Real-time Audio Classification based on Mixture Models
Maxime Baelde, Christophe Biernacki, Raphaël Greff

To cite this version:
Maxime Baelde, Christophe Biernacki, Raphaël Greff. Real-time Audio Classification based on Mixture Models. The 42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP2017), Mar 2017, La Nouvelle-Orléans, United States. hal-01481934

HAL Id: hal-01481934
https://hal.archives-ouvertes.fr/hal-01481934
Submitted on 3 Mar 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
1. INTRODUCTION

Standard Machine Learning (ML) approach for audio classification:

Input sound \(x = (x[1], ..., x[P]) \)

Preprocessing
STFT, Harmonic decomposition, ...

Feature extraction
Energy, MFCC, ...

ML Classifier
GMM, Neural Networks, ...

ML Model

Our approach to real-time audio classification:

Input sound \(x = (x[1], ..., x[P]) \)

Preprocessing
STFT: \(S = (S[1], ..., S[N]) \)

Fit Mixture Model

Dictionary

\(\mathcal{D} = \{ \theta \} \)

2. CREATE A DICTIONARY OF MODELS

How the sounds are grouped and split:

Group of sounds \(G_1 \) \(\cdots \) \(G_r \)

Sounds \(C_{ij} \) \(\cdots \) \(C_{iN} \)

Sound buffers \(\tilde{C}_{ij} \) \(\cdots \) \(\tilde{C}_{iN} \)

Split a sound into buffers with a window size \(T \) and an overlap \(D \):

Modeling of each buffer with a mixture model [2]:

Magnitude

Spectrum

Model

3. SOUND MODELS

Normalized spectrum:

\[S_{jk}[n] = N^{-1} \frac{|s_{jk}[n]|^2}{\sum_{p=1}^{M_p} |s_{jp}[p]|^2} \]

Mixture model:

\[p(f|\theta_{jk}) = \sum_{m=1}^{M_k} \pi_{jk}^{(m)} \frac{1}{2\pi} \left(f - \mu_{jk}^{(m)} \right)^2 \]

Model likelihood for binned data:

\[\mathcal{L}(\theta_{jk}) = p(S|\theta_{jk}) = \prod_{n=1}^{N} \left(\int_{[s]} p(f|\theta_{jk})df \right) S_{jk}[n] \]

4. IDENTIFY NEW SOUNDS

Test sounds \(S \): Split with window size \(T \) and consider groups of \(R \) buffers.

Aggregate the probabilities over \(R \) buffers:

\[\hat{G}_i = \arg \max_{G_i} p(G_i|S) \]

5. RESULTS & DISCUSSION

Cross-Validation Good classification rate (%) (Comparison with state-of-the-art methods)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>A-Volute ESC-50 ESC-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our algorithm</td>
<td>96.5</td>
</tr>
<tr>
<td>Parametric method</td>
<td>73.6</td>
</tr>
<tr>
<td>Non-parametric method</td>
<td>46.6</td>
</tr>
<tr>
<td>Human</td>
<td>91.8</td>
</tr>
</tbody>
</table>

Parametric method: standard GMM with standard features [1]

Non-parametric method: Deep ConvNet with spectrogram features [3]

Complexity (Example on the A-Volute database)

<table>
<thead>
<tr>
<th></th>
<th>(\mathcal{O}(\text{Number of operations}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our algorithm</td>
<td>(28 \times 10^k)</td>
</tr>
<tr>
<td>Parametric method</td>
<td>(2 \times 10^k)</td>
</tr>
<tr>
<td>Non-parametric method</td>
<td>(14 \times 10^k)</td>
</tr>
</tbody>
</table>

6. RESOURCES

Website available with free demonstrator of the method:

7. REFERENCES

