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The Complex-Step Derivative Approximation
JOAQUIM R. R. A. MARTINS
University of Toronto Institute for Aerospace Studies
and
PETER STURDZA and JUAN J. ALONSO
Stanford University

The complex-step derivative approximation and its application to numerical algorithms are pre-
sented. Improvements to the basic method are suggested that further increase its accuracy and
robustness and unveil the connection to algorithmic differentiation theory. A general procedure
for the implementation of the complex-step method is described in detail and a script is developed
that automates its implementation. Automatic implementations of the complex-step method for
Fortran and C/C++ are presented and compared to existing algorithmic differentiation tools. The
complex-step method is tested in two large multidisciplinary solvers and the resulting sensitivities
are compared to results given by finite differences. The resulting sensitivities are shown to be as
accurate as the analyses. Accuracy, robustness, ease of implementation and maintainability make
these complex-step derivative approximation tools very attractive options for sensitivity analysis.

Key Words: Automatic differentiation, forward mode, complex-step deriva-tive approximation, 
overloading, gradients, sensitivities

1. INTRODUCTION
Sensitivity analysis has been an important area of engineering research, espe-
cially in design optimization. In choosing a method for computing sensitivities,
one is mainly concerned with its accuracy and computational expense. In cer-
tain cases it is also important that the method be easily implemented.

One method that is very commonly used is finite differencing. Although it
is not known for being particularly accurate or computationally efficient, the
biggest advantage of this method resides in the fact that it is extremely easy to
implement.
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Analytic and semi-analytic methods for sensitivity analysis are much more
accurate and can be classified in terms of both derivation and implementa-
tion. The continuous approach to deriving the sensitivity equations for a given
system consists in differentiating the governing equations first and then dis-
cretizing the resulting sensitivity equations prior to solving them numerically.
The alternative to this—the discrete approach—is to discretize the governing
equations first and then differentiate them to obtain sensitivity equations that
can be solved numerically. Furthermore, for both the discrete and continuous
approaches, there are two ways of obtaining sensitivities: the direct method or
the adjoint method.

In terms of implementation, the continuous approach can only be derived
by hand, while the discrete approach to differentiation can be implemented
automatically if the program that solves the discretized governing equations is
provided. This method is known as algorithmic differentiation, computational
differentiation or automatic differentiation. It is a well-known method based
on the systematic application of the chain rule of differentiation to computer
programs [Griewank 2000; Corliss et al. 2001]. This approach is as accurate as
other analytic methods, and it is considerably easier to implement.

The use of complex variables to develop estimates of derivatives originated
with the work of Lyness and Moler [1967] and Lyness [1967]. Their papers
introduced several methods that made use of complex variables, including a
reliable method for calculating the nth derivative of an analytic function. This
theory was used by Squire and Trapp [1998] to obtain a very simple expression
for estimating the first derivative. This estimate is suitable for use in mod-
ern numerical computing and has been shown to be very accurate, extremely
robust and surprisingly easy to implement, while retaining a reasonable com-
putational cost. The potential of this technique is now starting to be recognized
and it has been used for sensitivity analysis in computational fluid dynamics
(CFD) by Anderson et al. [1999] and in a multidisciplinary environment by
Newman et al. [1998]. Further research on the subject has been carried out by
the authors [Martins et al. 2000, 2001; Martins 2002].

The objective of this article is to shed new light on the theory behind the
complex-step derivative approximation and to show its relation to algorithmic
differentiation, further contributing to the understanding of this relatively new
method. On the implementation side, we focus on developing automatic imple-
mentations, discussing the trade-offs between the complex-step method and
algorithmic differentiation when programming in Fortran and C/C++. Finally,
computational results corresponding to the application of these tools to large-
scale algorithms are presented and compared with finite-difference estimates.

2. THEORY

2.1 First Derivative Approximations
Finite-differencing formulas are a common method for estimating the value
of derivatives. These formulas can be derived by truncating a Taylor series
expanded about a point x. A common estimate for the first derivative is the
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forward-difference formula

f ′(x) = f (x + h) − f (x)
h

+ O(h), (1)

where h is the finite-difference interval. The truncation error is O(h), and there-
fore this represents a first-order approximation. Higher-order finite-difference
approximations can also be derived by using combinations of alternate Taylor
series expansions.

When estimating sensitivities using finite-difference formulas we are faced
with the “step-size dilemma,” that is, the desire to choose a small step size to
minimize truncation error while avoiding the use of a step so small that errors
due to subtractive cancellation become dominant [Gill et al. 1981].

We now show that an equally simple first derivative estimate for real func-
tions can be obtained using complex calculus. Consider a function, f = u + iv,
of the complex variable, z = x+i y . If f is analytic—that is, if it is differentiable
in the complex plane—the Cauchy–Riemann equations apply and

∂u
∂x

= ∂v
∂ y

, (2)

∂u
∂ y

= − ∂v
∂x

. (3)

These equations establish the exact relationship between the real and imagi-
nary parts of the function. We can use the definition of derivative in the right-
hand side of the first Cauchy–Riemann equation (2) to write

∂u
∂x

= lim
h→0

v(x + i( y + h)) − v(x + i y)
h

, (4)

where h is a real number. Since the functions that we are interested in are
originally real functions of real variables, y = 0, u(x) = f (x) and v(x) = 0.
Equation (4) can then be rewritten as

∂ f
∂x

= lim
h→0

Im [ f (x + ih)]
h

. (5)

For a small discrete h, this can be approximated by

∂ f
∂x

≈ Im [ f (x + ih)]
h

. (6)

We call this the complex-step derivative approximation. This estimate is not
subject to subtractive cancellation errors, since it does not involve a difference
operation. This constitutes a tremendous advantage over the finite-difference
approximations.

In order to determine the error involved in this approximation, we repeat
the derivation by Squire and Trapp [1998] which is based on a Taylor series
expansion. Rather than using a real step h, to derive the complex-step derivative
approximation, we use a pure imaginary step, ih. If f is a real function of a
real variable and it is also analytic, we can expand it as a Taylor series about
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a real point x as follows:

f (x + ih) = f (x) + ihf ′(x) − h2 f ′′(x)
2!

− ih3 f ′′′(x)
3!

+ · · · . (7)

Taking the imaginary parts of both sides of this Taylor series expansion (7) and
dividing it by h yields

f ′(x) = Im[ f (x + ih)]
h

+ h2 f ′′′(x)
3!

+ · · · . (8)

Hence, the approximation is an O(h2) estimate of the derivative of f . Notice
that if we take the real part of the Taylor series expansion (7), we obtain the
value of the function on the real axis, that is,

f (x) = Re[ f (x + ih)] + h2 f ′′(x)
2!

− · · · , (9)

showing that the real part of the result give the value of f (x) correct to O(h2).
The second-order errors in the function value (9) and the function deriva-

tive (8) can be eliminated when using finite-precision arithmetic by ensuring
that h is sufficiently small. If ε is the relative working precision of a given
algorithm, we need an h such that

h2
∣∣∣∣ f ′′(x)

2!

∣∣∣∣ < ε| f (x)|, (10)

to eliminate the truncation error of f (x) in the expansion (9). Similarly, for the
truncation error of the derivative estimate to vanish, we require that

h2
∣∣∣∣ f ′′′(x)

3!

∣∣∣∣ < ε| f ′(x)|. (11)

Although the step h can be set to extremely small values—as shown in
Section 2.2—it is not always possible to satisfy these conditions (10, 11), es-
pecially when f (x), f ′(x) tend to zero.

2.2 A Simple Numerical Example
Since the complex-step approximation does not involve a difference operation,
we can choose extremely small step sizes with no loss of accuracy.

To illustrate this point, consider the following analytic function:

f (x) = ex√
sin3 x + cos3 x

. (12)

The exact derivative at x = 1.5 is computed analytically to 16 digits and then
compared to the results given by the complex-step formula (6) and the forward
and central finite-difference approximations.

Figure 1 shows that the forward-difference estimate initially converges to
the exact result at a linear rate since its truncation error is O(h), while the
central-difference converges quadratically, as expected. However, as the step
is reduced below a value of about 10−8 for the forward-difference and 10−5 for
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Fig. 1. Relative error in the sensitivity estimates given by the finite-difference and the complex-
step methods using the analytic result as the reference; ε = | f ′ − f ′

ref |/| f ′
ref |.

the central difference, subtractive cancellation errors become significant and
the resulting estimates are unreliable. When the interval h is so small that
no difference exists in the output (for steps smaller than 10−16), the finite-
difference estimates eventually yields zero and then ε = 1.

The complex-step estimate converges quadratically with decreasing step
size, as predicted by the truncation error estimate. The estimate is practically
insensitive to small step sizes and, for any step size below 10−8, it achieves
the accuracy of the function evaluation. Comparing the optimum accuracy of
each of these approaches, we can see that, by using finite differences, we only
achieve a fraction of the accuracy that is obtained by using the complex-step
approximation.

Note that the real part of the perturbed function also converges quadrat-
ically to the actual value of the function, as predicted by the Taylor series
expansion (9).

Although the size of the complex step can be made extremely small, there is
a lower limit when using finite-precision arithmetic. The range of real numbers
that can be handled in numerical computations is dependent on the particular
compiler that is used. In this case, double precision arithmetic is used and
the smallest nonzero number that can be represented is 10−308. If a number
falls below this value, underflow occurs and the representation of that number
typically results in a zero value.

2.3 Function and Operator Definitions
In the derivation of the complex-step derivative approximation for a func-
tion f (6), we assume that f is analytic, that is, that the Cauchy–Riemann
equations (2, 3) apply. It is therefore important to determine to what extent
this assumption holds when the value of the function is calculated by a nu-
merical algorithm. In addition, it is useful to explain how real functions and
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operators can be defined such that the complex-step derivative approximation
yields the correct result when used in a computer program.

Relational logic operators such as “greater than” and “less than” are usually
not defined for complex numbers. These operators are often used in programs,
in conjunction with conditional statements to redirect the execution thread.
The original algorithm and its “complexified” version must obviously follow the
same execution thread. Therefore, defining these operators to compare only the
real parts of the arguments is the correct approach. Functions that choose one
argument such as the maximum or the minimum values are based on relational
operators. Therefore, following the previous argument, we should also choose
a number based on its real part alone.

Any algorithm that uses conditional statements is likely to be a discontinu-
ous function of its inputs. Either the function value itself is discontinuous or the
discontinuity is in the first or higher derivatives. When using a finite-difference
method, the derivative estimate is incorrect if the two function evaluations are
within h of the discontinuity location. However, when using the complex-step
method, the resulting derivative estimate is correct right up to the disconti-
nuity. At the discontinuity, a derivative does not exist by definition, but if the
function is continuous up to that point, the approximation still returns a value
corresponding to the one-sided derivative. The same is true for points where a
given function has singularities.

Arithmetic functions and operators include addition, multiplication, and
trigonometric functions, to name only a few. Most of these have a standard
complex definition that is analytic, in which case the complex-step derivative
approximation yields the correct result.

The only standard complex function definition that is non-analytic is the ab-
solute value function. When the argument of this function is a complex number,
the function returns the positive real number, |z| =

√
x2 + y2. The definition

of this function is not derived by imposing analyticity and therefore it does not
yield the correct sensitivity when using the complex-step estimate. In order to
derive an analytic definition of the absolute value function, we must ensure
that the Cauchy–Riemann equations (2, 3) are satisfied. Since we know the
exact derivative of the absolute value function, we can write

∂u
∂x

= ∂v
∂ y

=
{ −1, if x < 0,

+1, if x > 0.
(13)

From equation (3), since ∂v/∂x = 0 on the real axis, we get that ∂u/∂ y = 0 on
the same axis, and therefore the real part of the result must be independent
of the imaginary part of the variable. Therefore, the new sign of the imaginary
part depends only on the sign of the real part of the complex number, and an
analytic “absolute value” function can be defined as

abs(x + iy) =
{ −x − iy, if x < 0,

+x + iy, if x > 0.
(14)

Note that this is not analytic at x = 0 since a derivative does not exist for the
real absolute value. In practice, the x > 0 condition is substituted by x ≥ 0 so
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Table I. The Differentiation of the Multiplication Operation
f = x1x2 with Respect to x1 using Algorithmic Differentiation

in Forward Mode and the Complex-Step Derivative
Approximation

Forward AD Complex-Step Method

�x1 = 1 h1 = 10−20

�x2 = 0 h2 = 0
f = x1x2 f = (x1 + ih1)(x2 + ih2)
� f = x1�x2 + x2�x1 f = x1x2 − h1h2 + i(x1h2 + x2h1)
∂ f /∂x1 = � f ∂ f /∂x1 = Im f /h1

that we can obtain a function value for x = 0 and calculate the correct right-
hand-side derivative at that point.

2.4 The Connection to Algorithmic Differentiation
When using the complex-step derivative approximation, in order to effectively
eliminate truncation errors, it is typical to use a step that is many orders of
magnitude smaller than the real part of the calculation. When the truncation er-
rors are eliminated, the higher-order terms of the derivative approximation (8)
are so small that they vanish when added to other terms using finite-precision
arithmetic.

We now observe that by linearizing the Taylor series expansion (7) of a com-
plex function about x we obtain

f (x + ih) ≡ f (x) + ih
∂ f (x)
∂x

, (15)

where the imaginary part is exactly the derivative of f times h. The end result
is a sensitivity calculation method that is equivalent to the forward mode of
algorithmic differentiation, as observed by Griewank [2000, chap. 10, p. 227].

Algorithmic differentiation (AD) is a well-established method for estimating
derivatives [Griewank 2000; Bischof et al. 1992]. The method is based on the
application of the chain rule of differentiation to each operation in the program
flow. For each intermediate variable in the algorithm, a variation due to one
input variable is carried through. As a simple example, suppose we want to
differentiate the multiplication operation, f = x1x2, with respect to x1. Table I
compares how the differentiation would be performed using either algorithmic
differentiation in the forward mode or the complex-step method.

As we can see, algorithmic differentiation stores the derivative value in a
separate set of variables while the complex-step method carries the deriva-
tive information in the imaginary part of the variables. In the case of this
operation, we observe that the complex-step procedure performs one addi-
tional operation—the calculation of the term h1h2—which for the purposes
of calculating the derivative is superfluous (and equal to zero in this case).
The complex-step method nearly always includes these unnecessary compu-
tations and is therefore generally less efficient than algorithmic differenti-
ation. The additional computations correspond to the higher-order terms in
equation (8).
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Although this example involves only one operation, both methods work for
an algorithm with an arbitrary sequence of operations by propagating the vari-
ation of one input throughout the code. This means that the cost of calculat-
ing a given set of sensitivities is proportional to the number of inputs. This
particular form of algorithmic differentiation is called the forward mode. The
alternative—the reverse mode—has no equivalent in the complex-step method,
but is analogous to an adjoint method.

Since the use of the complex-step method has only recently become
widespread, there are some issues that seem unresolved. However, now that the
connection to algorithmic differentiation has been established, we can look at
the extensive research on the subject of algorithmic differentiation for answers.
Important issues include how to treat singularities, differentiability problems
due to if statements, and the convergence of iterative solvers, all of which have
been addressed by the algorithmic differentiation research community.

The singularity issue—that is, what to do when the derivative is infinite—
is handled automatically by the complex-step method at the expense of some
accuracy. For example, the computation of

√
x + ih differs substantially from√

x + ih/2
√

x as x vanishes, but this has not produced noticeable errors in the
algorithms that we tested. Algorithmic differentiation tools usually deal with
this and other exceptions in a more rigorous manner, as described by Bischof
et al. [1991].

Regarding the issue of if statements, in rare circumstances, differentiability
may be compromised by piecewise function definitions. Algorithmic differentia-
tion is also subject to this possibility, which cannot be avoided in an automated
manner. However, this problem does not occur if all piecewise functions are
defined as detailed by Beck and Fischer [1994].

When using the complex-step method for iterative solvers, the experience of
the authors has been that the imaginary part converges at a rate similar to
the real part, although somewhat lagged. Whenever the iterative process con-
verged to a steady state solution, the derivative also converged to the correct
result. Proof of convergence of the derivative given by algorithmic differentia-
tion of certain classes of iterative methods has been obtained by Beck [1994]
and Griewank et al. [1993].

3. IMPLEMENTATION
In this section, existing algorithmic differentiation implementations are first
described and then the automatic implementation of the complex-step deriva-
tive approximation is presented in detail for Fortran and C/C++. Some notes
for other programming languages are also included.

3.1 Algorithmic Differentiation
There are two main methods for implementing algorithmic differentiation: by
source code transformation or by using derived datatypes and operator over-
loading.

In the implementation of algorithmic differentiation by source transforma-
tion, the source code must be processed with a parser and all the derivative
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calculations are introduced as additional lines of code. The resulting source code
is greatly enlarged and that makes it difficult to read. In the authors’ opinion,
this constitutes an implementation disadvantage as it becomes impractical to
debug this new extended source code.

In order to use derived types, we need languages that support this feature,
such as Fortran 90 or C++. Using this feature, algorithmic differentiation can
be implemented by creating a new structure that contains both the value of
the variable and its derivative. All of the existing operators are then redefined
(overloaded) for the new type. The new operator exhibits the same behavior as
before for the value part of the new type, but uses the definition of the derivative
of the operator to calculate the derivative portion. This results in a very elegant
implementation since very few changes are required in the original program.

3.1.1 Fortran. Many tools for automatic algorithmic differentiation of
Fortran programs exist. These tools have been extensively developed and some
of them provide the user with great functionality by including the option for
using the reverse mode, for calculating higher-order derivatives, or for both.
Tools that use the source transformation approach include: ADIFOR [Bischof
et al. 1992], DAFOR [Berz 1987], GRESS [Horwedel 1991], Odyssée [Faure
and Papegay 1997], PADRE2 [Kubota 1996], and TAMC [Giering 1997]. The
necessary changes to the source code are made automatically.

The derived datatype approach is used in the following tools: AD01 [Pryce
and Reid 1998], ADOL-F [Shiriaev 1996], IMAS [Rhodin 1997] and OP-
TIMA90 [Brown 1995; Bartholomew-Biggs 1995]. Although it is in theory pos-
sible to develop a script to make the necessary changes in the source code
automatically, none of these tools have this ability and the changes must be
performed manually.

3.1.2 C/C++. Well established tools for automatic algorithmic differenti-
ation also exist for C/C++. These include include ADIC [Bischof et al. 1997],
an implementation mirroring ADIFOR, ADOL-C [Griewank et al. 1996], and
FADBAD [Bendtsen and Stauning 1996]. Some of these packages use opera-
tor overloading and can operate in the forward or reverse mode and compute
higher-order derivatives.

3.2 Complex-Step Derivative Approximation
The general procedure for the implementation of the complex-step method for
an arbitrary computer program can be summarized as follows:

(1) Substitute all real type variable declarations with complex declarations.
It is not strictly necessary to declare all variables complex, but it is much
easier to do so.

(2) Define all functions and operators that are not defined for complex argu-
ments.

(3) Add a small complex step (e.g., h = 1 × 10−20) to the desired x, run the
algorithm that evaluates f , and then compute ∂ f /∂x using equation (6).
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The above procedure is independent of the programming language. We now
describe the details of our Fortran and C/C++ implementations.

3.2.1 Fortran. In Fortran 90, intrinsic functions and operators (including
comparison operators) can be overloaded. This means that if a particular func-
tion or operator does not accept complex arguments, one can extend it by writing
another definition that does. This feature makes it much easier to implement
the complex-step method since once we overload the functions and operators,
there is no need to change the function calls or conditional statements.

The complex function and operators needed for implementing the complex-
step method are defined in the complexify Fortran 90 module. The module can
be used by any subroutine in a program, including Fortran 77 subroutines and
it redefines all intrinsic complex functions using definition (15), the equiva-
lent of algorithmic differentiation. Operators—like for example addition and
multiplication—that are intrinsically defined for complex arguments cannot be
redefined, according to the Fortran 90 standard. However, the intrinsic complex
definitions are suitable for our purposes.

In order to automate the implementation, we developed a script that pro-
cesses Fortran source files automatically. The script inserts a statement that
ensures that the complex functions module is used in every subroutine, substi-
tutes all the real type declarations by complex ones and adds implicit complex
statements when appropriate. The script is written in Python [Lutz 1996] and
supports a wide range of platforms and compilers. It is also compatible with
the message-passing interface (MPI) standard for parallel computing. For MPI-
based code, the script converts all real types in MPI calls to complex ones. In
addition, the script can also take care of file input and output by changing
format statements. Alternatively, a separate script can be used to automatically
change the input files themselves. The latest versions of both the script and the
Fortran 90 module are available from a dedicated web page [Martins 2003].

This tool for implementing the complex-step method represents, in our opin-
ion, a good compromise between ease of implementation and algorithmic effi-
ciency. While pure algorithmic differentiation is numerically more efficient, the
complex-step method requires far fewer changes to the original source code,
due to the fact that complex variables are a Fortran intrinsic type. The end re-
sult is improved maintainability. Furthermore, practically all the changes are
performed automatically by the use of the script.

3.2.2 C/C++. The C/C++ implementations of the complex-step method
and algorithmic differentiation are much more straightforward than in For-
tran. Two different C/C++ implementations are presented and used in this
article and are available on the World Wide Web [Martins 2003].

The first procedure is analogous to the Fortran implementation, that is, it
uses complex variables and overloaded complex functions and operators. An
include file, complexify.h, defines a new variable type called cmplx and all the
functions that are necessary for the complex-step method. The inclusion of this
file and the replacement of double or float declarations with cmplx is nearly
all that is required.
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The remaining work involves dealing with input and output routines. The
usual casting of the inputs to cmplx and printing of the outputs using the real()
and imag() functions works well. For ASCII files or terminal input and output,
the use of the C++ iostream library is also possible. In this case, the “�” op-
erator automatically reads a real number and properly casts it to cmplx, or
reads in a complex number in the Fortran parenthesis format, for example,
“(2.3,1.e-20)”. The “	” operator outputs in the same format.

The second method is a version of the forward mode of algorithmic differ-
entiation, that is, the application of definition (15). The method can be imple-
mented by including a file called derivify.h and by replacing declarations of
type double with declarations of type surreal. The derivify.h file redefines
all relational operators, the basic arithmetic formulas, trigonometric functions,
and other formulas in the math library when applied to the surreal variables.
These variables contain “value” and “derivative” parts analogous to the real and
imaginary parts in the complex-step method. This works just as the complex-
step version, except that the step size may be set to unity since there is no
truncation error.

One feature available to the C++ programmer is worth mentioning: tem-
plates. Templates make it possible to write source code that is independent
of variable type declarations. This approach involves considerable work with
complicated syntax in function declarations and requires some object-oriented
programming. There is no need, however, to modify the function bodies them-
selves or to change the flow of execution, even for pure C programs. The
distinct advantage is that variable types can be decided at run time, so the
very same executable can run either the real-valued, the complex or the algo-
rithmic differentiation version. This simplifies version control and debugging
considerably since the source code is the same for all three versions of the
program.

3.2.3 Other Programming Languages. In addition to the Fortran and
C/C++ implementations described above, there was some experimentation with
other programming languages.

Matlab. As in the case of Fortran, one must redefine functions such as abs, max
and min. All differentiable functions are defined for complex variables. The
results shown in Figure 1 are actually computed using Matlab. The stan-
dard transpose operation represented by an apostrophe (’) poses a problem
as it takes the complex conjugate of the elements of the matrix, so one
should use the non-conjugate transpose represented by “dot apostrophe”
(.’) instead.

Java. Complex arithmetic is not standardized at the moment but there are
plans for its implementation. Although function overloading is possible,
operator overloading is currently not supported.

Python. A simple implementation of the complex-step method for Python was
also developed in this work. The cmath module must be imported to gain
access to complex arithmetic. Since Python supports operator overloading,
it is possible to define complex functions and operators as described earlier.
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Fig. 2. Aero-structural model and solution of a transonic jet configuration, showing a slice of the
grid and the internal structure of the wing.

Algorithmic differentiation by overloading can be implemented in any pro-
gramming language that supports derived datatypes and operator overloading.
For languages that do not have these features, the complex-step method can be
used wherever complex arithmetic is supported.

4. RESULTS

4.1 Three-Dimensional Aero-Structural Solver
The tool that we have developed to implement the complex-step method au-
tomatically in Fortran has been tested on a variety of programs. One of the
most complicated examples is a high-fidelity aero-structural solver, which is
part of an MDO framework created to solve wing aero-structural design opti-
mization problems [Reuther et al. 1999b; Martins et al. 2002; Martins 2002].
The framework consists of an aerodynamic analysis and design module (which
includes a geometry engine and a mesh perturbation algorithm), a linear finite-
element structural solver, an aero-structural coupling procedure, and various
pre-processing tools that are used to setup aero-structural design problems.
The multidisciplinary nature of this solver is illustrated in Figure 2 where we
can see the aircraft geometry, the flow mesh and solution, and the primary
structure inside the wing.

The aerodynamic analysis and design module, SYN107-MB [Reuther et al.
1999b], is a multiblock parallel flow solver for both the Euler and the Reynolds
averaged Navier–Stokes equations that has been shown to be accurate and effi-
cient for the computation of the flow around full aircraft configurations [Reuther
et al. 1997; Yao et al. 2001]. An aerodynamic adjoint solver is also included in
this package, enabling aerodynamic shape optimization in the absence of aero-
structural interaction.

To compute the flow for this configuration, we use the CFD mesh shown in
Figure 2. This is a multiblock Euler mesh with 60 blocks and a total of 229,500
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Fig. 3. Convergence of CD and ∂CD/∂b1 for the 3D aero-structural solver; ε = (| f − fref |)/| fref |;
reference values from the 801st iteration.

mesh points. The structural model of the wing consists of 6 spars, 10 ribs and
skins covering the upper and lower surfaces of the wing box. A total of 640 finite
elements are used in the construction of this model.

Since an analytic method for calculating sensitivities has been developed for
this analysis code, the complex-step method is an extremely useful reference
for validation purposes [Martins et al. 2002; Martins 2002]. To validate the
complex-step results for the aero-structural solver, we chose the derivative of
the drag coefficient, CD, with respect to a set of 18 wing shape design variables.
These variables are shape perturbations in the form of Hicks–Henne bump
functions [Reuther et al. 1999a], which not only control the aerodynamic shape,
but also change the shape of the underlying structure.

Since the aero-structural solver is an iterative algorithm, it is useful to com-
pare the convergence of a given function with that of its derivative, which is
contained in its complex part. This comparison is shown in Figure 3 for the
drag coefficient and its derivative with the respect to the first shape design
variable, b1. The drag coefficient converges to the precision of the algorithm in
about 300 iterations. The drag sensitivity converges at the same rate as the
coefficient and it lags slightly, taking about 100 additional iterations to achieve
the maximum precision. This is expected, since the calculation of the sensitiv-
ity of a given quantity is dependent on the value of that quantity [Beck 1994;
Griewank et al. 1993].

The minimum error in the derivative is observed to be slightly lower than
the precision of the coefficient. When looking at the number of digits that are
converged, the drag coefficient consistently converges to six digits, while the
derivative converges to five or six digits. This small discrepancy in accuracy can
be explained by the increased round-off errors of certain complex arithmetic
operations such as division and multiplication due to the larger number of
operations that is involved [Olver 1983]. When performing multiplication, for
example, the complex part is the result of two multiplications and one addition,
as shown in Table I. Note that this increased error does not affect the real part
when such small step sizes are used.
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Fig. 4. Sensitivity estimate errors for ∂CD/∂b1 given by finite-difference and the complex step for
different step sizes; ε = (| f − fref |)/| fref |; reference is complex-step estimate at h = 10−20.

Fig. 5. Comparison of the estimates for the shape sensitivities of the drag coefficient, ∂CD/∂bi .

The plot shown in Figure 4 is analogous to that of Figure 1, where the sensi-
tivity estimates given by the complex-step and forward finite-difference meth-
ods are compared for a varying step sizes. In this case, the finite-difference
result has an acceptable precision only for one step size (h = 10−2). Again, the
complex-step method yields accurate results for a wide range of step sizes, from
h = 10−2 to h = 10−200 in this case.

The results corresponding to the complete shape sensitivity vector are shown
in Figure 5. Although many different sets of finite-difference results were ob-
tained, only the set corresponding to the optimum step is shown. The plot shows
no discernible difference between the two sets of results. Note that these sensi-
tivities account for both aerodynamic and structural effects: a variation in the
shape of the wing affects the flow and the underlying structure directly. There
is also an indirect effect on the flow due to the fact that the wing exhibits a new
displacement field when its shape is perturbed.
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Table II. Normalized Computational Cost Comparison
for the Calculation of the Complete Shape Sensitivity

Vector

Computation Type Normalized Cost
Aero-structural Solution 1.0
Finite difference 14.2
Complex step 34.4

A comparison of the relative computational cost of the two methods was also
performed for the aerodynamic sensitivities, namely for the calculation of the
complete shape sensitivity vector. Table II lists these costs, normalized with
respect to the solution time of the aero-structural solver.

The cost of a finite-difference gradient evaluation for the 18 design variables
is about 14 times the cost of a single aero-structural solution for computations
that have converged to six orders of magnitude in the average density residual.
Notice that one would expect this method to incur a computational cost equiv-
alent to 19 aero-structural solutions (the solution of the baseline configuration
plus one flow solution for each design variable perturbation.) The cost is lower
than this value because the additional calculations start from the previously
converged solution.

The cost of the complex-step procedure is more than twice of that of the finite-
difference procedure since the function evaluations require complex arithmetic.
We feel, however, that the complex-step calculations are worth this cost penalty
since there is no need to find an acceptable step size a priori, as in the case of
the finite-difference approximations.

Again, we would like to emphasize that while there was considerable effort
involved in obtaining reasonable finite-difference results by optimizing the step
sizes, no such effort was necessary when using the complex-step method.

4.2 Supersonic Natural Laminar Flow Analysis
The second example illustrates how the complex-step method can be applied
to an analysis for which it is very difficult to extract accurate finite-difference
gradients. This code was developed for supporting design work of the super-
sonic natural laminar flow (NLF) aircraft concept [Sturdza et al. 1999]. It is a
multidisciplinary framework, which uses input and output file manipulations
to combine five computer programs including an iterative Euler solver and a
boundary layer solver with transition prediction. In this framework, Python
is used as the gluing language that joins the many programs. Gradients are
computed with the complex-step method and with algorithmic differentiation
in the Fortran, C++ and Python programming languages.

The sample sensitivity was chosen to be that of the skin-friction drag co-
efficient with respect to the root chord. A comparison between finite-central-
difference and complex-step sensitivities is shown in Figure 6. The plot shows
the rather poor accuracy of the finite-difference gradients for this analysis.

There are several properties of this analysis that make it difficult to extract
useful finite-difference results. The most obvious is the transition from laminar
to turbulent flow. It is difficult to truly smooth the movement of the transition
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Fig. 6. Convergence of gradients as step size is decreased. ε = (| f − fref |)/| fref |; reference is
complex-step result at h = 10−30.

front when transition prediction is computed on a discretized domain. Since
transition has such a large effect on skin friction, this difficulty is expected to
adversely affect finite-difference drag sensitivities. Additionally, the discretiza-
tion of the boundary layer by computing it along 12 arcs that change curvature
and location as the wing planform is perturbed is suspected to cause some noise
in the laminar solution as well [Sturdza et al. 1999].

5. CONCLUSIONS
The complex-step method and its application to real-world numerical algo-
rithms was presented. We established that this method is equivalent to the for-
ward mode of algorithmic differentiation. This enables the application of a sub-
stantial body of knowledge—that of the algorithmic differentiation literature—
to the complex-step method.

The implementation of the complex-step derivative approximation has suc-
cessfully been automated using a simple Python script in conjunction with op-
erator overloading for two large solvers, including an iterative one. The result-
ing derivative estimates were validated by comparison with finite-difference
results.

We have shown that the complex-step method, unlike finite differencing, has
the advantage of being step-size insensitive and for small enough steps, the
accuracy of the sensitivity estimates is only limited by the numerical precision
of the algorithm. This is the main advantage of this method in comparison with
finite differencing: there is no need to compute a given sensitivity repeatedly to
find out the optimal step that yields the minimum error in the approximation.

The examples presented herein illustrate these points clearly and put for-
ward two excellent uses for the method: validating a more sophisticated gradi-
ent calculation scheme and providing accurate and smooth gradients for anal-
yses that accumulate substantial computational noise.
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Despite the fact that algorithmic differentiation tools are much more sophis-
ticated in terms of both functionality and computational efficiency, the complex-
step method remains a simple and elegant alternative for the purposes men-
tioned above. Users that are interested only in the functionality of the forward
mode of algorithmic differentiation will find the complex-step a compelling al-
ternative due to its simplicity of implementation and the potential to obtain
sensitivity information with very low turnaround time. In the authors’ expe-
rience with a broad range of sensitivity analysis methods, the complex-step
method is the simplest derivative calculation method to implement and run,
particularly in projects that mix programming languages, require multidisci-
plinary analysis, or both.
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