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Abstract

Contingency tables are collected in many scientific and engineering tasks including im-
age processing, single-cell RNA sequencing and ecological studies. Low-rank methods have
proved useful to analyze them, by facilitating visualization and interpretation. However,
common methods do not take advantage of extra information which is often available,
such as row and column covariates. We propose a method to denoise and visualize high-
dimensional count data which directly incorporates the covariates at hand. Estimation is
done by minimizing a Poisson log-likelihood and enforcing a low-rank structure on the in-
teraction matrix with a nuclear norm penalty. We also derive theoretical upper and lower
bounds on the Frobenius estimation risk. A complete methodology is proposed, including
an algorithm based on the alternating direction method of multipliers, and automatic se-
lection of the regularization parameter. The simulation study reveals that our estimator
compares favorably to competitors. Then, analyzing environmental science data, we show
the interpretability of the model using a biplot visualization. The method is available as an
R package.

Keywords Count data; Dimensionality reduction; Ecological data; Low-rank matrix recov-
ery, Quantile universal threshold

1 Introduction

Consider an m1 × m2 observation matrix of counts Y with independent cells of expectations
E(Yij) = exp(X∗ij). The log-linear model [Agresti, 2013, Christensen, 2010] with rank constrained
interaction, often referred to as the generalized additive main effects and multiplicative interaction
model [Goodman, 1985, de Falguerolles, 1998, Gower et al., 2011, Fithian and Josse, 2017] or
the row-column model of rank K, is commonly used to describe the structure of the matrix X∗,
and is written as follows:

X∗ij = α∗i + β∗j + Θ∗ij , rk(Θ∗) = K, (1)

where rk(Θ∗) denotes the rank of Θ∗ and K ≤ min(m1 − 1,m2 − 1). In these models, the
terms which only depend on the index of the row or column (α∗i and β∗j ) are called main effects,
and terms which depend on both (here Θ∗ij) are called interactions [Kateri, 2014, Section 4.1.2,
p.87]. The estimation of the means exp(X∗ij) is done by minimizing a normalized negative Poisson
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log-likelihood, defined for X ∈ Rm1×m2 by

ΦY (X) = − 1

m1m2

m1∑
i=1

m2∑
j=1

(YijXij − exp(Xij)) . (2)

Our first contribution is to introduce a two-fold extension of the row-column model (1).
First, our method allows us to incorporate general covariates as well as interactions between
them. Second, instead of assuming that the rank is fixed, we penalize the nuclear norm of the
interaction matrix. More formally, let R ∈ Rm1×K1 (resp. C ∈ Rm2×K2) be matrices of known
row (resp. column) covariates, and α∗ ∈ RK1×m2 (resp. β∗ ∈ RK2×m1) matrices of unknown
parameters. We model the matrix X∗ as follows:

X∗ = Rα∗ + (Cβ∗)
T

+ Θ∗, (3)

with (Cβ∗)
T

denoting the transpose of matrix (Cβ∗). In model (3), Rα∗ and Cβ∗ incorporate

interactions, i.e., (Rα∗)ij and (Cβ∗)
T
ij both depend on the indices i and j. Lastly, Θ∗ corresponds

to the interaction unexplained by the known covariates R and C. In the ecology example we
present, columns of the contingency table represent species while rows represent environments,
and cell Yij counts the abundance of species j in environment i. The row features R embed geo-
graphical information about the environments such as the slope and temperature, while C codes
physical traits about species like height or mass. Rα∗ corresponds to effects, which can depend
on the species, of the environmental covariates (temperature, etc.); a similar interpretation can
be made for Cβ∗.

The paper is organized as follows. In Section 2, we define our estimator through the mini-
mization of the negative log-likelihood term (2) penalized by the nuclear norm of the interaction
matrix Θ∗. We also propose an optimization algorithm based on the alternating descent method
of multipliers [Boyd et al., 2011]. Under mild assumptions on the true parameter matrix X∗,
we derive in Section 3 upper and lower bounds for the estimation risk, that hold with high
probability and for a number of generalized linear models. Another major contribution is to
propose in Section 4 two methods to choose the regularization parameter automatically. Lastly,
we show in Section 5 that on simulated data our procedure compares favorably to competitors,
and highlight in Section 6 the interpretability of the method with an application in ecology. The
methods and experiments presented in this article are available as an R [R Core Team, 2016]
package at https://github.com/genevievelrobin/gammit.

Related approaches for count matrix recovery and dimensionality reduction can be embedded
within the framework of low-rank exponential family estimation [Collins et al., 2001, de Leeuw,
2006, Li and Tao, 2013, Josse and Wager, 2016, Liu et al., 2016] as well as its Bayesian coun-
terpart [Mohamed et al., 2009, Gopalan et al., 2014]. Existing models impose low ranks either
to the parameter matrix X∗ [Collins et al., 2001] or to the mean matrix with cells exp(x∗ij) [Liu
et al., 2016, Josse and Wager, 2016]. Estimation approaches include iterative partial updates
of the parameters [Salmon et al., 2014] and augmented Lagrangian methods [Figueiredo and
Bioucas-Dias, 2010, Chambolle and Pock, 2011, Jeong et al., 2013]. The theoretical performance
of nuclear norm penalized estimators for Poisson denoising has been studied in Cao and Xie
[2016], where the authors prove uniform bounds on the empirical error risk by extending results
from compressed sensing and 1-bit matrix completion [Raginsky et al., 2010, Davenport et al.,
2012], and in Lafond [2015] where optimal bounds are proved for matrix completion in the expo-
nential family. Poisson matrix estimation has also been considered via singular value shrinkage,
extending the Gaussian setting [Shabalin and Nobel, 2013, Gavish and Donoho, 2014a,b, Josse
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and Sardy, 2015]. Bigot et al. [2016] have studied optimal singular value shrinkage in the ex-
ponential family, while Liu et al. [2016] have suggested a new shrinkage for covariance matrix
estimation.

None of these methods above can account for the effect of known covariates, and to the best of
our knowledge, no algorithm or theory has been developped for model (3). Attempts to include
row and column effects in matrix recovery and completion have nonetheless been made in the
context of the Netflix challenge, but they do not use additional features as we do. Some are
reviewed in Feuerverger et al. [2012], and Hastie et al. [2014] briefly addressed this issue through
centering and scaling steps.

2 Low-rank Interaction Contingency Tables

2.1 Notation and model

For A ∈ Rm1×m2 , we denote ‖A‖∗ the sum of the singular values of A (nuclear norm), ‖A‖F the
Frobenius norm, ‖A‖ the the largest singular value (operator norm), and ‖A‖∞ the largest entry
in absolute value. We also denote V⊥R (resp. V⊥C ) the subspace of Rm1×m2 of matrices whose
columns (resp. rows) are orthogonal to the columns of R (resp. rows of C), and V⊥ = V⊥R

⋂
V⊥C .

We make the following assumption, common in the Poisson matrix denoising litterature.

Assumption 1. There exist γmin > −∞ and γmax < ∞ such that for all i = 1, . . . ,m1 and
j = 1, . . . ,m2,

γmin ≤ logE(Yij) ≤ γmax.

Moreover there exist σmin > 0 and σmax <∞ such that for all i = 1, . . . ,m1 and j = 1, . . . ,m2,

σ2
min ≤ var(Yij) ≤ σ2

max.

Define the compact set K = [γmin, γmax]m1×m2 . We can now define our estimator, for a given
regularization parameter λ, as the minimizer of the penalized negative log-likelihood:

α̃λ, β̃λ, Θ̃λ = argmin
Rα+(Cβ)T +Θ∈K

Θ∈V⊥

φY (α, β,Θ) + λ ‖Θ‖∗ ,
(4)

φY (α, β,Θ) = ΦY (Rα+ (Cβ)
T

+ Θ), (5)

where Θ ∈ V⊥ serves as an identifiability constraint and ΦY is defined in (2). This problem is
not jointly convex or separable in α, β and Θ. Our contribution on the optimization side is to
derive a reparametrization of (4) which simplifies computation.

2.2 Reparametrization

Define T the projection operator on the subspace V⊥ = V⊥R
⋂
V⊥C . The reformulated problem

X̂λ, Θ̂λ = argmin
X∈K

Θ=T (X)

ΦY (X) + λ ‖Θ‖∗ , (6)

where α and β are not included explicitly in the minimization problem, yields the same solution in

Θ and X as problem (4): Θ̂λ = Θ̃λ and X̂λ = Rα̃λ+
(
Cβ̃λ

)T
+Θ̃λ. Moreover, the identifiability
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constraint T (X) = Θ ensures that we can compute Rα̂λ + (Cβ̂λ)T a posteriori based on X̂λ

and Θ̂λ only by applying simple projections. Problem (6) is now strongly convex on a compact
set, linearly constrained and separable in X and Θ. The parameter set K is compact and ΦλY
is strongly convex on K, which guarantee existence and uniqueness of the solution of (6). We
solve (6) by using the alternating directions method of multipliers [Glowinski and Marrocco,
1974], whose convergence stems from Boyd et al. [2011, Theorem 3.2.1].

2.3 Optimization algorithm

The alternating direction method of multipliers is a variant of the augmented Lagrangian method
of multipliers which solves the dual problem through iterated partial updates. The augmented
Lagrangian, indexed by a positive real parameter τ is

Lτ (X,Θ,Γ) = ΦY (X) + λ ‖Θ‖∗ + 〈Γ, T (X)−Θ〉+
τ

2
‖T (X)−Θ‖2F , (7)

where 〈., .〉 denotes the trace scalar product on Rm1×m2 . The algorithm consists in updating
separately the primal variables X, Θ, and the dual variable Γ, at iteration ` to maximize (7)
according to the following equations:

X`+1 = argminX∈K Lτ (X,Θ`,Γ`)

Θ`+1 = argminΘ∈KT Lτ (X`+1,Θ,Γ`)

Γ`+1 = Γ` + τ(T (X`+1)−Θ`+1).

(8)

The function ΦY and ‖.‖∗ are closed, proper and convex on Rm1×m2 . This guarantees the
solvability of the minimization problems defined in update (8). Moreover ΦY is differentiable, so
the optimization in X can be done using gradient descent. The update of Θ can itself be done
in closed form and involves singular value decomposition and thresholding [Cai et al., 2010]:

Θ`+1 = Dλ/τ
(
T (X`+1) + Γ/τ

)
.

Here, Dλ/τ is the soft-thresholding operator of singular values at level λ/τ . To speed convergence,
we implemented a warm-start strategy [Friedman et al., 2007, Hastie et al., 2015]. We start by
running the algorithm with λ = λ0(Y ), the smallest value of the regularization parameter that
sets the interaction to 0 (see Section 4); we then solve the optimization problem for decreasing
values of λ, each time using the previous estimator as an initial value. As for the tuning of
parameter τ , we apply the method described in Boyd et al. [2011], Section 3.4.1, which consists
in having it vary at every iteration, depending on the value of the residual.

2.4 Remarks

Estimator (6) is very similar to what can be found in the matrix completion literature where
data-fitting losses penalized by the nuclear norm are optimized [Klopp, 2014, Lafond, 2015].
Problems are often written as X̂λ = argminX L(X;Y ) + λ ‖X‖∗, where L is a loss function,
and the main difference with (6) is in the regularization. By penalizing Θ = T (X), our method
actually regularizes only the directions in X which are orthogonal to the covariates R and C.

A possible substitute to the alternating direction method of multipliers is alternating mini-
mization, which has been used in low-rank estimation problems [Udell et al., 2014]. This consists
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in partially minimizing the objective in (4) alternatively with respect to Θ, α and β, while keep-
ing all other parameters fixed. In our case, the optimization in Θ with fixed α and β yields a
constrained problem of the form

Θ`+1 = argmin
Rα`+(Cβ`)

T
+Θ∈K

Θ∈V⊥

φY (α`, β`,Θ) + λ ‖Θ‖∗ ,

which has itself to be solved with the alternating direction method of multipliers or, for example,
projected gradient methods, and is therefore more computationally intensive.

Lastly, the estimation procedure does not depend on the explicit form of the Poisson likeli-
hood, but only relies on the convexity of ΦY . Other generalized linear models can therefore be
handled directly.

3 Statistical Guarantees

3.1 Upper bound

We now derive an upper bound on the Frobenius estimation error of estimator (6). Denote
M = max (m1,m2).

Assumption 2 (Subexponentiality). There exists δ > 0 such that for all i = 1, . . . ,m1 and
j = 1, . . . ,m2,

E (exp(|Yij |/δ)) < +∞.

Theorem 1. There exists a constant c such that the following statement holds. Set

λ = 2cσmax
(2M log(m1 +m2))

1/2

m1m2
.

Under Assumptions 1 and 2, assume m1 + m2 ≥ max
{
δ2(2σ2

maxσ
2
min)−1, (4δ2/σ2

max)4
}

. Then
with probability at least 1− (m1 +m2)−1,∥∥∥X∗ − X̂λ

∥∥∥2

F

m1m2
≤
(

4σ2
max

σ4
min

)
M (rk(Θ∗) +K1 +K2) log(m1 +m2)

m1m2
. (9)

Proof. See Section 8.1.

The constant that appears in bound (9) grows linearly with the upper bound σ2
max and

quadratically with the inverse of σ2
min. This means that by relaxing Assumption 1 to allow

var(Yij) to grow as fast as log(m1 +m2) or decrease as fast as 1/ log(m1 +m2), we only loose a
log-polynomial factor in the bound. Furthermore, the explicit form of the data-fitting term ΦY
does not appear in these results. The theoretical results therefore hold for a number of other
generalized linear models, including multinomial and exponential ones, as does the inference
procedure.
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3.2 Lower bound

We now derive a lower bound on the Frobenius estimation error. Define γ = min(|γmin|, |γmax|),
where γmin and γmax are defined in Assumption 1, and F(r, γ) the set of matrices

F(r, γ) =
{
X ∈ Rm1×m2 : rk (T (X)) ≤ r, ‖X‖∞ ≤ γ

}
.

Denote N = r(M −K1) +K1m2 +K2m1 −K1K2 and for X ∈ Rm1×m2 PX the law of m1 ×m2

independant random Poisson variables with means exp(Xij).

Theorem 2. For all m1,m2 ≥ 2, 1 ≤ r ≤ m,

inf
X̂

sup
X∈F(r,γ)

PX


∥∥∥X̂ −X∥∥∥2

F

m1m2
> min

{
2γ2,

N

m1m2σ2
max

} ≥ d(η),

d(η) =
1

1 + 2−N/16

(
1− 2η − 1

2

η1/2

(N log(2))1/2

)
,

where the infimum is computed over all estimators.

4 Automatic selection of λ

4.1 Cross-validation

The cross-validation procedure consists in erasing a fraction of the observed values in Y , esti-
mating a complete parameter matrix X̂λ for a range of λ values, and choosing the parameter
λ that minimizes the prediction error. Because the entries Yij are independent the estimation
can be done by skipping the missing entries. Let Ω denote the set of indices of the observed
entries, and denote ΦΩ(Y ) the negative log-likelihood taken at the observed entries only. The
optimization problem becomes

X̂λ, Θ̂λ = argmin
X∈K

Θ=T (X)

ΦΩ(Y )(X) + λ ‖Θ‖∗ ,

and can also be solved using the alternating direction method of multipliers. Repeating this
procedure N times for a grid of λ, we select the value λCV that minimizes the prediction squared

error PSE(λ) = N−1
∑N
i=1

∥∥∥Ymis − X̂(i)
λ,mis

∥∥∥2

F
. In the process, we have defined an algorithm to

estimate X∗ from incomplete observations, which can be seen as a single imputation method
and still holds when entries are missing at random (Little and Rubin [1987, 2002], Section 1.3),
and could be used to complete contingency tables with missing values.

4.2 Quantile universal threshold

We suggest an alternative method to cross-validation inspired by Donoho and Johnstone [1994],
and by the work of Giacobino et al. [2016] on quantile universal thresholds. In Proposition 3
below, we define the so-called zero-thresholding statistic of estimator (3), a function of the data
λ0(Y ) for which the estimated interaction matrix Θ̂λ0(Y ) is null and the same estimate Θ̂λ = 0
is obtained for any λ ≥ λ0(Y ). We prove Proposition 3 in Section 8.4.
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Proposition 3 (Zero-thresholding statistics). The interaction estimator Θ̂λ associated with
regularization parameter λ is null if and only if λ ≥ λ0(Y ), where λ0(Y ) is the zero-thresholding
statistic

λ0(Y ) =
1

m1m2

∥∥∥Y − exp(X̂0)
∥∥∥ , X̂0 = argmin

X∈K, T (X)=0

ΦY (X).

We propose a heuristic selection of λ based on this zero-thresholding statistic λ0(Y ). To
explain further the procedure, we first need to define the following test:

H0 : Θ∗ = 0 against the alternative H1 : Θ∗ 6= 0 (10)

which actually boils down to testing if the measured covariates are sufficient to explain the
interaction. For 0 < ε < 1, consider a value λε that satisfies PH0 (λ0(Y ) > λε) < ε. The test
which consists in comparing the statistics λ0(Y ) to λε is of level 1 − ε for (10). This can be
seen as an alternative to the χ2 test for independence, with the additional advantage of handling
covariates. In practice we do not have access to the distribution under the null PH0

(λ0(Y ) < λ),
but perform parametric bootstrap [Efron, 1979] to compute a proxy λ̌ε. We define λQUT := λ̌.05

the value we use in practice, and refer in what follows to this method of selecting λ as quantile
universal threshold. In Section 5.1 we show that cross-validation achieves good prediction errors,
while the quantile universal threshold method has better rank recovery properties.

5 Simulation study

5.1 Comparison of quantile universal threshold and cross-validation

Here, we generate a contingency table according to the model Y ∼ P(exp(X∗)), where P denotes
the Poisson distribution, with X∗ = X∗0 +Θ∗, (X∗0 )ij = α∗i +β∗j . We draw row and column effects

α∗i and β∗j uniformly and generate Θ∗ = UDV T with random orthonormal matrices U = (uij)

and V = (vij), where D ∈ RK×K is a diagonal matrix with the singular values of Θ∗ on its
diagonal. The parameters of our simulation are the size of X∗ (m1×m2), the rank K of Θ∗ and
the ratio of the nuclear norm of the interaction Θ∗ to the nuclear norm of the additive part X∗0 ,
denoted SNR = ‖Θ∗‖∗ / ‖X∗0‖∗.

We start the simulation study without additional covariates to compare our estimator in terms
of L2 error to a competitor, the estimator of the row-column model (1) with different ranks: the
independence model with rank 0, the oracle rank K and the rank K̂QUT estimated with quantile
universal threshold. We consider a representative setting with m1 = 20, m2 = 15 and K = 3.
Figure 1 shows the L2 error of recovery between the estimator X̂λ and the true parameter X∗

as a function of λ. The maximum likelihood estimation in the independence model (Θ∗ = 0)
can be used as a benchmark. When λ is close to 0 we recover the saturated (unconstrained)
model , while as λ increases, we tend to the independence model. The rank of the estimator Θ̂λ,
which we define here as the number of singular values above 10−6, decreases with λ. The two
proposed procedures for choosing λ prove useful: λQUT selects the correct rank (K = 3) for the
interaction, and cross-validation achieves the best prediction error. An alternative procedure
would be a two-step approach where we fit the maximum likelihood estimator with the rank
found using quantile universal threshold. We observe the same results over 1000 replications.
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Figure 1: L2 loss (black triangles) of the estimator as a function of λ; m1 = 20, m2 = 15, K = 3.
Comparison of λCV (cyan dashed line) and λQUT (red dashed line) with the independence model
(purple squares) and the row-column model with oracle rank (blue points). The rank of Θ is
written along the top for each λ.

5.2 Estimation performance

With the same simulation scheme, we further investigate the performance of our method in
different situations. Figure 2 highlights three interaction regimes. Over all values of the rank we
observe similar behaviors. In the small interaction regime (Figure 2, top left, SNR = 0.2), the
interaction is too small to be distinguished from the Poisson noise, so the independence model
achieves the best performance. The rank selected by quantile universal threshold is of 1, and we
see that the error of the row-column model with rank 1 is very close to that with rank 0. In the
medium interaction regime (Figure 2, top center, SNR = 0.7) we recover the correct rank of 2
with quantile universal threshold but have a higher error than the oracle row-column model with
rank 2. These two situations suggest to use a two-step procedure. In the high interaction setting
(Figure 2, top right SNR = 1.7), quantile universal threshold overestimates the rank (here 6
instead of 2), and the row-column model fails to calculate the maximum likelihood estimation
(possibly because of numerical issues that occur in available R libraries).

6 Analysis of the Aravo data

6.1 Description of the data

The Aravo dataset [Choler, 2005] measures the abundance of 82 species of alpine plants in 75
sites in France. Initially, ecologists aimed to understand how species interacted with different
biological environments, trying to uncover whether certain species thrive or decay in specific
environments. The data consist of a contingency table collecting the abundance of species
across sampling sites. Covariates about the environments and species are also available, with
8 species traits, providing physical information about plants (height, spread, etc.), as well as 6
environmental variables about the geography and climate of the various sites. These covariates
are considered as known factors of variability, and the question is whether they are sufficient to
describe the interaction. In this study we will compare the simple model (1) where the covariates
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are not taken into account with our model (3), to see how the incorporation of covariates impacts
the interpretation.

6.2 Comparison of two models

We show in Figure 3 biplot visualizations of the data in the two first dimensions of interaction,
defined by the first two singular vectors of Θ̂λ. The plots are interpreted in terms of distance as
follows: a species and an environment that are close interact highly [Fithian and Josse, 2017].
The first difference between the two models is in the rank of Θ̂λ. In Figure 3a where we do not
use the covariates, we find a rank of 3 for the interaction, while in Figure 3b after incorporating
the covariates we find a rank 1. This suggests that an additional unknown variable summarizes
the remaining interactions. We can also compare the distances between species and environments
before and after discarding the variability due to the covariates. Figure 3 shows the species and
environments that have the 10 highest interactions (smallest distances on the biplot), for both
models. We see that the species and environments involved differ, and thus that our procedure
could possibly lead to new interpretations. In particular, after incorporating covariates, we

Figure 2: 50× 20 matrices. Comparison of the L2 error of our method (black triangles) with the
independence model (purple squares), the row-column model with oracle rank (blue points) and
with rank K̂QUT (green diamonds). Results are drawn for a grid of λ with λQUT (red dot). The
rank of the interaction is written along the top for each value of λ. Top K = 2, middle K = 5,
bottom K = 10. From left to right SNR = 0.2, 0.7, 1.7.
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extract species-environment couples more clearly.
In the case of model (1) with no covariates, we can look at the correlations between the

known traits and the interaction directions of Θ̂λ. Figure 4a shows that environment covariates
and the two first directions of interaction are correlated. The first direction is correlated with the
amount of Snow, and the second with the Aspect variable (which denotes the compass direction,
e.g., north, south, etc. that the site faced). On the biplot in Figure 3, the first direction therefore
separates environments with respect to the amount of snow, while the second direction separates
environments with respect to compass direction. Similarly, in Figure 4b, the species covariates
are correlated with the estimated directions of interaction, therefore in Figure 3 the first direction
separates the plants with respect to their SLA (specific leaf area, defined as the ratio of the leaf
surface to its dry mass) and their mass-based nitrogen content. (Nmass). On the contrary, when
we incorporate the covariates in the model, the correlations between the known traits and the
interaction directions are reduced by a factor of between 3 and 10 (these are now too small to
be represented on a plot).

7 Discussion

We conclude by discussing some opportunities for further research. One possible extension is to
also penalize the main covariate effects, with an `1 penalty on α and β. Secondly, our algorithm
directly handles missing values and could be used to impute contingency tables, but theoret-
ical guarantees would have to be extended to the missing data framework. The properties of
the thresholding test also merit further investigation, in particular the power could be assessed.
Lastly, it may be of interest to consider other sparsity inducing penalties. In particular, penaliz-
ing the Poisson log-likelihood by the absolute values of the coefficients of the interaction matrix
Θ could possibly lead to solutions where some interactions are driven to 0 and a small number
of large interactions are selected.

(a) Without covariates (model
(1)) (b) With covariates (model (3))

Figure 3: Comparison of biplot visualizations with models (1) and (3). Environments are rep-
resented in blue and species in red, in the Euclidean space defined by the two first principal
directions of Θ̂λ.
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8 Proofs

8.1 Proof of Theorem 1

The proof of Theorem 1 derives from the strong convexity of ΦY and tail bounds for the largest
singular value of random matrices with subexponential entries. For the sake of clarity, we write
in what follows X̂ and Θ̂ instead of X̂λ and Θ̂λ. We first state the following result.

Proposition 4. Under Assumption 1, assume λ ≥ 2 ‖∇ΦY (X∗)‖. Then∥∥∥X∗ − X̂λ

∥∥∥2

F

m1m2
≤
(

16λ2m1m2

σ4
min

)
(rk(Θ∗) +K1 +K2) . (11)

We prove this result in Section 8.2.

Proposition 4 is deterministic but relies on the condition λ ≥ 2 ‖∇ΦY (X∗)‖ which is a ran-
dom. Let us therefore compute a value of λ such that this condition holds with high probability.
We define the random matrices

Zij = (Yij − exp(X∗ij))Eij ,

with Eij the (i, j)-th canonical matrix, and the quantity

σ2
Z = max

 1

m1m2

∥∥∥∥∥∥
m1∑
i=1

m2∑
j=1

E
(
ZijZ

T
ij

)∥∥∥∥∥∥ , 1

m1m2

∥∥∥∥∥∥
m1∑
i=1

m2∑
j=1

E
(
ZTijZij

)∥∥∥∥∥∥
 . (12)

We have

E (Zij) = 0 and σmin ≤ E
(∥∥ZijZTij∥∥) , E (∥∥ZTijZij∥∥) ≤ σmax for all i, j.

(a) Environment covariates (b) Species covariates

Figure 4: Correlation between the two first dimensions of interaction and the covariates (the
covariates are not used in the estimation).
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Moreover, note that

∇ΦY =
1

m1m2

m1∑
i=1

m2∑
j=1

Zij .

Using Assumption 2, Klopp [2014], Proposition 11, and

M

m1m2
σ2
min ≤ σ2

Z ≤
M

m1m2
σ2
max,

ensure that there exists a constant c such that with probability at least 1− (m1 +m2)−1,

‖∇ΦY (X∗)‖ ≤ cmax

{
σmax

(2M log(m1 +m2))
1/2

m1m2
, δ

(
logm1/2 δ

σmin

)
2 log(m1 +m2)

m1m2

}
. (13)

The condition

m1 +m2 ≥ max

{
δ2

2σmaxσ2
min

, (4
δ2

σ2
max

)4

}
ensures that the left term dominates. Then, taking

λ = 2cδσmax
(2M log(m1 +m2))

1/2

m1m2

and plugging this value in (11) of Proposition 4 directly gives the result.

8.2 Proof of Proposition 4

We start with some notations and preparatory lemmas. Given a matrix X ∈ Rm1×m2 , we
denote S1(X) (resp. S2(X)) the span of left (resp. right) singular vectors of X. Let P⊥S1(X)

(resp. P⊥S2(X)) be the orthogonal projector on S1(X)⊥ (resp. S2(X)⊥). We define the projection

operator P⊥X : X̃ 7→ P⊥S1(X)X̃P
⊥
S2(X), and PX : X̃ 7→ X̃ − P⊥S1(X)X̃P

⊥
S2(X).

Lemma 5. For X ∈ Rm1×m2 and Θ = T (X) ∈ V⊥,

(i)
∥∥Θ∗ + P⊥Θ∗(Θ∗)

∥∥
∗ = ‖Θ∗‖∗ +

∥∥P⊥Θ∗(Θ∗)∥∥∗ ,
(ii) ‖Θ∗‖∗ − ‖Θ‖∗ ≤ ‖PΘ∗(Θ−Θ∗)‖∗ −

∥∥P⊥Θ∗(Θ−Θ∗)
∥∥
∗ ,

(iii) ‖PΘ∗(Θ−Θ∗)‖∗ ≤
√

2rk(Θ∗) ‖X −X∗‖F .

Proof. By definition of PΘ∗ the singular vector spaces of Θ∗ and of P⊥Θ∗(Θ∗) are orthogonal:∥∥Θ∗ + P⊥Θ∗(Θ∗)
∥∥
∗ = ‖Θ∗‖∗ +

∥∥P⊥Θ∗(Θ∗)∥∥∗ ,
which proves (i). Writing Θ = Θ∗ + P⊥Θ∗(Θ−Θ∗) + PΘ∗(Θ−Θ∗) we get

‖Θ‖∗ ≥ ‖Θ∗‖∗ +
∥∥P⊥Θ∗(Θ−Θ∗)

∥∥
∗ − ‖PΘ∗(Θ−Θ∗)‖∗ .

Then, the triangular inequality and the orthonormality of the left and right singular vector spaces
of Θ∗ and P⊥Θ∗(Θ−Θ∗) yield

‖Θ‖∗ − ‖Θ
∗‖∗ ≤ ‖PΘ∗(Θ−Θ∗)‖∗ −

∥∥P⊥Θ∗(Θ−Θ∗)
∥∥
∗ ,

12



which gives (ii). For all X ∈ Rm1×m2 , PΘ∗(Θ) = PS1(Θ∗)(Θ − Θ∗)P⊥S2(Θ∗) + (Θ − Θ∗)PS2(Θ∗)

implies that rk(PΘ∗(Θ−Θ∗)) ≤ 2rk(Θ∗). This and the Cauchy-Schwarz inequality give

‖PΘ∗(Θ−Θ∗)‖∗ ≤
√

2rk(Θ∗) ‖Θ−Θ∗‖F
≤
√

2rk(Θ∗) ‖X −X∗‖F ,

which finally proves (iii).

Lemma 6. Assume λ > 2 ‖∇ΦY (X∗‖. Then,∥∥∥P⊥Θ∗(Θ∗ − Θ̂)
∥∥∥
∗
≤ 3

∥∥∥PΘ∗(Θ
∗ − Θ̂)

∥∥∥
∗

+ ‖Rα∗ −Rα̂‖∗ +
∥∥∥(Cβ∗ − Cβ̂)T

∥∥∥
∗
.

Proof. The result stems from the convexity of ΦY and Lemma 5(ii).

On the one hand, Assumption 1 ensures the strong convexity of ΦY with constant σ2
min/m1m2

and implies

σ2
min

∥∥∥X∗ − X̂∥∥∥2

F

2m1m2
≤ ΦY (X̂)− ΦY (X∗)− 〈∇ΦY (X∗), X̂ −X∗〉.

On the other hand by definition of the estimator X̂,

ΦY (X̂)− ΦY (X∗) ≤ λ
(
‖Θ∗‖∗ −

∥∥∥Θ̂
∥∥∥
∗

)
.

Substracting 〈∇ΦY (X∗), X̂ − X∗〉 on both side and in conjunction with the strong convexity
inequality we obtain

σ2
min

∥∥∥X∗ − X̂∥∥∥2

F

2m1m2
≤ −〈∇ΦY (X∗), X̂ −X∗〉+ λ

(
‖Θ∗‖∗ −

∥∥∥Θ̂
∥∥∥
∗

)
. (14)

We now bound separately the two terms on the right hand side. First, the duality of ‖·‖∗ and
‖·‖ and the triangular inequality give

− 〈∇ΦY (X∗), X̂ −X∗〉 ≤ ‖∇ΦY (X∗)‖ ×(∥∥∥PΘ∗(Θ̂−Θ∗)
∥∥∥
∗

+
∥∥∥P⊥Θ∗(Θ̂−Θ∗)

∥∥∥
∗

+ ‖Rα̂−Rα∗‖∗ +
∥∥∥(Cβ̂ − Cβ∗)T

∥∥∥
∗

)
. (15)

Then, Lemma 5 (ii) applied to X̂, results in

‖Θ∗‖∗ −
∥∥∥Θ̂
∥∥∥
∗
≤
∥∥∥PΘ∗(Θ̂−Θ∗)

∥∥∥
∗
−
∥∥∥P⊥Θ∗(Θ̂−Θ∗)

∥∥∥
∗
. (16)

Plugging inequalities (15) and (16) in (14), and using the condition λ ≥ 2 ‖∇ΦY (X∗)‖, we finally
obtain

σ2
min

∥∥∥X∗ − X̂∥∥∥2

m1m2
≤ 3λ

∥∥∥PΘ∗(Θ̂−Θ∗)
∥∥∥
∗

+ λ
(
‖Rα̂−Rα∗‖∗ +

∥∥∥(Cβ̂ − Cβ∗)T
∥∥∥
∗

)
.

(17)

Then, rk(Rα̂ − Rα∗) ≤ K1, rk(Cβ̂ − Cβ∗) ≤ K2 implies ‖Rα̂−Rα∗‖∗ +
∥∥∥(Cβ̂ − Cβ∗)′

∥∥∥
∗
≤(√

K1 +
√
K2

) ∥∥∥X∗ − X̂∥∥∥
F

, which together with Lemma 5 (iii) and 2(a2 + b2) ≥ (a + b)2 yield

Proposition 4.
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8.3 Proof of Theorem 2

We assume without loss of generality that m1 ≥ m2. Recall N = r(m1−K1) +K1m2 +K2m1−
K1K2 and denote η ∈ (0, 1/8). We define

κ = min

(
1

2
,

η1/2N1/2

2γσmax(m1m2)1/2

)
, γ = min{γmin, γmax}. (18)

Let BR = (u1, . . . , uK1 , . . . , um1) be an orthonormal basis of Rm1 such that (u1, . . . , uK1) is an
orthonormal basis of the range of R, and BC = (v1, . . . , vK2 , . . . , vm2) an orthonormal basis of
Rm2 such that (v1, . . . , vK2

) is an orthonormal basis of the range of C. With these notations,(
uiv

T
j

)
i,j

, i = 1, . . . ,m1 and j = 1, . . . ,m2 is an orthonormal basis of Rm1×m2 and any matrix

X ∈ Rm1×m2 can be decomposed as follows:

X =
∑

1≤k≤K1

∑
1≤j≤m2

tkjukv
T
j︸ ︷︷ ︸

Rα

+
∑

K1+1≤i≤m1

∑
1≤k≤K2

zikuiv
T
k︸ ︷︷ ︸

(Cβ)T

+
∑

K1+1≤k≤m1

∑
K2+1≤`≤m2

wk`ukv
T
`︸ ︷︷ ︸

Θ

.

We now define the following set of matrices for r ≥ 1:

L =
{
L ∈ Rm1×m2 | (tkj) ∈ {0, κγ} , k = 1, . . . ,K1, j = 1, . . . ,m2;

(zi`) ∈ {0, κγ} , i = K1 + 1, . . . ,m1, ` = 1, . . .K2;

(wk`) ∈ {0, κγ} , k = K1 + 1, . . . ,m1, ` = K2 + 1, . . . ,K2 + r
}
.

(19)

We also define the set L̃ as follows. For integers n and m, denote by n[m] the value of n modulo
m. For every L ∈ L we define L̃ ∈ L̃ as:

L̃ =
∑

1≤q≤k1

∑
1≤j≤m2

tkjukv
T
j +

∑
1≤i≤m1

∑
1≤s≤k2

zisuiv
T
k +

∑
K1+1≤k≤m1

∑
K2+1≤`≤m2

w̃k`ukv
T
`︸ ︷︷ ︸

Θ̃

,

where for k = K1 + 1, . . . ,m1 and with κ and γ defined in (18) we have set

w̃k` = wk`[r], ` = K2 + 1, . . . ,m2.

For all L̃ ∈ L̃, the corresponding Θ̃ is of rank at most r, and this is also true for the difference
between any two elements of L̃. The Varshamov-Gilbert bound [Tsybakov, 2008, Lemma 2.9]
guarantees that there exists a subset A ⊂ L̃ of cardinality

Card(A) ≥ 2N/8

containing the null matrix with zero in all entries, such that for any two elements X1, X2 of A,

∥∥X1 −X2
∥∥2

F
≥ (r(m1 −K1)(m2 −K2)/r +K1m2 +K2m1 −K1K2)κ2γ2

8

≥ (m1m2)κ2γ2

8
.

(20)
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Recall that for X ∈ Rm1×m2 we denote by PX the law of m1×m2 independant random Poisson
variables with means exp(Xij). Denote by P0 the law of m1 ×m2 independant random Poisson
variables with means 1. Let us compute the Kullback-Leibler divergence between PX and P0:

KL(P || P0) =

m1∑
i=1

m1∑
j=1

(exp(Xij)− 1−Xij) .

Using the fact that Xij = 0 or Xij = κγ, that x 7→ exp(x)− 1− x is gradient Lipschitz on (0, γ)
with constant σmax, and the definition of κ, we obtain

KL(PX || P0) ≤ ηN

8
≤ η log2(Card(A)),

and thus:
1

Card(A)

∑
X∈A

KL(PX || P0) ≤ η log2(Card(A)). (21)

Equations (20) and (21) guarantee that we can use [Tsybakov, 2008, Theorem 2.5], which gives
that

inf
X̂

sup
X∈F(r,γ)

PX


∥∥∥X̂ −X∥∥∥2

F

m1m2
> min

{
γ2,

ηN

m1m2σ2
max

} ≥ d(η,m1), (22)

where

d(η,m1) =
1

1 + 2−N/16

(
1− 2η − 1

2

η1/2

(N log(2))1/2

)
.

8.4 Proof of Proposition 3

We start by some preparatory lemmas and notations. Denote KT the image of K by projector
T . For some X ∈ K, let fX : KT → R+ be the function such that fX(A) = 1K(X + A). Let
g : V⊥ → R+ be the function defined by g(A) = ‖A‖∗ for A ∈ V⊥.

Lemma 7. 0 ∈ ∂fX(A) |A=0.

Proof. X ∈ K implies that f(0) = 0, moreover, for all B ∈ KT , f(0) + 〈0, (B − A)〉 = 0. By
definition of the subdifferential we only need to prove that f(B) ≥ 0 for all B ∈ KT , which is
straightforward with the definition of f .

Lemma 8. ∂g(0) = {W ∈ Rm1×m2 , ‖T (W )‖ < 1}.

Proof. By definition of the subdifferential we need to prove that for all W ∈ Rm1×m2 , ‖T (W )‖ <
1, and for all B ∈ V⊥, g(B) ≥ g(0) + 〈W,B − 0〉. First B ∈ V⊥ implies 〈W,B〉 = 〈T (W ), B〉,
therefore ‖T (W )‖ ≤ 1 is a sufficient condition for W ∈ ∂g(0). Now assume ‖T (W )‖ > 1 and
let T (W ) = UΣV T , where U and V are orthogonal matrices of left and right singular vectors,
and Σ11 = ‖T (W )‖ > 1. Let us define B = U Σ̃V T , Σ̃11 = 1 and Σ̃ij = 0 elsewhere; not that
with this definition B ∈ V⊥. We have g(B) = 1 and 〈T (W ), B〉 = Σ11 > g(B). Therefore
‖T (W )‖ > 1⇒W /∈ ∂g(0), from which we conclude

∂g(0) =
{
W ∈ Rm1×m2 , ‖T (W )‖ < 1

}
.
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We now proceed to the proof of Proposition 3. In what follows for some X ∈ R, we write
with a small abuse of notations Θ = T (X) and X0 = X − T (X). We define ΦλY (X0,Θ) =
ΦY (X0,Θ) + λ ‖Θ‖∗. The zero thresholding statistic is formally defined by

λ0(Y ) = min
λ

0 ∈ ∂{ΦλY (X0,Θ) + 1K(X0 + Θ)} |Θ=0,

where 1K(X0 + Θ) is the indicator function of K, equal to 0 on K and +∞ elsewhere. Under the
constraint Θ = 0, we get

X̂0 = argmin
X∈K,T (X)=0

ΦY (X),

while the subdifferential of the objective function ΦλY with respect to Θ at Θ = 0 is given by

∂ΘΦλY |Θ=0= − 1

m1m2
(Y − exp(X0)) + λ∂Θ ‖Θ‖∗ |Θ=0 +∂Θ1K(X0 + Θ) |Θ=0 .

Lemma 7 guarantees that 0 ∈ ∂Θ1K(X0 + Θ) |Θ=0, and Lemma 8 ensures that 0 ∈ ∂ΦλY (Θ) |Θ=0

if and only if

0 ∈ − 1

m1m2
(Y − exp(X̂0)) + λW , ‖T (W )‖ < 1.

This is equivalent to λ ≥ (m1m2)−1
∥∥∥T (Y − exp(X̂0))

∥∥∥ . Additionally, at the optimum X̂0, we

have T (Y − exp(X̂0)) = Y − exp(X̂0), which concludes the proof.
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