Ergodic measures on spaces of infinite matrices over non-Archimedean locally compact fields

Abstract : Let $F$ be a non-discrete non-Archimedean locally compact field and $\mathcal{O}_F$ the ring of integers in $F$. The main results of this paper are Theorem 1.2 that classifies ergodic probability measures on the space $\mathrm{Mat}(\mathbb{N}, F)$ of infinite matrices with enties in $F$ with respect to the natural action of the group $\mathrm{GL}(\infty,\mathcal{O}_F) \times \mathrm{GL}(\infty,\mathcal{O}_F)$ and Theorem 1.6 that, for non-dyadic $F$, classifies ergodic probability measures on the space $\mathrm{Sym}(\mathbb{N}, F)$ of infinite symmetric matrices with respect to the natural action of the group $\mathrm{GL}(\infty,\mathcal{O}_F)$.
Liste complète des métadonnées

Cited literature [22 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01483629
Contributor : Yanqi Qiu <>
Submitted on : Monday, March 6, 2017 - 11:19:44 AM
Last modification on : Friday, April 12, 2019 - 4:22:51 PM
Document(s) archivé(s) le : Wednesday, June 7, 2017 - 1:03:31 PM

File

1605.09600.pdf
Files produced by the author(s)

Identifiers

Citation

Alexander I. Bufetov, Yanqi Qiu. Ergodic measures on spaces of infinite matrices over non-Archimedean locally compact fields. Compositio Mathematica, Foundation Compositio Mathematica, 2017, 153 (12), pp.2482-2533. ⟨10.1112/S0010437X17007412⟩. ⟨hal-01483629⟩

Share

Metrics

Record views

477

Files downloads

69