local NAS.
This way reduces the amount of traffic between sites only to
the mandatory one. Once an object has been retrieved it is

available for any node of the site. The default approach uses
a local replica too but it is not shared among all the nodes of
the site. Thus, nodes need to access the DHT to be able to
retrieve it.

Although the IPFS/RozoFS Proof-of-Concept is promising,
we discuss in the next section two additional considerations.

V. ADDITIONAL ANALYSIS

In this section, we discuss the possible side effects of the
storage spaces induced by the fault tolerance of the underlying
Scale-out NAS. We also discuss a performance limitation that
may occur in some cases and propose to solve it by clustering
IPFS nodes within a site into one virtualized IPFS node.

A. Storage Space Control

It is noteworthy that an approach based on a Scale-out NAS
may add an overhead in terms of storage space according to
the underlying fault tolerance policy (full replication, erasure-
code etc.). When IPFS is used alone, the object is written
on the IPFS node receiving it, without any replication. In our
IPFS/RozoFS implementation, RozoFS writes a 50% overhead
due to the Mojette erasure code [11] in order to support one
failure at the NAS level. However, our proposal becomes
more space efficient than the original IPFS for subsequent
reads: in the default approach the object is copied on each
node receiving a request for it. As explained in Section [I}
Figure the object is written both on the first node it
was written on and on the node that read it. In our approach
using a Scale-out NAS, an object is written once for all. This
prevents multiple duplications of one object on the same site.
The object is only copied on an other sites in case of remote
access as described in Section [[II} Figure

In other words, the default policy of IPFS consists of
copying objects locally each time a node wants to access it can
overpass largely the small side effect introduced by the fault
tolerance capability of the underlying Scale-out NAS backend.



B. Performance Limitation and Future Work

From a performance viewpoint, it is important to underline
that our current implementation can be improved. Indeed,
when an IPFS node wants to access an object, it retrieves
the object from all the nodes having it (see Figure 2(b) in
Section [I). This feature comes from the BitTorrent protocol is
interesting as it enables IPFS to mitigate the negative impact
of overloaded nodes: If one node is overloaded, any other
node storing the object will be able to satisfy the request in
an efficient way.

In our approach using a Scale-out NAS, the situation differs
because the DHT knows at most one node per site: either the
node where the client has written the object or the first node
used to retrieve the object in case of a remote access. As
described in Section Figure the Site 3: IPFS node4
can download the object only by contacting Site 1: IPFS nodel
because it is the original node that created the object (the DHT
stores Site1:IPFS nodel as the node owning the object). Site 3:
IPES node4 does not know that Sitel:IPFS node2 has also
access to the object stored in the Scale-out NAS. This situation
can lead to bottleneck by overloading Sitel:IPFS nodel.

Similarly, if Sitel:IPFS nodel crashes, the object will be
unreachable from any node belonging to remote sites because
IPES nodel is the only entry point for that object in the DHT.
This is rather frustrating because the object is still available
by contacting any other node belonging to Sitel (Site 1: IPFS
node?2, for instance).

A solution for this problem may be not to add the address
of a node in the DHT but an identifier of the site the object
is. In this situation, remote nodes will be able to download
the objects from all the nodes located on the sites the object
is. Another solution can be placing all the IPFS nodes of a
site at the same place in the DHT, making all the nodes of
a site responsible for the same range of keys so that there
is no distinction between the nodes of a site (as an example,
Site 1: IPFS nodel and Site 1: IPFS node2 will have the same
identifier). Evaluating pros/cons of each possibility is let as
future work.

VI. RELATED WORKS

There exists many approaches to manage the data location
in an object store. But most of them either does not provide
flexibility in data placement or they generate an important
amount of network traffic by announcing the location of the
objects to all nodes.

Using a hashing function or a placement function like
CRUSH [18] is not easy because the topology has to be
distributed in a consistent way between all the nodes. Also, the
function does not provide a flexible way to specify the location
of every objects. Indeed, with CRUSH, to place explicitly each
object, users have to specify placement rule for each of them
which is not scalable.

Gossip enables this flexibility by distributing the location of
each object to all nodes. But the network traffic is depending
on the number of stored objects. Also, nodes have to store

the location of every object that may require a lot of storage
space.

Some approaches like the approach used by Cassandra [7]]
and Dynamo [19] combine the gossip and hashing. As an
example, in Cassandra, the ranges of keys the nodes are
responsible for is gossiped between the nodes and then nodes
determine the locations of objects by hashing the object key.
This approach is a trade-off between gossiping the location of
each object and not be able to move the objects because of a
hashing function. The drawback of this approach is to manage
the location of the objects by groups only. Placing each object
independently leads to generate as much traffic as a traditional
gossip.

VII. CONCLUSION

In this paper, we proposed to revise the IPFS proposal in
order to cope with the Fog/Edge Computing context. Our pro-
posal leverages a Scale-out NAS system deployed on each site
in order to avoid the use of the global DHT when the requested
object is available locally on the site. We implemented a Proof-
of-Concept using RozoFS, an efficient Scale-out network file
system. Evaluation using Grid’5000 showed that leveraging a
Scale-out NAS on each site reduces the access times as well
as the amount of network traffic sent between the sites. We
also showed our approach does not impact the IPFS mobility
criteria. Accessing an object from a remote site is also efficient
in addition to reducing inter-site network traffic. The Scale-
out NAS also provides IPFS an access to local files in case of
network partitioning because the DHT is only accessed when
a read is performed from a remote site. We discussed two
additional aspects related to the storage space and possible
performance improvements.

As a future work, we plan to investigate the benefit of
coupling IPFS with a Scale-out NAS system where all the
IPFS nodes of a site are considered as a single node in the
DHT, avoiding performance and reliability problems previ-
ously described. Moreover, we would investigate the interest of
placement strategies across the sites. One can envision to apply
replication strategies between nearby sites. These strategies
can be defined by end-users according to their requirements
and the underlying network topology.
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