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Abstract

The aim of this work is to study the controllability of infinite bilinear Schrödinger equations on
a segment. In particular, we consider the equations (BSE) i∂tψ

j = −∆ψj + u(t)Bψj in the Hilbert
space L2((0, 1),C) for every j ∈ N∗. The Laplacian −∆ is equipped with Dirichlet homogeneous
boundary conditions, B is a bounded symmetric operator and u ∈ L2((0, T ),R) with T > 0. First, we
show that simultaneously controlling infinite (BSE) by projecting onto suitable N dimensional spaces
is equivalent to the simultaneous controllability of N equations (without projecting). Second, we
prove the simultaneous local and global exact controllability of infinite bilinear Schrödinger equations
in projection. The local controllability is guaranteed for any positive time and both the outcomes
can be ensured for explicit B. In conclusion, we rephrase the results in terms of density matrices.

AMS subject classifications: 35Q41, 93C20, 93B05, 81Q15.

Keywords: Schrödinger equation, simultaneous control, global exact controllability, moment problem,
perturbation theory, density matrices.

1 Introduction

1.1 The problem

In this work, we consider infinite particles constrained in a one-dimensional bounded region and subjected
to an external control field. A suitable choice for such setting is to model the dynamics of these particles
by infinitely many bilinear Schrödinger equations in the Hilbert space H = L2((0, 1),C){

i∂tψj(t) = Aψj(t) + u(t)Bψj(t), t ∈ (0, T ), T > 0,

ψj(0) = ψ0
j ∈ L2((0, 1),C), j ∈ N∗.

(BSE)

The Laplacian A = −∆ is equipped with homogeneous Dirichlet boundary conditions such that

D(A) = H2((0, 1),C) ∩H1
0 ((0, 1),C).

The bounded symmetric operator B models the action of the external field, while the control function
u ∈ L2((0, T ),R) represents its intensity.

We study the controllability of the infinite bilinear Schrödinger equations (BSE) at the same time T
with one unique control u by projecting onto suitable finite dimensional subspaces of H .

In order to detail the purpose of the work, we need to introduce the following notations. First, we
denote by Γut the unitary propagator in H generated by the dynamics of the (BSE) in a given time
interval [0, t] (when it is defined). Second, we consider an orthonormal system Ψ := {ψj}j∈N∗ and we
call πN (Ψ) with N ∈ N∗ the orthogonal projector such that

πN (Ψ) : H −→ span{ψj : j ≤ N}
L2

.(1)
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Third, we said that two sequences of functions {ψ1
j }j∈N∗ , {ψ2

j }j∈N∗ ⊆ H are unitarily equivalent when
there exists Γ ∈ U(H ) (the space of the unitary operators in H ) such that

ψ1
j = Γψ2

j , ∀j ∈ N∗.

We investigate the existence of orthonormal systems Ψ so that, for any suitable {ψ1
j }j∈N∗ and

{ψ2
j }j∈N∗ unitarily equivalent, there exist T > 0 and u ∈ L2((0, T ),R) such that

πn(Ψ) ΓuTψ
1
j = πn(Ψ)ψ2

j , ∀j ∈ N∗.(2)

If we denote by 〈·, ·〉L2 the usual L2−scalar product, then the identities (2) become

〈ψk,ΓuTψ1
j 〉L2 = 〈ψk, ψ2

j 〉L2 , ∀j, k ∈ N∗, k ≤ N.

In order to achieve the result, we show that the simultaneous global exact controllability in projection onto
a suitable N dimensional space is equivalent to the controllability of N problems (without projecting).

1.2 Main results

Let ‖ · ‖L2 be the norm of the Hilbert space H = L2((0, 1),C) such that ‖ · ‖L2 =
√
〈·, ·〉L2 . Let

{φj}j∈N∗ , {λj}j∈N∗

respectively be the eigenfunctions and the eigenvalues of A such that

φj(x) =
√

2 sin(jπx), λj = π2j2, ∀j ∈ N∗.(3)

We notice that {φj}j∈N∗ forms an Hilbert basis of H and we consider the spaces

H3
(0) = D(|A| 32 ), ‖ · ‖(3) = ‖ · ‖H3

(0)
=
( ∞∑
k=1

|k3〈·, φk〉L2 |2
) 1

2

,

`∞(H3
(0)) =

{
{ψj}j∈N∗ ⊂ H3

(0)

∣∣ sup
j∈N∗

‖ψj‖(3) <∞
}
.

Theorem 1.1. Let Γut be the unitary propagator in H generated by the dynamics of the (BSE) in the
time interval [0, t]. The two following results are equivalent with N ∈ N∗.
(1) Let {ψ1

j }j∈N∗ and {ψ2
j }j∈N∗ ⊂ H3

(0) be a couple of complete orthonormal systems of H . Let Γ̂ be the

unitary operator such that {Γ̂ψ2
j }j∈N∗ = {ψ1

j }j∈N∗ . For any Ψ := {ψj}j≤N ⊂ H3
(0) orthonormal system

of H such that {Γ̂ψj}j≤N ⊂ H3
(0), there exist T > 0 and u ∈ L2((0, T ),R) such that

〈ψk,ΓuTψ1
j 〉L2 = 〈ψk, ψ2

j 〉L2 , ∀j, k ∈ N∗, k ≤ N.

In other words, the following identities are satisfied (with πN (Ψ) defined in (1)):

πN (Ψ)ΓuTψ
1
j = πN (Ψ)ψ2

j , ∀j ∈ N∗.

(2) Let {ψ1
j }j≤N and {ψ2

j }j≤N ⊂ H3
(0) be a couple of orthonormal systems in H . There exist T > 0

and u ∈ L2((0, T ),R) such that

ΓuTψ
1
j = ψ2

j , ∀j ≤ N.

Theorem 1.1 ensures the equivalence between the controllability in projection of infinite bilinear
Schrödinger equations and the controllability of finitely many (BSE) without projecting.

Before providing the other main results of the work, we need to introduce further notations. For
s > 0, we call Hs := Hs((0, 1),C), Hs

0 := Hs
0((0, 1),C) and, for N ∈ N∗, we define

(4) IN := {(j, k) ∈ N∗ × {1, ..., N} : j 6= k}.
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Assumptions I. The bounded symmetric operator B satisfies the following conditions.

1. For any N ∈ N∗, there exists CN > 0 so that |〈φk, Bφj〉L2 | ≥ CN

k3 for every j ≤ N and k ∈ N∗.

2. Ran(B|H2
(0)

) ⊆ H2
(0) and Ran(B|H3

(0)
) ⊆ H3 ∩H1

0 .

3. For every N ∈ N∗ and (j, k), (l,m) ∈ IN such that (j, k) 6= (l,m) and j2 − k2 − l2 +m2 = 0,

〈φj , Bφj〉L2 − 〈φk, Bφk〉L2 − 〈φl, Bφl〉L2 + 〈φm, Bφm〉L2 6= 0.

The first condition in Assumptions I quantifies how much B “mixes” eigenstates, while the second
fixes its regularity. The third condition instead is required in order to decouple, through perturbation
theory techniques, the eigenvalues resonances appearing in the proof of the following result.

The next theorem states the second main outcome of the work which ensures the simultaneous local
exact controllability in projection for any positive time.

Theorem 1.2. Let Γut be the unitary propagator in H generated by the dynamics of the (BSE) in
the time interval [0, t] with B satisfying Assumptions I. Let N ∈ N∗. For every T > 0, there exist a
neighborhood O in `∞(H3

(0)) and Ψ := {ψj}j∈N∗ ∈ O such that the following result is verified. For every

{ψ1
j }j∈N∗ ∈ O, there exist {θj}j≤N ⊂ R and u ∈ L2((0, T ),R) such that{

〈ψk,ΓuTψj〉L2 = eiθj 〈ψk, ψ1
j 〉L2 , ∀j, k ∈ N∗, j ≤ N, k ≤ N,

〈ψk,ΓuTψj〉L2 = 〈ψk, ψ1
j 〉L2 , ∀j, k ∈ N∗, j > N, k ≤ N.

In other words, the following identities are satisfied (with πN (Ψ) defined in (1)):{
πN (Ψ)ΓuTψj = eiθjπN (Ψ)ψ1

j , ∀j ∈ N∗, j ≤ N,
πN (Ψ)ΓuTψj = πN (Ψ)ψ1

j , ∀j ∈ N∗, j > N.

Theorem 1.2 allows to locally control infinite bilinear Schrodinger equations in any positive T > 0
with one single u by projecting onto suitable a finite dimensional subspace of H . The statement is a
simplification of Proposition 4.2 where the family {ψj}j∈N∗ and the neighborhood O are specified.

The next theorem states the third main result of the work that is the simultaneous global exact
controllability in projection.

Theorem 1.3. Let Γut be the unitary propagator in H generated by the dynamics of the (BSE) in the
time interval [0, t] with B satisfying Assumptions I. Assume that Ψ := {ψj}j∈N∗ ⊂ H3

(0) is an orthonormal

system of H . Let {ψ1
j }j∈N∗ and {ψ2

j }j∈N∗ ⊂ H3
(0) be complete orthonormal systems of H and Γ̂ ∈ U(H )

be such that {Γ̂ψ2
j }j∈N∗ = {ψ1

j }j∈N∗ . If the following condition is satisfied

(5) {Γ̂ψj}j≤N ⊂ H3
(0)

with N ∈ N∗, then there exist T > 0, u ∈ L2((0, T ),R) and {θk}k≤N ⊂ R such that

〈ψk,ΓuTψ1
j 〉L2 = eiθk〈ψk, ψ2

j 〉L2 , ∀j, k ∈ N∗, k ≤ N.(6)

Theorem 1.3 allows to control with a single u and at the same time T any finite number of components
of infinitely many solutions of the problems (BSE). We notice that the outcome is guaranteed when the
orthonormal system {ψj}j∈N∗ verifies a “H3

(0)−compatibility condition” exposed in (5) and is ensured
up to phases in the components which prevents to formulate the result in terms of projectors. Although,
if Ψ3 = Ψ2, then {Γ̂ψ3

j }j≤N = {ψ1
j }j≤N ⊂ H3

(0) and, since eiθk〈ψ2
k, ψ

2
j 〉L2 = eiθkδk,j = eiθj 〈ψ2

k, ψ
2
j 〉L2 for

every j, k ∈ N∗, the relations (6) become

πN (Ψ2)ΓuTψ
1
j = πN (Ψ2) eiθjψ2

j , ∀j ≤ N,
πN (Ψ2)ΓuTψ

1
j = πN (Ψ2) ψ2

j , ∀j > N.

As Ψ2 is composed by orthogonal elements, the next corollary follows.
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Corollary 1.4. Let Γut be the unitary propagator in H generated by the dynamics of the (BSE) in
the time interval [0, t] with B satisfying Assumptions I. Let Ψ1 := {ψ1

j }j∈N∗ , Ψ2 := {ψ2
j }j∈N∗ ⊂ H3

(0)

be complete orthonormal systems of H . For every N ∈ N∗, there exist T > 0, u ∈ L2((0, T ),R) and
{θj}j≤N ⊂ R such that {

ΓuTψ
1
j = eiθjψ2

j , ∀j ≤ N,
πN (Ψ2) ΓuTψ

1
j = 0, ∀j > N.

Here, one can notice the parallelism between our results with the ones provided in [MN15] by
Morancey and Nersesyan. On the one hand, Corollary 1.4 implies the controllability of any finite number
of bilinear Schrödinger equations (such as [MN15, Main Theorem]). On the other hand, similar state-
ments to Theorem 1.2 and Theorem 1.3 can be ensured by using Theorem 1.1 with the outcomes from
[MN15]. Nevertheless, in this case the hypotheses on the operator B would not be easy to confirm. More
precisely, the mentioned work studies the simultaneous global exact controllability of any finite number
of bilinear Schrödinger equations defined by the time-dependent Hamiltonian

H(t) = −∆ + V + u(t)Mµ, u ∈ L2((0, T ),R), D(−∆) = H2 ∩H1
0 ,

with Mµ a multiplication operator for a function µ and V a suitable potential. One of the technical
conditions imposed on V assures that the eigenvalues of −∆ + V are rationally independent (condition
(C7) from [MN15, p. 20]). The adopted hypotheses are not usually easy to validate and, for this reason,
they prove the existence a residual set Q in H4 such that the controllability holds for every µ ∈ Q (where
a residual set is an intersection of countably many sets with dense interiors).

From this perspective, our purpose is different. We aim to provide explicit conditions on the problem,
such as Assumptions I, ensuring the controllabilty. To this end, we develop a new set of techniques from
the ones adopted in the mentioned work. For instance, we provide an alternative strategy to the “Coron’s
return method” (used in [MN15]) to prove the local controllability ensured by Theorem 1.2. For further
details on our approach, we refer to Section 4.1. In Example 2.2, we present specific control fields B
satisfying Assumptions I, i.e. B : ψ ∈H 7→ x2ψ.

In Section 6, we use the controllability result provided by Corollary 1.4 in order to ensure the global
exact controllability for suitable density matrices by projecting onto suitable finite dimensional spaces.

1.3 A brief bibliography

Global approximate controllability results for the bilinear Schrödinger equation are provided with dif-
ferent techniques in literature. For instance, adiabatic arguments are considered by Boscain, Chittaro,
Gauthier, Mason, Rossi and Sigalotti in [BCMS12] and [BGRS15]. The result is achieved with Lyapunov
techniques by Mirrahimi in [Mir09] and by Nersesyan in [Ner10]. Lie-Galerking arguments are used by
Boscain, Boussäıd, Caponigro, Chambrion, Mason and Sigalotti in [CMSB09], [BCCS12] and [BdCC13].

The exact controllability of the bilinear Schrödinger equation (BSE) is in general a more delicate
matter as a consequence of the results provided by Ball, Mardsen and Slemrod in [BMS82]. In particular,
they ensure that the equation is not exactly controllable in H and D(A) with controls in L2

loc(R+,R)
when B : D(A)→ D(A), even though the (BSE) is well-posed in such spaces.

Despite this non-controllability result, many authors have addressed the problem for weaker notions
of controllability by considering suitable subspaces of D(A). This idea was preliminarly introduced by
Beauchard in [Bea05] and popularized by the work in [BL10]. Let Mµ be the multiplication operator for
a function µ ∈ H . In [BL10], Beauchard and Laurent prove the local exact controllability of (BSE) in
a neighborhood of the first eigenfunction of A in S ∩H3

(0) when B = Mµ for a suitable µ ∈ H3.

Another important work on the subject is [Mor14] where Morancey ensures the simultaneous local
exact controllability in S ∩H3

(0) for at most three problems (BSE) and up to phases, when B = Mµ for

suitable µ ∈ H3. In [MN15] (mentioned before), Morancey and Nersesyan extend the previous result.
They prove the existence of a residual set of functions Q in H4 so that, for B = Mµ and µ ∈ Q, the
simultaneous global exact controllability is verified for any finite number of (BSE) in H4

(V ) := D(|A+V |2)

for any V ∈ H4.
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1.4 Scheme of the work

In Section 2, we fix the notations considered in the work and we present some preliminary features of
the problem such as the well-posedness of the (BSE) in the space H3

(0) ensured by [BL10].
In Section 3, we prove Theorem 1.1 by showing that the simultaneous global exact controllability in
projection onto a suitable N dimensional space is equivalent to the controllability of N problems .
In Section 4, we provide Proposition 4.2 and its proof. The proposition extends Theorem 1.2 and it
states the simultaneous local exact controllability in projection for any positive time up to phases. In
order to motivate the modification of the problem, we emphasize the obstructions to overcome.
In Section 5, we ensure the simultaneous global exact controllability of N (BSE) by gathering a global
approximate controllability and a local exact controllability. The outcome leads to Theorem 1.3.
In Section 6, we rephrase our results in terms of density matrices, while in Section 7, we provide some
conclusive comments on the results of our work.
In Appendix A, we briefly discuss the solvability of the so-called “moment problems”, while in Appendix
B, we develop the perturbation theory techniques adopted in the work.

2 Auxiliary results

2.1 Notations and preliminaries

We denote H = L2((0, 1),C), its norm ‖ · ‖L2 and its scalar product 〈·, ·〉L2 such that

〈f, g〉L2 =

∫ 1

0

f(x)g(x)dx, ∀f, g ∈H .

Let B a Banach space. We introduce for s > 0,

Hs
(0) =D(|A| s2 ), ‖ · ‖(s) = ‖ · ‖Hs

(0)
=
( ∞∑
k=1

|ks〈·, φk〉L2 |2
) 1

2

,

hs(B) =
{
{ψj}j∈N∗ ⊂ B

∣∣ ∞∑
j=1

(js‖ψj‖B)2 <∞
}
.

(7)

We recall that {φj}j∈N∗ is the Hilbert basis composed by eigenfunctions of A defined in (3) and related
to the eigenvalues {λj}j∈N∗ . Let

Ψ := {ψj}j∈N∗ ⊂H , HN (Ψ) := span{ψj : j ≤ N}.

We define πN (Ψ) the orthogonal projector such that

πn(Ψ) : H −→HN (Ψ).(8)

Remark 2.1. If a bounded operator B satisfies Assumptions I, then B ∈ L(H2
(0), H

2
(0)). Indeed, B is

closed in H , so for every {un}n∈N∗ ⊂ H such that un
H−→ u and Bun

H−→ v, we have Bu = v. Now,

for every {un}n∈N∗ ⊂ H2
(0) such that un

H2
(0)−→ u and Bun

H2
(0)−→ v, the convergences with respect to the

H -norm are implied and Bu = v. Hence, the operator B is closed in H2
(0) and B ∈ L(H2

(0), H
2
(0)). The

same argument leads to B ∈ L(H3
(0), H

3 ∩H1
0 ) since Ran(B|H3

(0)
) ⊆ H3 ∩H1

0 .

Example 2.2. Assumptions I are satisfied for B : ψ 7→ x2ψ. Indeed, the condition 1) is guaranteed as|〈φj , x
2φk〉L2 | =

∣∣∣ (−1)j−k

(j−k)2π2 − (−1)j+k

(j+k)2π2

∣∣∣, ∀j, k ∈ N, j 6= k,

|〈φk, x2φk〉L2 | =
∣∣∣ 13 − 1

2k2π2

∣∣∣, ∀k ∈ N∗.

The point 2) is trivially true, while the 3) holds since for (j, k), (l,m) ∈ IN so that (j, k) 6= (l,m)

j2 − k2 − l2 +m2 = 0 =⇒ j−2 − k−2 − l−2 +m−2 6= 0.

We notice that the same properties are valid for other control operators such as

B : ψ ∈H 7−→ sin
(π

2
x
)
ψ or B : ψ ∈H 7−→ x3ψ.
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2.2 Well-posedness

In the current subsection, we cite an important result of well-posedness for the following problem in H{
i∂tψ(t) = Aψ(t) + u(t)µψ(t), t ∈ (0, T ),

ψ(0) = ψ0 ∈ L2((0, 1),C).
(9)

Proposition 2.3. [BL10, P roposition 2] Let µ ∈ H3, T > 0, ψ0 ∈ H3
(0) and u ∈ L2((0, T ),R). There

exists a unique mild solution of (9) in H3
(0), i.e. ψ ∈ C0([0, T ], H3

(0)) so that

(10) ψ(t) = e−iAtψ0 − i
∫ t

0

e−iA(t−s)u(s)µψ(s)ds, ∀t ∈ [0, T ].

Moreover, for every R > 0, there exists C = C(T, µ,R) > 0 such that, if ‖u‖L2((0,T ),R) < R, then, for
every ψ0 ∈ H3

(0), the solution satisfies

‖ψ‖C0([0,T ],H3
(0)

) ≤ C‖ψ0‖(3), ‖ψ(t)‖L2 = ‖ψ0‖L2 , ∀t ∈ [0, T ].

The outcome of Proposition 2.3 is not only valid for multiplication operators, but also for other
suitable operators B. Indeed, the same proofs of [BL10, Lemma 1] and [BL10, P roposition 2] lead to
the well-posedness of the (BSE) when B is a bounded symmetric operator such that

B ∈ L(H3
(0), H

3 ∩H1
0 ), B ∈ L(H2

(0)),

which are verified if B satisfies Assumptions I, thanks to Remark 2.1. As a consequence, for every
{ψj}j∈N∗ ∈ `∞(H3

(0)), it follows {ΓuTψj}j∈N∗ ∈ `∞(H3
(0)). We refer to (7) for the definition of `∞(H3

(0)).

We denote Γut the unitary propagator in H generated by the (BSE) in the time interval [0, t] and,
for any mild solution ψj in L2((0, 1),C) of the j-th problem (BSE) with j ∈ N∗, we have

Γut ψj(0) = ψj(t) .

2.3 Time reversibility

An important feature of the bilinear Schrödinger equation is the time reversibility. If we consider ψ(t) =
Γut ψ

0 and we substitute t with T − t for T > 0 in a bilinear Schrödinger equation, then we have{
i∂tΓ

u
T−tψ

0 = −AΓuT−tψ
0 − u(T − t)BΓuT−tψ

0, t ∈ (0, T ),

ΓuT−0ψ
0 = ΓuTψ

0 = ψ1.

We define the operator Γ̃ũt such that ΓuT−tψ
0 = Γ̃ũt ψ

1 for ũ(t) := u(T − t) and{
i∂tΓ̃

ũ
t ψ

1 = (−A− ũ(t)B)Γ̃ũt ψ
1, t ∈ (0, T ),

Γ̃ũ0ψ
1 = ψ1 ∈ L2((0, 1),C).

(11)

As ψ0 = Γ̃ũTΓuTψ
0 and ψ1 = ΓuT Γ̃ũTψ

1, it follows Γ̃ũT = (ΓuT )−1 = (ΓuT )∗. The operator Γ̃ũt describes the
reversed dynamics of Γut induced by the system (11) and generated by the Hamiltonian (−A− ũ(t)B).

3 Proof of Theorem 1.1

(2) =⇒ (1) Let Ψ3 := {ψ3
j }j∈N∗ ∈ H3

(0) be an orthonormal system. We consider {ψ1
j }j∈N∗ , {ψ2

j }j∈N∗ ⊂
H3

(0) complete orthonormal systems. Let Γ̂ ∈ U(H ) be such that Γ̂ψ2
j = ψ1

j and Γ̂ψ3
k ∈ H3

(0) for every

k ≤ N . We notice that the controllability stated in the point (2) of Theorem 1.1 is also valid for the
reversed dynamics discussed in Section 2.3. Hence, there exist T > 0 and u ∈ L2((0, T ),R) such that

Γ̃uTψ
3
k = Γ̂ψ3

k, ∀k ≤ N, =⇒ 〈Γ̃ũTψk, ψ1
j 〉L2 = 〈Γ̂ψ3

k, ψ
1
j 〉L2 , ∀j, k ∈ N∗, k ≤ N.
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Let ũ be introduced in Section 2.3. The claim is proved since

〈ΓũTψ1
j , ψ

3
k〉L2 = 〈ψ1

j , Γ̃
ũ
Tψ

3
k〉L2 = 〈ψ1

j , Γ̂ψ
3
k〉L2 = 〈ψ2

j , ψ
3
k〉L2 , ∀j, k ∈ N∗, k ≤ N.

(1) =⇒ (2) Let {ψ1
j }j≤N , {ψ2

j }j≤N ⊂ H3
(0) be two orthonormal systems of H . We complete them by

defining two complete orthonormal systems {ψ1
j }j∈N∗ , {ψ2

j }j∈N∗ ⊂ H3
(0). Now, thanks to the point (1),

there exist T > 0 and u ∈ L2((0, T ),R) such that

πN (Ψ2)ΓuTψ
1
j = πN (Ψ2) ψ2

j , ∀j ∈ N∗.

As Ψ2 is composed by orthogonal elements and ΓuT is unitary, the claim is proved since{
ΓuTψ

1
j = ψ2

j , ∀j ≤ N,
πN (Ψ2) ΓuTψ

1
j = 0, ∀j > N.

4 Simultaneous local exact controllability in projection

4.1 Introductive discussion

In this section, we examine the simultaneous local exact controllability in projection and we start by
explaining why we need to modify the problem in order to achieve the result. Let Φ = {φj}j∈N∗ be an
Hilbert basis composed by eigenfunctions of A. For every j ∈ N∗, we denote φj(t, x) = e−iλjtφj(x) with
t > 0. From now on, we adopt the notation φj(t) = φj(t, ·). Let ε > 0 and T > 0. We consider the space

Oε,T :=
{
{ψj}j∈N∗ ∈ `∞(H3

(0))
∣∣ 〈ψj , ψk〉L2 = δj,k; sup

k≤N

∑
j∈N∗

k6|〈ψj , φk(T )〉L2 − 〈φj(T ), φk(T )〉L2 |2 < ε
}
.

(12)

We would like to prove to validity of Theorem (1.2) in the neighborhood Oε,T with respect to the projector
πN (Φ) (defined in (8)) and with T > 0 large enough. Let

Γut φj =

∞∑
k=1

φk(T )〈φk(T ),Γut φj〉L2 with t ∈ [0, T ], φj(T ) = e−iλjTφj , j ∈ N∗

be the solution of the j-th (BSE) with initial data φj . We consider the infinite matrix α(u) such that

αk,j(u) = 〈φk(T ),ΓuTφj〉L2 , , ∀k, j ∈ N∗ k ≤ N.

We would like to ensure the existence of ε > 0 such that for any {ψj}j∈N∗ ∈ Oε,T ,

∃u ∈ L2((0, T ),R) : πN (Φ)ΓuTφj = πN (Φ)ψj , ∀j ∈ N∗.

This outcome can be proved by studying the local surjectivity of α for T > 0. To this purpose, we want
to use the Generalized Inverse Function Theorem ([Lue69, Theorem 1; p. 240]) and study the surjectivity
of the Fréchet derivative of α the infinite matri xγ(v) := (duα(0)) · v such that, for j, k ∈ N∗ and k ≤ N,

γk,j(v) : =

〈
φk(T ),−i

∫ T

0

e−iA(T−s)v(s)Be−iAsφjds

〉
L2

= −i
∫ T

0

v(s)e−i(λj−λk)sdsBk,j ,

for Bk,j = 〈φk, Bφj〉L2 = 〈Bφk, φj〉L2 = Bj,k. The surjectivity of γ consists in proving the solvability of
the moment problem

xk,j
Bk,j

= −i
∫ T

0

u(s)e−i(λj−λk)sds, ∀j, k ∈ N∗, k ≤ N,(13)

for each infinite matrix x := {xk,j}j,k∈N∗
k≤N

belonging to a suitable space. To this end, one would use Haraux

Theorem as explained in Remark A.1 but an obstruction appears. The terms {λj − λk}j,k∈N∗
k≤N

in the
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moment problem (13) present the so-called “eigenvalues resonances”. Formally, for some j, k, n,m ∈ N∗
such that j 6= k, n 6= m, (j, k) 6= (n,m) and k,m ≤ N , there holds λj − λk = λn − λm, which implies

xk,j
Bk,j

= −i
∫ T

0

u(s)e−i(λj−λk)sds = −i
∫ T

0

u(s)e−i(λn−λm)sds =
xn,m
Bn,m

.(14)

An example of eigenvalues resonance is λ7 − λ1 = λ8 − λ4, but many others can be listed. For instance,
all the diagonal terms of γ since λj − λk = 0 for j = k. The relation (14) represents a constraint on the
considered matrices x which is not naturally satisfied in our framework.

In order to avoid this phenomenon, we adopt the following strategy. First, we consider the Hamilto-
nian characterizing the bilinear Schrödinger equations (BSE) and we act the following decomposition

A+ u(t)B = (A+ u0B) + u1(t)B, u0 ∈ R, u1 ∈ L2((0, T ),R).

Second, we consider A + u0B instead of A. We repeat the previous steps by considering {φu0
j }j∈N∗ an

Hilbert basis of H composed by eigenfunctions of A+u0B and {λu0
j }j∈N∗ the corresponding eigenvalues.

By using u0B as a perturbating term in A+ u0B, we modify the eigenvalues gaps

λu0
j − λ

u0

k , ∀j, k ∈ N∗, k ≤ N

in order to remove all the non-diagonal resonances. Afterwards, we consider α̂ depending on the pa-
rameter u0 (instead of α) such that it is defined by the elements α̂k,j(u) = 〈e−iλ

u0
k Tφu0

k ,Γ
u
Tφ

u0
j 〉L2 with

k, j ∈ N∗ and k ≤ N. Now, we rotate the terms of α̂ in order to remove the resonances on the diagonal
terms. We denote by αu0 the obtained map, which is defined by the elements

αu0

k,j(u) =
α̂j,j(u)

|α̂j,j(u)|
α̂k,j(u), ∀j, k ∈ N∗, k ≤ N.

In conclusion, we use the Generalized Inverse Function Theorem with respect to the map αu0 .

4.2 The modified problem

Let N ∈ N∗ and u(t) = u0 + u1(t), for u0 and u1(t) real. We introduce the following Cauchy problems{
i∂tψj(t) = (A+ u0B)ψj(t) + u1(t)Bψj(t), t ∈ (0, T ),

ψ0
j = ψj(0), j ∈ N∗.

(15)

As B is bounded, A+ u0B has pure discrete spectrum. We recall that {λu0
j }j∈N∗ are the eigenvalues of

A+ u0B that correspond to an Hilbert basis of H made by eigenfunctions Φu0 := {φu0
j }j∈N∗ . We set

Ou0

ε0,T
:=
{
{ψj}j∈N∗ ∈ `∞(H3

(0))
∣∣ 〈ψj , ψk〉L2 = δj,k; sup

k≤N

∑
j∈N∗

k6|〈ψj , φu0

k (T )〉L2 − 〈φu0
j (T ), φu0

k (T )〉L2 |2 < ε0

}
,

(16)

with φu0
j (T ) := e−iλ

u0
j Tφu0

j . We choose |u0| small so that λu0

k 6= 0 for every k ∈ N∗ (Lemma B.4,
Appendix B). The introduction of the new Hilbert basis imposes to define the space

H̃3
(0) := D(|A+ u0B|

3
2 ), ‖ · ‖H̃3

(0)
=
( ∞∑
k=1

∣∣|λu0

k |
3
2 〈·, φk〉L2

∣∣2) 1
2

.

Although, from now on, we consider u0 in the neighborhood provided Lemma B.6 and H̃3
(0) ≡ H3

(0).

As introduced in the previous subsection, we define the infinite matrix α̂ with elements α̂k,j(u1) =
〈φu0

k (T ),Γu0+u1

T φu0
j 〉L2 for k ≤ N and j ∈ N∗. Now, the map αu0 is the infinite matrix with elements{
αu0

k,j(u1) =
α̂j,j(u1)
|α̂j,j(u1)| α̂k,j(u1), ∀j, k ∈ N∗, j, k ≤ N,

αu0

k,j(u1) = α̂k,j(u1), ∀j, k ∈ N∗, j > N, k ≤ N.
(17)
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Let γu0(v) = ((du1
αu0)(0)) · v be the Fréchet derivative of αu0 and Bu0

k,j = 〈φu0

k , Bφ
u0
j 〉L2 for k ≤ N and

j ∈ N∗. Defined γ̂k,j(v) = ((du1
α̂)(0)) · v, we compute the elements of γu0(v) such that{

γu0

k,j =
(
γ̂j,jδk,j + γ̂k,j − δk,j<(γ̂j,j)

)
, ∀j, k ∈ N∗, j, k ≤ N,

γu0

k,j = γ̂k,j , ∀j, k ∈ N∗, k ≤ N, j > N,

=⇒

{
γu0

k,j = γ̂k,j = −i
∫ T

0
u1(s)e−i(λ

u0
j −λ

u0
k )sdsBu0

k,j , ∀j, k ∈ N∗, k 6= j,

γu0

k,k = <(γ̂k,k) = 0, ∀k ∈ N∗.
(18)

The relation γu0

k,k = 0 is due to the fact that (iγ̂k,k) ∈ R since γ̂k,j = −γ̂j,k for j, k ≤ N. Hence, the
diagonal elements of γu0 are all equal to 0 due to the rotations adopted in the definition αu0 .

Remark 4.1. As Ou0

ε0,T
is composed by orthonormal elements, we have

TΦu0O
u0

ε0,T
=
{
{ψj}j∈N∗ ⊂ `∞(H3

(0))
∣∣ 〈φu0

k , ψj〉L2 = −〈φu0
j , ψk〉L2

}
.

We refer to (7) for the definition of the space `∞(H3
(0)). Let Γ̃ũt be the propagator defined in Section

2.3 for t ∈ [0, T ] and u ∈  L2((0, T ),R) with T > 0. For every k ∈ N∗, u1 ∈ R and L2((0, T ),R), from
Proposition 2.3 and Lemma B.6, there exists C > 0 so that

+∞∑
j=1

j6|αu0

k,j |
2 =

+∞∑
j=1

j6|〈Γ̃u0+ũ1

T φu0

k , φ
u0
j 〉L2 |2 = ‖Γ̃u0+ũ1

T φu0

k ‖
2
H̃3

(0)

≤ C‖Γ̃u0+ũ1

T φu0

k ‖
2
(3) <∞.

Now, each {αu0

k,j}j∈N∗ ∈ h3(C) (defined in (7)). The maps αu0 and γu0 take respectively values in

QN :=
{
{xk,j}k,j∈N∗

k≤N

∈ (h3(C))N
∣∣ xk,k ∈ R, k ≤ N

}
,

GN :=
{
{xk,j}k,j∈N∗

k≤N

∈ (h3(C))N
∣∣ xk,j = −xj,k, xk,k = 0 j, k ≤ N

}
.

The third point of Remark B.9 implies that the controllability in Ou0

ε0,T
(defined in (16)) with ε0 > 0

ensures the controllability in Oε,T (defined in (12)) for suitable ε > 0. Let {ψj}j∈N∗ ∈ Oε,T and Γ̂ ∈
U(H ) be so that {Γ̂ψj}j∈N∗ = {φu0

j }j∈N∗ and satisfying {Γ̂φu0
j }j≤N ⊂ H3

(0). There exists C > 0 so that∑
j∈N∗

|j3〈φu0

k , ψj〉L2 |2 =
∑
j∈N∗

|j3〈Γ̂φu0

k , φ
u0
j 〉L2 |2 ≤ C‖Γ̂φu0

k ‖(3) <∞, ∀k ≤ N,

thanks to Lemma B.4 and Lemma B.6. Fixed eiθ
1
j :=

〈φu0
j (T ),ψj〉L2

|〈φu0
j (T ),ψj〉L2 |

for j ≤ N and eiθ
1
j := 1 for j > N ,

{eiθ
1
j 〈φu0

k (T ), ψj〉L2} k≤N
j,k∈N∗

∈ QNε := {{xk,j}k,j∈N∗
k≤N

∈ QN | sup
k≤N

∑
j∈N∗

k6|xk,j − δk,j |2 ≤ ε}.

When αu0 is surjective in QNε , there exist T > 0 and u ∈ L2((0, T ),R) such that

{eiθ
1
j 〈φu0

k , ψj〉L2} k≤N
j,k∈N∗

= {eiθ
2
j 〈φu0

k ,Γ
u
Tφ

u0
j 〉L2} k≤N

j,k∈N∗
with

{
eiθ

2
j :=

α̂j,j(u1)
|α̂j,j(u1)| , ∀j ≤ N,

eiθ
2
j := 1, ∀j > N.

(19)

Thus, the surjectivity of the map αu0 in QNε ensures the validity of Theorem 1.2 with respect the projector
πN (Φu0) in Oε,T (also in Ou0

ε0,T
for a suitable ε0 > 0).

4.3 Proof of Theorem 1.2

In the next proposition, we state the simultaneous local exact controllability in projection for any T > 0
up to phases. The result implies Theorem 1.2.
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Proposition 4.2. Let N ∈ N∗ and B satisfy Assumptions I. For every T > 0, there exist ε > 0 and
u0 ∈ R such that the following result is verified. Let {ψ1

j }j∈N∗ ∈ Oε,T (defined in (12)) and Γ̂ ∈ U(H )

be such that {Γ̂ψ1
j }j∈N∗ = {φu0

j }j∈N∗ . If {Γ̂φu0
j }j≤N ⊂ H3

(0), then there exist a sequence of real numbers

{θj}j∈N∗ =
{{
θ̂j
}
j≤N , 0, ...

}
and u ∈ L2((0, T ),R) such that

πN (Φu0)ψj = πN (Φu0)eiθjΓuTφ
u0
j , ∀j ∈ N∗.

Proof. 1) Let u0 belong to the neighborhoods defined in Appendix B by Lemma B.4, Lemma B.5,
Lemma B.6 and Remark B.9. As discussed in Remark 4.1, the surjectivity in QNε of the map αu0

guarantees the simultaneous local exact controllability in projection up to phases in Oε,T . We consider
Generalized Inverse function Theorem ([Lue69, Theorem 1; p. 240]) since QN and GN are real Banach
spaces. If γu0 is surjective in GN , then the surjectivity of αu0 in QNε is ensured for ε small enough. Now,
the map γu0 is surjective when the following moment problem is solvable

xu0

k,j/B
u0

k,j = −i
∫ T

0

u(s)e−i(λ
u0
j −λ

u0
k )sds, ∀j, k ∈ N∗, k ≤ N.(20)

for every
{
xu0

k,j

}
j,k∈N∗
k≤N

∈ GN . We notice that the equations (20) for k = j are redundant as γu0

k,k = 0 and

xu0

k,k = 0 for every k ≤ N and {xu0

k,j}k,j∈N∗
k≤N

∈ GN . The same is true for j, k ≤ N such that j < k since

{xj,k}j,k≤N , {γj,k(u)}j,k≤N with u ∈ L2((0, T ),R),

are skew-hermitian matrices. Thus, we can prove the solvability of (20) for k < j and j = k = 1. Now,
we have

{
xu0

k,j

}
j,k∈N∗
k≤N

∈ (h3)N and
{
γu0

k,j

}
j,k∈N∗
k≤N

∈ (h3)N . Lemma B.5 (Appendix B) yields that

{
xu0

k,j/B
u0

k,j

}
j,k∈N∗
k≤N

∈ (`2(C))N ,
{
γu0

k,j/B
u0

k,j

}
j,k∈N∗
k≤N

∈ (`2(C))N .

Thanks to Lemma B.8 (Appendix B), for IN defined in (4), there exists

G := sup
A⊂IN

(
inf

(j,k),(n,m)∈IN\A
(j,k) 6=(n,m)

|λu0
j − λ

u0

k − λ
u0
n + λu0

m |
)
≥ G ′ := inf

(j,k),(n,m)∈IN

(j,k) 6=(n,m)

|λu0
j − λ

u0

k − λ
u0
n + λu0

m | > 0

where A runs over the finite subsets of IN (see the next point for further details on G ). The solvability
of the moment problem (20) is guaranteed from Remark A.1 by considering the sequence of numbers{

λu0
j − λ

u0

k

}
j,k∈N∗, k≤N

k<j or j=k=1
.

Indeed, xu0
1,1 = 0 and Remark B.9 ensures that λu0

j −λ
u0

k 6= λu0

l −λu0
m for every (j, k), (l,m) ∈ IN (see (4))

such that (j, k) 6= (n,m). In conclusion, the solvability of the moment problem implies the surjectivity of
γu0 and the Generalized Inverse function Theorem ([Lue69, Theorem 1; p. 240]) ensures the surjectivity
of αu0 in QNε for T > 0 large and suitable ε. The proof is achieved as discussed in Remark 4.1.

2) We show that the controllability ensured in 1) is valid for every time T > 0 since G = +∞. Let

AM := {(j, n) ∈ (N∗)2| j, n ≥M ; j 6= n}, M ∈ N∗.

Thanks to the relation (38) in the proof of Lemma B.4 (Appendix B), for |u0| small enough, we have

|λu0
j − λ

u0
n | ≥ |λj − λn| −O(|u0|) ≥ 2π2 min{λj+1 − λj , λn+1 − λn} −O(|u0|).

Hence, for every K ∈ R, there exists MK > 0 large enough such that

inf
(j,n)∈AMK

|λu0
j − λ

u0
n | > K =⇒ G ≥ sup

M∈N∗

(
inf

(j,n)∈AM
|λu0
j − λ

u0
n | − 2λu0

N

)
> 0.

In conclusion, for |u0| small enough, Lemma B.4 implies the existence of C > 0 such that

G ≥ C
(

lim
M→∞

inf
(j,n)∈AM

|λj − λn| − 2λN
)
≥ C lim

M→∞
(λM+2 − λM+1 − 2N2π2) = +∞.
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5 Simultaneous global exact controllability in projection

5.1 Preliminaries

The common approach adopted in order to prove global exact controllability results consists in gathering
the global approximate controllability and the local exact controllability. Nevertheless, this strategy can
not be used to prove the controllability in projection as the propagator ΓuT does not preserve the space
πN (Ψ)H3

(0) for any Ψ := {ψj}j∈N∗ ⊂ H3
(0). For instance, let Ψ = {ψj}j∈N∗ be an orthonormal system

and ψ1, ψ2 ∈ H3
(0) be unitarily equivalent. When we have

π(Ψ)Γu1

T1
ψ1 = π(Ψ)Γu2

T2
ψ2, T1, T2 > 0, u1 ∈ L2((0, T1),R), u2 ∈ L2((0, T1),R),

it is not guaranteed that there exists T > 0 and a control u ∈ L2((0, T ),R) such that

π(Ψ)ΓuTψ1 = π(Ψ)ψ2.

To this purpose, we adopt an alternative strategy based on the “transposition argument” introduced by
Theorem 1.1. We prove the simultaneous global exact controllability for N problems (BSE) (without
projection) in (H3

(0))
N . In such space, we can concatenate and reverse dynamics since it is preserved by

the dynamics. Second, we ensure Theorem 1.3 thanks to Theorem 1.1.

5.2 Simultaneous approximate controllability

In this section, we prove the simultaneous global approximate controllability for finite number of (BSE).

Definition 5.1. The problems (BSE) are said to be simultaneously globally approximately controllable

in H3
(0) when, for every N ∈ N∗, ψ1, ...., ψN ∈ H3

(0), Γ̂ ∈ U(H ) such that Γ̂ψ1, ...., Γ̂ψN ∈ H3
(0) and ε > 0,

there exist T > 0 and u ∈ L2((0, T ),R) such that ‖ΓuTψk − Γ̂ψk‖(3) < ε for every 1 ≤ k ≤ N .

Theorem 5.2. Let B satisfy Assumptions I. The problems (BSE) are simultaneously globally approxi-
mately controllable in H3

(0).

Proof. In the point 1) of the proof, we suppose that (A,B) admits a non-degenerate chain of connect-
edness (see [BdCC13, Definition 3]). We treat the general case in the point 2) of the proof.

1) Preliminaries. Let πm be the orthogonal projector πm : H → Hm := span{φj : j ≤ m}
L2

for every m ∈ N∗. Up to reordering of {φk}k∈N∗ , the couples (πmAπm, πmBπm) for m ∈ N∗ admit non-
degenerate chains of connectedness in Hm. Let ‖·‖BV (T ) = ‖·‖BV ((0,T ),R) and ||| · ||| (s) := ||| · ||| L(Hs

(0)
,Hs

(0)
)

for s > 0. Thanks to the validity of Assumptions I, we have B : H2
(0) → H2

(0).

Claim. For every ε > 0, there exist N1 ∈ N∗ and Γ̃N1
∈ U(H ) such that πN1

(Φ)Γ̃N1
πN1

(Φ) ∈
SU(HN1

) and

(21) ‖Γ̃N1φj − Γ̂φj‖L2 < ε, ∀j ≤ N.

LetN1 ∈ N∗ be such thatN1 ≥ N . We apply the orthonormalizing Gram-Schmidt process to {πN1
(Φ)Γ̂φj}j≤N

and we define the sequence {φ̃j}j≤N that we complete in {φ̃j}j≤N1
, an orthonormal basis of HN1

. The

operator Γ̃N1
is the unitary map such that Γ̃N1

φj = φ̃j , for every j ≤ N1. In conclusion, we consider N1

large enough so that the statement is verified.

Finite dimensional controllability. Let Tad be the set of (j, k) ∈ {1, ..., N1}2 such that Bj,k :=
〈φj , Bφk〉L2 6= 0 and |λj −λk| = |λm−λl| with m, l ∈ N∗ implies {j, k} = {m, l} for Bm,l = 0. For every
(j, k) ∈ {1, ..., N1}2 and θ ∈ [0, 2π), we define Eθj,k the N1 × N1 matrix with elements (Eθj,k)l,m = 0,

(Eθj,k)j,k = eiθ and (Eθj,k)k,j = −e−iθ for (l,m) ∈ {1, ..., N1}2 \ {(j, k), (k, j)}. Let Ead =
{
Eθj,k : (j, k) ∈

Tad, θ ∈ [0, 2π)
}

and Lie(Ead). Fixed v a piecewise constant control taking value in Ead and τ > 0, we
introduce the control system on SU(HN1){

ẋ(t) = x(t)v(t), t ∈ (0, τ),

x(0) = IdSU(HN1
).

(22)
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Claim. (22) is controllable, i.e. for R ∈ SU(HN1
), there exist p ∈ N∗, M1, ...,Mp ∈ Ead,

α1, ..., αp ∈ R+ such that R = eα1M1 ◦ ... ◦ eαpMp .

For every (j, k) ∈ {1, ..., N1}2, we define the N1 ×N1 matrices Rj,k, Cj,k and Dj as follow. For (l,m) ∈
{1, ..., N1}2 \ {(j, k), (k, j)},we have (Rj,k)l,m = 0 and (Rj,k)j,k = −(Rj,k)k,j = 1, while (Cj,k)l,m = 0
and (Cj,k)j,k = (Cj,k)k,j = i. Moreover, for (l,m) ∈ {1, ..., N1}2 \ {(1, 1), (j, j)}, (Dj)l,m = 0 and
(Dj)1,1 = −(Dj)j,j = i. We consider the basis of su(HN1

)

e := {Rj,k}j,k≤N1 ∪ {Cj,k}j,k≤N1 ∪ {Dj}j≤N1 .

Thanks to [Sac00, Theorem 6.1], the controllability of (22) is equivalent to prove that Lie(Ead) ⊇
su(HN1

) for su(HN1
) the Lie algebra of SU(HN1

). The claim si valid as it is possible to obtain the
matrices Rj,k, Cj,k and Dj for every j, k ≤ N1 by iterated Lie brackets of elements in Ead.

Finite dimensional estimates. Thanks to the previous claim and to the fact that πN1
(Φ)Γ̃N1

πN1
(Φ) ∈

SU(HN1
), there exist p ∈ N∗, M1, ...,Mp ∈ Ead and α1, ..., αp ∈ R+ such that

(23) πN1
(Φ)Γ̃N1

πN1
(Φ) = eα1M1 ◦ ... ◦ eαpMp .

Claim. For every l ≤ p and eαlMl from (23), there exist {T ln}l∈N∗ ⊂ R+ and {uln}n∈N∗ such that
uln : (0, T ln)→ R for every n ∈ N∗ and

(24) lim
n→∞

‖Γu
l
n

T l
n
φk − eαlMlφk‖L2 = 0, ∀k ≤ N1,

sup
n∈N∗

‖uln‖BV (Tn) <∞, sup
n∈N∗

‖uln‖L∞((0,Tn),R) <∞,

sup
n∈N∗

Tn‖uln‖L∞((0,Tn),R) <∞.
(25)

We consider the results developed in [Cha12, Section 3.1 & Section 3.2] by Chambrion and leading to
[Cha12, P roposition 6] since (A,B) admits a non-degenerate chain of connectedness ([BdCC13, Defini-
tion 3]). Each eαlMl is a rotation in a two dimensional space for every l ∈ {1, ..., p} and this work allows
to explicit {T ln}l∈N∗ ⊂ R+ and {uln}n∈N∗ satisfying (25) such that uln : (0, T ln)→ R for every n ∈ N∗ and

(26) lim
n→∞

‖πN1
(Φ)Γ

ul
n

T l
n
φk − eαlMlφk‖L2 = 0, ∀k ≤ N1.

As eαlMl ∈ SU(HN1
), we have limn→∞ ‖Γ

ul
n

T l
n
φk − eαlMlφk‖L2 = 0 for k ≤ N1.

Infinite dimensional estimates.

Claim. There exist K1,K2,K3 > 0 such that for every ε > 0, there exist T > 0 and u ∈
L2((0, T ),R) such that ‖ΓuTφk − Γ̂φk‖L2 ≤ ε for every k ≤ N1 and

‖u‖BV (T ) ≤ K1, ‖u‖L∞((0,T ),R) ≤ K2, T‖u‖L∞((0,T ),R) ≤ K3.(27)

We assume p = 2, but the following result is valid for any p ∈ N∗. Thanks to (24), there exists n ∈ N∗
large enough such that, for every k ≤ N1,

‖Γu
2
n

T 2
n
Γ
u1
n

T 1
n
φk − eα2M2eα1M1φk‖L2 ≤ ‖Γu

1
n

T 1
n
φk − eα1M1φk‖L2 +

N1∑
l=1

‖
(
Γ
u2
n

T 2
n
φl − eα2M2φl

)
〈φl, eα1M1φk〉L2‖L2

≤ ‖Γu
1
n

T 1
n
φk − eα1M1φk‖L2 +

( N1∑
l=1

‖Γu
2
n

T 2
n
φl − eα2M2φl‖2L2

) 1
2 ≤ ε.

In the previous inequality, we considered that eα1M1φk ∈HN1
. The identity (23) leads to the existence

of K1,K2,K3 > 0 such that for every ε > 0, there exist T > 0 and u ∈ L2((0, T ),R) such that

‖ΓuTφk − Γ̃N1φk‖L2 < ε for every k ≤ N1 and

‖u‖BV (T ) ≤ K1, ‖u‖L∞((0,T ),R) ≤ K2, T‖u‖L∞((0,T ),R) ≤ K3.(28)
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The relation (21) and the triangular inequality achieve the claim.

Global approximate controllability with respect to the L2-norm. Let us recall that {ψj}j≤N ⊂
H3

(0) and Γ̂ ∈ U(H ) satisfies {Γ̂ψj}j≤N ⊂ H3
(0).

Claim. There exist K1,K2,K3 > 0 such that for every ε > 0, there exist T > 0 and u ∈
L2((0, T ),R) such that ‖ΓuTψk − Γ̂ψk‖L2 ≤ ε for every k ≤ N and

‖u‖BV (T ) ≤ K1, ‖u‖L∞((0,T ),R) ≤ K2, T‖u‖L∞((0,T ),R) ≤ K3.(29)

We assume that ‖ψj‖L2 = 1 for every j ∈ N∗, but the same proof is also valid for the generic case.
From the previous claim, there exist two controls respectively steering {φj}j≤N close to {ψj}j≤N and

{φj}j≤N close to {Γ̂ψj}j≤N thanks to the fact that N1 ≥ N . Vice versa, thanks to the time reversibility
(see Section 2.3), there exists a control steering {ψj}j≤N close to {φj}j≤N . In other words, there exist
T1, T2 > 0, u1 ∈ L2((0, T1),R) and u2 ∈ L2((0, T2),R) such that

‖Γu1

T1
ψj − φj‖L2 ≤ ε

2
, ‖Γu2

T2
φj − Γ̂ψj‖L2 ≤ ε

2
, ∀j ≤ N.

The chosen controls u1 and u2 satisfy (29). The claim is proven as

‖Γu2

T2
Γu1

T1
ψj − Γ̂ψj‖L2 ≤ ‖Γu2

T2
Γu1

T1
ψj − Γu2

T2
φj‖L2 + ‖Γu2

T2
φj − Γ̂ψj‖L2 ≤ ε, ∀j ≤ N.

Global approximate controllability with respect to the H3
(0)-norm.

Claim. There exist T > 0 and u ∈ L2((0, T ),R) such that ‖ΓuTψk − Γ̂ψk‖(3) ≤ ε for every k ≤ N .

We consider the propagation of regularity developed by Kato in [Kat53]. We notice that i(A +

u(t)B − ic) is maximal dissipative in H2
(0) for suitable c := ‖u‖L∞((0,T ),R). Let λ > c and Ĥ4

(0) :=

D(A(iλ − A)) ≡ H4
(0). We know that B : Ĥ4

(0) ⊂ H2
(0) → H2

(0) and the arguments of Remark 2.1 imply

that B ∈ L(Ĥ4
(0), H

2
(0)). For T > 0 and u ∈ BV ((0, T ),R), we have |||u(t)B(iλ−A)−1 ||| (2) < 1 and

M := sup
t∈[0,T ]

||| (iλ−A− u(t)B)−1 ||| L(H2
(0)
,Ĥ4

(0)
) ≤ sup

t∈[0,T ]

+∞∑
l=1

||| (u(t)B(iλ−A)−1)l ||| (2) < +∞.

We know ‖k + f(·)‖BV ((0,T ),R) = ‖f‖BV ((0,T ),R) for f ∈ BV ((0, T ),R) and k ∈ R. Equivalently,

N := ||| iλ−A− u(·)B |||
BV
(

[0,T ],L(Ĥ4
(0)
,H2

(0)
)
) = ‖u‖BV (T ) |||B ||| L(Ĥ4

(0)
,H2

(0)
) < +∞.

We call C1 := |||A(A+ u(T )B − iλ)−1 ||| (2) <∞ and Uut the propagator generated by A+ uB − ic such

that Uut ψ = e−ctΓut ψ. Thanks to [Kat53, Section 3.10], for every ψ ∈ H4
(0), it follows

‖(A+ u(T )B − iλ)Uut ψ‖(2) ≤MeMN‖(A− iλ)ψ‖(2) =⇒ ‖ΓuTψ‖(4) ≤ C1MeMN+cT ‖ψ‖(4).

For every T > 0, u ∈ BV ((0, T ),R) and ψ ∈ H4
(0), there exists C(K) > 0 depending on K =(

‖u‖BV (T ), ‖u‖L∞((0,T ),R), T‖u‖L∞((0,T ),R)

)
so that ‖ΓuTψ‖(4) ≤ C(K)‖ψ‖(4). From (25), there exists

C > 0 such that

(30) |||Γu
l
n

T l
n
||| (4) ≤ C.

For every ψ ∈ H4
(0), from the Cauchy-Schwarz inequality, we have ‖Aψ‖2L2 ≤ ‖A2ψ‖L2‖ψ‖L2 and

‖A 3
2ψ‖4L2 ≤

(
〈A2ψ,Aψ〉L2

)2 ≤ ‖A2ψ‖2L2‖Aψ‖2L2 , which imply

(31) ‖ψ‖8(3) ≤ ‖ψ‖
2
L2‖ψ‖6(4).

In conclusion, the previous claim, the relation (30) and the relation (31) ensure the claim.
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2) Conclusion. Let (A,B) do not admit a non-degenerate chain of connectedness. We decompose

A+ u(·)B = (A+ u0B) + u1(·)B, u0 ∈ R, u1 ∈ L2((0, T ),R).

We notice that, if (A,B) satisfies Assumptions I, then Remark B.7 and Remark B.9 (Appendix B) are
valid. We consider u0 belonging to the neighborhoods provided by such remarks and we denote {φu0

k }k∈N∗
a Hilbert basis of H made by eigenfunctions of A+ u0B. The step 1) of the proof can be repeated by

considering the sequence {φu0

k }k∈N∗ instead of {φk}k∈N∗ and the spaces D(|A + u0B|
3
2 ) in substitution

of H3
(0). The claim is equivalently proved since, thanks to Remark B.7, there exist C1, C2 > 0 such that

C1

∥∥|A+ u0B|
3
2ψ
∥∥ ≤ ‖ψ‖(3) ≤ C2

∥∥|A+ u0B|
3
2ψ
∥∥, ∀ψ ∈ H3

(0) ≡ D(|A+ u0B|
3
2 ).

5.3 Proofs of Theorem 1.3

In the current subsection, we provide the proof of Theorem 1.3 which requires the following proposition.

Proposition 5.3. Let N ∈ N∗ and B satisfy Assumptions I. For any {ψ1
k}k≤N , {ψ2

k}k≤N ⊂ H3
(0)

orthonormal systems, there exist T > 0, u ∈ L2((0, T ),R) and {θk}k≤N ⊂ R such that

ΓuTψ
1
k = eiθkψ2

k, ∀k ≤ N.

Proof. Let N ∈ N∗ and let u0 ∈ R belong to the neighborhoods provided by Lemma B.5, Lemma B.6
and Remark B.9 (Appendix B). Let α̃u0 be the map with elements{

α̂j,j(u1)
|α̂j,j(u1)| α̂k,j(u1), ∀j, k ∈ N∗, j, k ≤ N,
α̂k,j(u1), ∀j, k ∈ N∗, k > N, j ≤ N.

The proof of Proposition 4.2 can be repeated in order to prove the local surjectivity of α̃u0 for every
T > 0, instead of αu0 introduced in (17). The discussion from Remark 4.1 implies that this result
corresponds to the simultaneous local exact controllability up to phases of N problems (BSE) in the
neighborhood

ONε,T :=
{
{ψj}j≤N ⊂ H3

(0)

∣∣ 〈ψj , ψk〉L2 = δj,k; sup
j≤N
‖ψj − φu0

j ‖
2
(3) < ε

}
with ε > 0. Hence, for any {ψk}k≤N ∈ ONε,T , there exist u ∈ L2((0, T ),R) and {θj}j≤N ⊂ R so that

ΓuTφ
u0
j = eiθjψj , ∀j ≤ N.

Thanks to Theorem 5.2, we have the following result. For any {ψ1
j }j≤N ⊂ H3

(0) composed by orthonormal

elements, there exist T1 > 0 and u1 ∈ L2((0, T1),R) such that, for all j ≤ N ,

‖Γu1

T1
ψ1
j − φ

u0
j ‖(3) <

ε

N
=⇒ {Γu1

T1
ψ1
j }j≤N ∈ ONε,T .

The local controllability is also valid for the reversed dynamics (see Section 2.3) and for every T > 0,
there exist u ∈ L2((0, T ),R) and {θj}j≤N ⊂ R so that

{Γu1

T1
ψ1
j }j≤N = {eiθj Γ̃uTφ

u0
j }j≤N =⇒ {e−iθjΓũTΓu1

T1
ψ1
j }j≤N = {φu0

j }j≤N .

Then, there exist T2 > 0 and u2 ∈ L2((0, T2),R) such that {e−iθjΓu2

T2
ψ1
j }j≤N = {φu0

j }j≤N . Now,

the same property is valid for the reversed dynamics of (11) and, for every {ψ2
j }j≤N ⊂ H3

(0) com-

posed by orthonormal elements, there exist T3 > 0, u3 ∈ L2((0, T3),R) and {θ′j}j≤N ⊂ R such that

{e−iθ
′
j Γ̃u3

T3
ψ2
j }j≤N = {φu0

j }j≤N . In conclusion, for ũ3(·) = u3(T3 − ·), the proof is achieved as

{e−i(θj−θ
′
j)Γũ3

T3
Γu2

T2
ψ1
j }j≤N = {ψ2

j }j≤N .

Proof of Theorem 1.3. Theorem 1.3 is proved by repeating the proof of Theorem 1.1. In particular, it
follows from the proof of (2) =⇒ (1) by keeping in mind the validity of Proposition 5.3.
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6 Global exact controllability in projection for density matrices

Let ψ1, ψ2 ∈H . We define the rank one operator |ψ1〉〈ψ2| such that |ψ1〉〈ψ2|ψ = ψ1〈ψ2, ψ〉L2 for every

ψ ∈H . For any Γ̂ ∈ U(H ), we have

Γ̂|ψ1〉〈ψ2| = |Γ̂ψ1〉〈ψ2|, |ψ1〉〈ψ2|Γ̂∗ = |ψ1〉〈Γ̂ψ2|.

Let H be an infinite dimensional Hilbert space. In quantum mechanics, any statistical ensemble can
be described by a wave function (pure state) or by a density matrix (mixed state) which is a positive
operator of trace 1. For any density matrix ρ, there exists a sequence {ψj}j∈N∗ ⊂H such that

ρ =
∑
j∈N∗

lj |ψj〉〈ψj |,
∑
j∈N∗

lj = 1, lj ≥ 0, ∀j ∈ N∗.(32)

The sequence {ψj}j∈N∗ is a set of eigenvectors of ρ and {lj}j∈N∗ are the corresponding eigenvalues. If
there exists j0 ∈ N∗ such that lj0 = 1 and lj = 0 for each j 6= j0, then the corresponding density matrix
represents a pure state up to a phase. For this reason, the density matrices formalism is said to be an
extension of the common formulation of the quantum mechanics in terms of wave function. We also
notice that for any density matrix ρ and a complete orthonormal system {ψj}j∈N∗ in H , there exists a
positive hermitian matrix {ρj,k}j,k∈N∗ such that

ρ =
∑
j,k∈N∗

ρj,k|ψj〉〈ψk|.(33)

Now, for any other density matrix ρ̃, there exists an orthonormal system {ψ̃j}j∈N∗ , such that

ρ̃ =
∑
j,k∈N∗

ρj,k|ψ̃j〉〈ψ̃k|.(34)

Let us consider T > 0 and a time dependent self-adjoint operator H(t) (called Hamiltonian) for t ∈ (0, T ).
The dynamics of a general density matrix ρ is described by the Von Neumann equation{

idρdt (t) = [H(t), ρ(t)], t ∈ (0, T ),

ρ(0) = ρ0, ([H, ρ] = Hρ− ρH),
(35)

for ρ0 the initial solution of the problem. The solution is ρ(t) = Utρ(0)U∗t , where Ut is the unitary
propagator generated by H(t). In the present work, we have H = L2((0, 1),C), H(t) = A+ u(t)B and
Ut corresponds to Γut . In this framework, the problem (35) is said to be globally exactly controllable if,
for any couple of density matrices ρ1 and ρ2, there exist T > 0 and u ∈ L2((0, T ),R) such that

ρ2 = ΓuT ρ
1(ΓuT )∗.

Thanks to the decomposition (32), the controllability of (35) is equivalent (up to phases) to the simul-
taneous controllability of the infinite bilinear Schrödinger equations (BSE). This idea is behind the
following theorem which follows from Corollary 1.4.

Theorem 6.1. Let B satisfy Assumptions I. Let ρ1 and ρ2 be two density matrices with eigenfunctions
in H3

(0) and Γ̂ ∈ U(H ) be the unitary opeator so that

ρ1 = Γ̂ρ2Γ̂∗.

1) Let Ψ := {ψj}j∈N∗ be an orthonormal system composed by the eigenfunctions of ρ2. For any N ∈ N∗,
there exist T > 0 and u ∈ L2((0, T ),R) such that

πN (Ψ) ΓuT ρ
1(ΓuT )∗ πN (Ψ) = πN (Ψ) ρ2 πN (Ψ).

2) Let Ψ := {ψj}j≤N ⊂ H3
(0) be an orthonormal system such that {Γ̂ψj}j≤N ⊂ H3

(0) with N ∈ N∗. Let

{ρj,k}j,k≤N be the positive hermitian matrix such that

πN (Ψ)ρ2πN (Ψ) =
∑
j,k≤N

ρj,k|ψj〉〈ψk|.
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There exist T > 0, u ∈ L2((0, T ),R) and {θj,k}j,k≤N such that

πN (Ψ) ΓuT ρ
1(ΓuT )∗ πN (Ψ) =

∑
j,k≤N

eiθj,kρj,k|ψj〉〈ψk|.

Proof. 1) Let {ψ1
j }j∈N∗ ⊂ H3

(0) be an orthonormal system made by eigenfunctions of ρ1. We have

ρ1 =

∞∑
j=1

lj |ψ1
j 〉〈ψ1

j |, ρ2 =

∞∑
j=1

lj |ψj〉〈ψj |.

The sequence {lj}j∈N∗ ⊂ R+ corresponds to the spectrum of ρ1 and ρ2. Now, thanks to Corollary 1.4,
there exist T > 0, u ∈ L2((0, T ),R) and {θj}j≤N such that πN (Ψ) ΓuTψ

1
j = eiθjπN (Ψ) ψj for every

j ≤ N , while πN (Ψ) ΓuTψ
1
j = πN (Ψ) ψj for every j > N . Thus,

πN (Ψ) ΓuT ρ
1(ΓuT )∗πN (Ψ) =

N∑
j=1

lj |eiθjπN (Ψ) ΓuTψ
1
j 〉〈ψ1

jΓuTπN (Ψ) eiθj |

+

∞∑
j=N+1

lj |πN (Ψ) ΓuTψ
1
j 〉〈ψ1

jΓuTπN (Ψ) | =
∞∑
j=1

ljπN (Ψ) |ψj〉〈ψj |πN (Ψ) = πN (Ψ) ρ2πN (Ψ).

2) A similar approach can be used in order to prove the second point of the theorem. In particular, the
statement follows by decomposing ρ2 with respect to {ψj}j∈N∗ as done in (33). Such step provides a
positive hermitian matrix {ρj,k}j,k∈N∗ . Now, we define {ψ1

j }j∈N∗ as the orthonormal system such that

(34) is valid for the density matrix ρ1. The claim is proved by simultaneously steering {ψ1
j }j∈N∗ in

{ψj}j∈N∗ with respect to the projector π(Ψ) by using Corollary 1.4.

7 Conclusion

In this manuscript, we study the controllability of the infinite bilinear Schrödinger equations (BSE) at
the same time T with one unique control u by projecting onto suitable finite dimensional subspaces of H .
The first result of the work is Theorem 1.1 which shows that the simultaneous global exact controllability
of the (BSE) in projection onto a suitable N dimensional space is equivalent to the controllability of N
problems (BSE) (without projecting). Our second outcome is the simultaneous local exact controllability
of infinite bilinear Schrodinger equations in projection and in any positive T > 0. The property is stated
by Theorem 1.2 and Proposition 4.2. Afterwards, we prove Theorem 1.3 that allows to control with a
single u and at the same time T any finite number of components of infinitely many solutions of the
problems (BSE). The outcome is guaranteed when the orthogonal projector is defined by an orthonormal
systems verifying a “H3

(0)−compatibility condition” exposed in (5). In conclusion, we rephrase the main
results in terms of density matrices.

As explained in Section 1.2, one can notice the parallelism between our results with the ones provided
in [MN15] by Morancey and Nersesyan. From this point of view, our purpose is to add a contribution to
the theory presented in the mentioned paper. More precisely, even though Theorem 1.1 and the theory
from [MN15] allow to prove similar results to the ones of our work, such outcomes would be guaranteed
under the validity of hypotheses on the operator B which are not easy to confirm. From this perspective,
we aim to provide explicit conditions on the problem, such as Assumptions I, ensuring the controllabilty
and to this end, we develop a new set of techniques from the ones adopted in [MN15]. For instance,
we present an alternative strategy to the “Coron’s return method” (used in [MN15]) to prove the local
controllability ensured by Theorem 1.2 (see Section 4.1). Having explicit conditions on the control field
allows to consider specific B satisfying Assumptions I (see Example 2.2) and for which the controllability
is guaranteed.

Here, one could wonder if the techniques developed in this manuscript can be applied to study the
controllability of infinite (BSE) (without projecting). Although, a direct application is not possible.
Indeed, one of the crucial points of our strategy is the possibility of decoupling with a uniform gap
the eigenvalues resonances (Lemma B.8) appearing in the proof of Theorem 1.2 (see Section 4.1 for

16



further details). Such property is provided via perturbation theory techniques when the third condition
of Assumptions I is verified and a uniform gap is guaranteed when the eigenvalues resonances are finite.
Thus, projecting the dynamics onto finite dimensional spaces allows to have only finitely many resonances
which is crucial for our strategy.

In any case, a possible approach that might lead to the controllability of infinite (BSE) is the following.
As already done in our work, one could act a perturbation in order to decouple the eigenvalues resonances
appearing in the proof of the simultaneous local exact controllability. In such framework, we do not expect
to have a uniform spectral gap and then the Haraux’s Thoerem [KL05, Theorem 4.6] can not be applied.
As a consequence, the solvability of the moment problem (such as (20)) appearing in this proof can
not be achieved in `2. Nevertheless, we do not exclude the possibility of proving its solvability in some
spaces hs with s ∈ [0, 1) (defined in 7) by using more raffinate techniques as the Beurling’s Theorem
[KL05, Theorem 9.2] (see also [AI95, Chapter I.2]). If such result would be valid, then the well-posedness
of the (BSE) can be provided in H3+s

(0) by imposing slightly more regularity on the operator B and we

might conclude the proof as done in the current work.

Acknowledgments. The author thanks Thomas Chambrion for suggesting him the problem and
Nabile Boussäıd for the periodic discussions. He is also grateful to Morgan Morancey for the explanation
about the works [Mor14] and [MN15].

A Moment problem

In this appendix, we briefly adapt some results concerning the solvability of the moment problems
(as (13) and (20)). Let [BL10, P roposition 19; 2)] be satisfied and {fk}k∈Z be a Riesz basis (see

[BL10, Definition 2]) in X = span{fk : k ∈ Z}
H
⊆ H , with H and Hilbert space. For {vk}k∈Z

the unique biorthogonal family to {fk}k∈Z ([BL10, Remark 7]), {vk}k∈Z is also a Riesz basis of X
([BL10, Remark 9]). Thanks to [BL10, P roposition 19; 2)], there exist C1, C2 > 0 such that

C1

∑
k∈Z
|xk|2 ≤ ‖u‖2H ≤ C2

∑
k∈Z
|xk|2, u(t) =

∑
k∈Z

xkvk(t), {xk}k∈N∗ ∈ `2(C).

Moreover, for every u ∈ X, we know that u =
∑
k∈Z vk〈fk, u〉H since {fk}k∈Z and {vk}k∈Z are recipro-

cally biorthonoromal (see [BL10, Remark 9]) and

(36) C1

∑
k∈Z
|〈fk, u〉H |2 ≤ ‖u‖2H ≤ C2

∑
k∈Z
|〈fk, u〉H |2.

When Haraux’s Thoerem [KL05, Theorem 4.6] is verified, for T > 0 large enough, {eiλk(·)}k∈Z is a Riesz

basis in X = span{eiλk(·) : k ∈ Z}
L2

⊆ L2((0, T ),C). The relation (36) is satisfied and F : u ∈ X 7−→{
〈eiλk(·), u〉H

}
k∈Z ∈ `

2(C) is invertible. For every {xk}k∈Z ∈ `2(C), there exists u ∈ X such that

xk =

∫ T

0

u(s)e−iλksds, k ∈ Z.

Remark A.1. Let {λk}k∈N∗ be an ordered sequence of pairwise distinct real numbers such that λ1 = 0.
Let G := infk 6=j |λk − λj | > 0 and G′ := supK⊂N∗ inf k 6=j

k,j∈N∗\K
|λk − λj |, where K runs over the finite

subsets of Z. For k ∈ N∗, we call ωk = −λk, while we impose ωk = λ−k for −k ∈ N∗ \ {1}. We call
Z∗ = Z \ {0}. The sequence {ωk}k∈Z∗\{−1} satisfies the hypotheses of [KL05, Theorem 4.6] for

sup
K⊂Z∗\{−1}

inf
k 6=j

k,j∈N∗\K

|ωk − ωj | = G′.

Let {xk}k∈N∗ ∈ `2(C). We call {x̃k}k∈Z∗\{−1} ∈ `2(C) so that x̃k = xk for k ∈ N∗, while x̃k = x−k for
−k ∈ N∗ \ {1}. For T > 2π/G′, there exists u ∈ L2((0, T ),C) such that, for every k ∈ Z∗ \ {−1},

x̃k =

∫ T

0

u(s)e−iωksds, =⇒

{
xk =

∫ T
0
u(s)eiλksds =

∫ T
0
u(s)eiλksds, ∀k ∈ N∗ \ {1},

x1 =
∫ T

0
u(s)ds.

In conclusion, if x1 ∈ R, then solvability of the moment problem is provided with u real.

17



B Analytic Perturbation

Let us consider the problem (15) and the eigenvalues {λu0
j }j∈N∗ of the operator A + u0B. When B is

a bounded symmetric operator satisfying Assumptions I and A = −∆ is the Laplacian with Dirichlet
type boundary conditions D(A) = H2((0, 1),C)∩H1

0 ((0, 1),C), thanks to [Kat95, Theorem V II.2.6] and
[Kat95, Theorem V II.3.9], the following proposition follows.

Proposition B.1. Let B be a bounded symmetric operator satisfying Assumptions I. There exists a
neighborhood D(0) of u = 0 in R small enough where the maps u 7→ λuj are analytic for every j ∈ N∗.

The next lemma proves the existence of perturbations, which do not shrink the eigenvalues gaps.

Lemma B.2. Let B be a bounded symmetric operator satisfying Assumptions I. There exists a neigh-
borhood D(0) in R of u = 0 such that, for each u0 ∈ D(0), there exists r > 0 such that, for every
j ∈ N∗,

µj :=
λj + λj+1

2
∈ ρ(A+ u0B), ||| (A+ u0B − µj)−1 ||| ≤ r.

Proof. Let D(0) be the neighborhood provided by Proposition B.1. We know (A − µj) is invertible in
a bounded operator and µj ∈ ρ(A) (resolvent set of A). Let δ := minj∈N∗{|λj+1 − λj |}. We know that
||| (A− µj)−1 ||| ≤ supk∈N∗

1
|µj−λk| = 2

|λj+1−λj | ≤
2
δ . Thus, for u0 ∈ D(0),

||| (A− µj)−1u0B ||| ≤ |u0| ||| (A− µj)−1 ||| |||B ||| ≤ 2

δ
|u0| |||B |||

and if |u0| ≤ δ(1−ε)
2 |||B ||| for ε ∈ (0, 1), then ||| (A − µj)−1u0B ||| ≤ 1 − ε. The operator (A + u0B − µj) is

invertible and ||| (A + u0B − µj)−1 ||| ≤ 2
δε as ‖(A + u0B − µj)ψ‖L2 ≥ ‖(A − µj)ψ‖L2 − ‖u0Bψ‖L2 ≥

δ
2‖ψ‖L2 − δ(1−ε)

2 ‖ψ‖L2 for every ψ ∈ D(A). The parameter r stated in the lemma corresponds to 2/(δε),
while the neighborhood is {u0 ∈ D(0) : |u0| ≤ δ(1− ε)/(2 |||B ||| )}.

Lemma B.3. Let B be a bounded symmetric operator satisfying Assumptions I and P⊥φk
be the projector

onto the orthogonal space of φk. There exists a neighborhood D(0) of 0 in R such that

(A+ u0P
⊥
φk
B − λu0

k )

is invertible with bounded inverse from D(A) ∩ φ⊥k to φ⊥k for every u0 ∈ D(0) and k ∈ N∗.

Proof. Let D(0) be the neighborhood provided by Lemma B.2. For any u0 ∈ D(0), one can consider
the decomposition (A+ u0P

⊥
φk
B − λu0

k ) = (A− λu0

k ) + u0P
⊥
φk
B. The operator A− λu0

k is invertible with

bounded inverse when it acts on the orthogonal space of φk and we estimate ||| ((A−λu0

k )
∣∣
φ⊥k

)−1u0P
⊥
φk
B ||| .

However, for every ψ ∈ D(A) ∩Ran(P⊥φk
) such that ‖ψ‖L2 = 1, we have

‖(A− λu0

k )ψ‖L2 ≥ min{|λk+1 − λu0

k |, |λ
u0

k − λk−1|}‖ψ‖L2 .

Let δk := min
{
|λk+1 − λu0

k |, |λ
u0

k − λk−1|
}
. Thanks to Lemma B.2, for |u0| small enough, λu0

k ∈(
λk−1+λk

2 , λk+λk+1

2

)
and then

δk ≥ min
{∣∣∣λk+1 −

λk + λk+1

2

∣∣∣, ∣∣∣λk−1 + λk
2

− λk−1

∣∣∣} ≥ (2k − 1)π2

2
> k.

Afterwards, ||| ((A−λu0

k )
∣∣
φ⊥k

)−1u0P
⊥
φk
B ||| ≤ 1

δk
|u0| |||B ||| and, if |u0| ≤ (1−r) δk

|||B ||| ≤
(1−r)
|||B ||| for r ∈ (0, 1),

then it follows ||| ((A− λu0

k )
∣∣
φ⊥k

)−1u0P
⊥
φk
B ||| ≤ (1− r) < 1. The operator Ak := (A− λu0

k + u0P
⊥
φk
B) is

invertible when it acts on the orthogonal space of φk and, for every ψ ∈ D(A) and r = 1
2 ,

‖Akψ‖L2 ≥ ‖(A− λu0

k )ψ‖L2 − ‖u0P
⊥
φk
Bψ‖L2 ≥ δk‖ψ‖L2 − |||u0P

⊥
φk
B ||| ‖ψ‖L2 =

1

2
‖ψ‖L2 .

In conclusion, ||| ((A− λu0

k + u0P
⊥
φk
B)
∣∣
φ⊥k

)−1 ||| ≤ 2 for every k ∈ N∗.
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Lemma B.4. Let B be satisfy Assumptions I. There exists a neighborhood D(0) of 0 in R such that, for
any u0 ∈ D(0), we have λu0

j 6= 0 and there exist two constants C1, C2 > 0 such that

C1λj ≤ λu0
j ≤ C2λj , ∀j ∈ N∗.

Proof. Let u0 ∈ D(0) for D(0) the neighborhood provided by Lemma B.3. We decompose the eigen-
function φu0

j = ajφj + ηj , where aj is an orthonormalizing constant and ηj is orthogonal to φj . Hence
λu0

k φ
u0

k = (A+u0B)(akφk+ηk) and λu0

k akφk+λu0

k ηk = Aakφk+Aηk+u0Bakφk+u0Bηk. By projecting
onto the orthogonal space of φk,

λu0

k ηk = Aηk + u0P
⊥
φk
Bakφk + u0P

⊥
φk
Bηk.

However, Lemma B.3 ensures that A+ u0P
⊥
φk
B− λu0

k is invertible with bounded inverse when it acts on
the orthogonal space of φk and then

(37) ηk = −ak((A+ u0P
⊥
φk
B − λu0

k )
∣∣
φ⊥k

)−1u0P
⊥
φk
Bφk,

=⇒ λu0
j = 〈ajφj + ηj , (A+ u0B)(ajφj + ηj)〉L2 = |aj |2λj + u0〈ajφj , Bajφj〉L2

+ 〈ajφj , (A+ u0B)ηj〉L2 + 〈ηj , (A+ u0B)ajφj〉L2 + 〈ηj , (A+ u0B)ηj〉L2 .

By using the relation (37),

〈ηj , (A+ u0B)ηj〉L2 = 〈ηj , (A+ u0P
⊥
φk
B − λu0

j )ηj〉L2 + λu0
j ‖ηj‖

2
L2 = λu0

j ‖ηj‖
2
L2

+
〈
ηj ,−aj(A+ u0P

⊥
φj
B − λu0

j )((A+ u0P
⊥
φj
B − λu0

j )
∣∣
φ⊥j

)−1u0P
⊥
φj
Bφj

〉
L2
.

However, (A+ u0P
⊥
φj
B − λu0

j )((A+ u0P
⊥
φj

)B − λu0
j )
∣∣
φ⊥j

)−1 = Id and 〈ηj , (A+ u0B)ηj〉L2 = λu0
j ‖ηj‖2L2 −

u0aj〈ηj , P⊥φj
Bφj〉L2 . Moreover, we have 〈φj , (A + u0B)ηj〉L2 = u0〈φj , Bηj〉L2 = u0〈P⊥φj

Bφj , ηj〉L2 and

〈ηj , (A+ u0B)φj〉L2 = u0〈ηj , P⊥φj
Bφj〉L2 . Thus

λu0
j = |aj |2λj + u0|aj |2Bj,j + λu0

j ‖ηj‖
2
L2 + u0aj〈P⊥φj

Bφj , ηj〉L2 .(38)

One can notice that |aj | ∈ [0, 1] and ‖ηj‖L2 are uniformly bounded in j. We show that the first
accumulates at 1 and the second at 0. Indeed, from the proof of Lemma (B.3) and the relation (37),
there exists C1 > 0 such that

‖ηj‖2L2 ≤ |u0|2 ||| ((A+ u0P
⊥
φj
B − λu0

j )
∣∣
φ⊥j

)−1 ||| 2|aj |2‖Bφj‖2L2 ≤
C1

j2
(39)

for r ∈ (0, 1), which implies that limj→∞ ‖ηj‖L2 = 0. Afterwards, by contradiction, if |aj | does not
converge to 1, then there exists {ajk}k∈N∗ a subsequence of {aj}j∈N∗ such that |aj∞ | := limk→∞ |ajk | ∈
[0, 1). Now, we have

1 = lim
k→∞

‖φu0
jk
‖L2 ≤ lim

k→∞
|ajk |‖φjk‖L2 + ‖ηjk‖L2 = lim

k→∞
|ajk |+ ‖ηjk‖L2 = |aj∞ | < 1

that is absurd. Then, limj→∞ |aj | = 1. From (38), it follows that there exist two constants C1, C2 > 0
such that, for each j ∈ N∗, C1λj ≤ λu0

j ≤ C2λj for |u0| small enough. The relation also implies that
λu0
j 6= 0 for every j ∈ N∗ and |u0| small enough.

Lemma B.5. Let B be a bounded symmetric operator satisfying Assumptions I. For every N ∈ N∗,
there exist a neighborhood D(0) of 0 in R and C̃N > 0 such that, for any u0 ∈ D(0), we have

|〈φu0

k , Bφ
u0
j 〉L2 | ≥ C̃N

k3
, ∀k, j ∈ N∗, j ≤ N.

Proof. We start by choosing k ∈ N∗ such that k 6= j and u0 ∈ D(0) for D(0) the neighborhood provided
by Lemma B.4. Thanks to Assumptions II, we have

|〈φu0

k , Bφ
u0
j 〉L2 | = |〈akφk + ηk, B(ajφj + ηj)〉L2 |

≥ CN
akaj
k3
−
∣∣ak〈φk, Bηj〉L2 + aj〈ηk, Bφj〉L2 + 〈ηk, Bηj〉L2

∣∣.(40)
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1) Expansion of 〈ηk, Bφj〉L2 , 〈φk, Bηj〉L2 and 〈ηk, Bηj〉L2 : Thanks to (37), we have 〈ηk, Bφj〉L2 =
〈−ak((A+ u0P

⊥
φk
B − λu0

k )
∣∣
φ⊥k

)−1u0P
⊥
φk
Bφk, P

⊥
φk
Bφj〉L2 for every k ∈ N∗ and j ≤ N , while the operator(

(A+ u0P
⊥
φk
B−λu0

k )
∣∣
φ⊥k

)−1
corresponds to ((A−λu0

k )P⊥φk
)−1

∑∞
n=0

(
u0((A−λu0

k )P⊥φk
)−1P⊥φk

BP⊥φk

)n
for

|u0| small enough. For Mk :=
∑∞
n=0

(
u0((A− λu0

k )P⊥φk
)−1P⊥φk

B
)n
P⊥φk

, we have

〈ηk, Bφj〉L2 = −u0〈akMkBφk, ((A− λu0

k )P⊥φk
)−1P⊥φk

Bφj〉L2 .(41)

Thanks to B : D(A)→ D(A), for every k ∈ N∗ and j ≤ N ,

((A− λu0

k )P⊥φk
)−1P⊥φk

Bφj = P⊥φk
B((A− λu0

k )P⊥φk
)−1φj −

[
P⊥φk

B, ((A− λu0

k )P⊥φk
)−1P⊥φk

]
φj

= P⊥φk
B((A− λu0

k )P⊥φk
)−1φj − ((A− λu0

k )P⊥φk
)−1P⊥φk

[B,A]((A− λu0

k )P⊥φk
)−1φj .

For B̃k := ((A−λu0

k )P⊥φk
)−1P⊥φk

[B,A], we have ((A−λu0

k )P⊥φk
)−1P⊥φk

Bφj = P⊥φk
(B+ B̃k)(λj −λu0

k )−1φj .
and, for every k ∈ N∗ and j ≤ N ,

〈ηk, Bφj〉L2 = − u0

λj − λu0

k

〈akMkBφk, (B + B̃k)φj〉L2 .(42)

For every k ∈ N∗ and j ≤ N , we obtain

|〈ηk, Bηj〉L2 | = |〈Bηk, ηj〉L2 | = |〈u0akB((A− λu0

k )P⊥φk
)−1MkBφk,

u0aj((A− λu0
j )P⊥φj

)−1MjBφj〉L2

∣∣∣ =
∣∣∣ ajaku2

0

λk − λu0
j

〈
φk, Lk,jφj

〉
L2

∣∣∣(43)

with Lk,j := (A− λu0
j )BMk((A− λu0

k )P⊥φk
)−1P⊥φk

B((A− λu0
j )P⊥φj

)−1MjB. Now, there exists ε > 0 such

that |al| ∈ (ε, 1) for every l ∈ N∗. Thanks to (42), (43) and (40), there exists ĈN such that

|〈φu0

k , Bφ
u0
j 〉L2 | ≥ ĈN

1

k3
−
∣∣∣ u0

λj − λu0

k

〈MkBφk, (B + B̃k)φj〉L2

∣∣∣
−
∣∣∣ u0

λk − λu0
j

〈(B + B̃j)φk,MjBφj〉L2

∣∣∣− ∣∣∣ u2
0

λk − λu0
j

〈
φk, Lk,jφj

〉
L2

∣∣∣.(44)

2) Features of the operators Mk, B̃k and Lk,j. Each Mk for k ∈ N∗ is uniformly bounded in
L(H2

(0), H
2
(0)) when |u0| is small enough so that |||u0((A−λu0

k )P⊥φk
)−1P⊥φk

BP⊥φk
||| L(H2

(0)
) < 1. The defini-

tion of B̃k implies that B̃kP
⊥
φk

= ((A− λu0

k )P⊥φk
)−1P⊥φk

B(A− λu0

k )P⊥φk
− P⊥φk

BP⊥φk
. Hence, the operators

B̃k are uniformly bounded in k in L
(
H2

(0) ∩ Ran(P⊥φk
), H2

(0) ∩ Ran(P⊥φk
)
)
. Third, one can notice that

B((A− λu0
j )P⊥φj

)−1MjB ∈ L(H2
(0), H

2
(0)) for every j ∈ N∗. Then, for every k ∈ N∗ and j ≤ N ,

(A− λu0
j )BMk((A− λu0

k )P⊥φk
)−1P⊥φk

= (A− λu0
j )B((A− λu0

k )P⊥φk
)−1

∞∑
n=0

(
u0P

⊥
φk
B((A− λu0

k )P⊥φk
)−1
)n
P⊥φk

= (A− λu0
j )((A− λu0

k )P⊥φk
)−1P⊥φk

(B̃k +B)M̃k

with M̃k :=
∑∞
n=0

(
u0P

⊥
φk
B((A − λu0

k )P⊥φk
)−1
)n
P⊥φk

. Now, the operators M̃k are uniformly bounded in

L(H2
(0), H

2
(0)) as Mk. Hence Lk,j are uniformly bounded in L(H2

(0), H
2
(0)).

Let {Fl}l∈N∗ be an infinite uniformly bounded family of operators in L(H2
(0), H

2
(0)). For every l, j ∈ N∗,

there exists cl,j > 0 such that
∑∞
k=1 |k2〈φk, Flφj〉L2 |2 <∞, which implies |〈φk, Flφj〉L2 | ≤ cl,j

k2 for every
k ∈ N∗. Now, the constant cl,j can be assumed uniformly bounded in l since, for every k, j ∈ N∗,

sup
l∈N∗
|k2〈φk, Flφj〉L2 |2 ≤ sup

l∈N∗

∑
m∈N∗

|m2〈φm, Flφj〉L2 |2 ≤ sup
l∈N∗
‖Flφj‖2(2) <∞.

Thus, for every infinite uniformly bounded family of operators {Fl}l∈N∗ in L(H2
(0), H

2
(0)) and for every

j ∈ N∗, there exists a constant cj such that

(45) |〈φk, Flφj〉L2 | ≤ cj
k2
, ∀k, l ∈ N∗.

20



3) Conclusion. We know that |λj − λu0

k |−1 and |λk − λu0
j |−1 asymptotically behave as k−2 thanks to

Lemma B.4. From the previous point, the families of operators {BMk(B + B̃k)}k∈N∗ , {Lk,j}k∈N∗ are

uniformly bounded in L(H2
(0), H

2
(0)) and BMj(B + B̃j) ∈ L(H2

(0), H
2
(0)) for every 1 ≤ j ≤ N . Hence, we

use the relation (45) in (44) and there exist C1, C2, C3, C4 > 0 depending on j ∈ N∗ such that, for |u0|
small enough and k ∈ N∗ large enough,

|〈φu0

k , Bφ
u0
j 〉L2 | ≥ ĈN

1

k3
− C1|u0|
|λj − λu0

k |k2
− C2|u0|
|λk − λu0

j |k2
− C3|u0|2

|λk − λu0
j |k2

≥ C4
1

k3
.(46)

Let K ∈ N∗ be so that |〈φu0

k (T ), Bφu0
j (T )〉L2 | ≥ C4

1
k3 for every k > K. For j ∈ N∗, the zeros of

the analytic map u0 7→ {|〈φu0

k (T ), Bφu0
j (T )〉L2 |}k≤K ∈ RK are discrete. Then, for |u0| small enough,

|〈φu0

k (T ), Bφu0
j (T )〉L2 | 6= 0 for every k ≤ K. Thus, for every j ∈ N∗ and |u0| small enough, there exists

Cj > 0 such that |〈φu0

k (T ), Bφu0
j (T )〉L2 | ≥ Cj

k3 for every k ∈ N∗. In conclusion, the claim is achieved for

every k ∈ N∗ and j ≤ N with C̃N = min{Cj : j ≤ N}.

Lemma B.6. Let B be a bounded symmetric operator satisfying Assumptions I. There exists a neigh-
borhood D(0) of 0 in R such that, for any u0 ∈ D(0), there exist C1, C2 > 0 such that

C1

( ∞∑
j=1

∣∣|λu0
j |

3
2 〈φu0

j , ·〉L2

∣∣2) 1
2 ≤

( ∞∑
j=1

|j3〈φj , ·〉L2 |2
) 1

2 ≤ C2

( ∞∑
j=1

∣∣|λu0
j |

3
2 〈φu0

j , ·〉L2

∣∣2) 1
2

.

Proof. Let D(0) be the neighborhood provided by Lemma B.4. For |u0| small enough, we prove that
there exist C1 > 0 such that ‖|A + u0B|

s
2ψ‖L2 ≤ C1‖|A|

s
2ψ‖L2 for s = 3. We start with s = 4 and we

recall that B ∈ L(H2
(0)) thanks to Remark 2.1. For any ψ ∈ H4

(0), there exists C2 > 0 such that

‖(A+ u0B)2ψ‖L2 ≤ ‖A2ψ‖L2 + |u0|2‖B2ψ‖L2 + |u0|‖Aψ‖L2( |||B ||| (2) + |||B ||| ) ≤ C2‖|A|2ψ‖L2 .

Classical interpolation arguments (see for instance the proof of [BdCC13, Lemma 1]) imply the validity

of the relation also for s = 3. There exists C > 0 such that ‖ψ‖H̃3
(0)

= ‖|A+u0B|
3
2ψ‖L2 ≤ C‖|A| 32ψ‖L2 =

C‖ψ‖H3
(0)

for every ψ ∈ H3
(0). Now, H2

(0) = D(|A|) = D(|A + u0B|) = H̃2
(0) and B preserves H̃2

(0) since

B : H2
(0) −→ H2

(0). The arguments of Remark 2.1 imply that B ∈ L(H̃2
(0)) and the opposite inequality

follows as above thanks to the identity A = (A+ u0B)− u0B.

Remark B.7. Let B be a bounded symmetric operator satisfying Assumptions I. The techniques of the
proof of Lemma B.6 also allow to prove that, for s ∈ (0, 3), there exists a neighborhood D(0) of 0 in R

such that, for any u0 ∈ D(0), it follows
(∑∞

j=1

∣∣(λu0
j )

s
2 〈φu0

j , ·〉L2

∣∣2) 1
2 �

(∑∞
j=1 |js〈φj , ·〉L2 |2

) 1
2

.

Lemma B.8. Let B be a bounded symmetric operator satisfying Assumptions I and N ∈ N∗. Let ε > 0
small enough and IN be the set defined in (4). There exists a Dε ⊂ R \ {0} such that, for each u0 ∈ Dε,

inf
(j,k),(n,m)∈IN

(j,k) 6=(n,m)

|λu0
j − λ

u0

k − λ
u0
n + λu0

m | > ε.

Moreover, for every δ > 0 small there exists ε > 0 such that dist(Dε, 0) < δ.

Proof. Let us consider the neighborhood D(0) provided by Lemma B.3. The maps u 7→ λuj −λuk−λun+λum
are analytic for each j, k, n,m ∈ N∗ and u ∈ D(0). The number of elements such that

(47) λj − λk − λn + λm = 0, ∀j, n, k,m ∈ N∗, k,m ≤ N

is finite. Indeed λk = k2π2 and (47) corresponds to j2− k2 = n2−m2. We have |j2− n2| = |k2−m2| ≤
N2 − 1, which is satisfied for a finite number of elements. Thus, for IN (defined in (4), the following set
is finite

R := {((j, k), (n,m)) ∈ (IN )2 : (j, k) 6= (n,m); λj − λk − λn + λm = 0}.

21



1) Let ((j, k), (n,m)) ∈ R, the set V(j,k,n,m) = {u ∈ D
∣∣ λuj − λuk − λun + λum = 0} is a discrete subset of

D(0) or equal to D(0). Thanks to the relation (38),

λuj − λuk − λun + λum = |aj |2λj + u|aj |2Bj,j + λuj ‖ηj‖2L2 + uaj〈P⊥φj
Bφj , ηj〉L2 − |ak|2λk

− u|ak|2Bk,k − λuk‖ηk‖2L2 − uak〈P⊥φk
Bφk, ηk〉L2 − |an|2λn − u|an|2Bn,n − λun‖ηn‖2L2

− uan〈P⊥φn
Bφn, ηn〉L2 + |am|2λm + u|am|2Bm,m + λum‖ηm‖2L2 + uam〈P⊥φm

Bφm, ηm〉L2

=⇒ λuj − λuk − λun + λum = |aj |2λj − |ak|2λk − |an|2λn + |am|2λm
+ (|aj |2Bj,j − |ak|2Bk,k − |an|2Bn,n + |am|2Bm,m)u+ o(u).

(48)

For |u| small enough, thanks to lim|u|→0|aj |2 = 1 and to the third point of Assumptions I, each map

u 7→ λuj − λuk − λun + λum

can not be constantly equal to 0. Then, V(j,k,n,m) is discrete and V = {u ∈ D
∣∣ ∃(j, k, n,m) ∈ R :

λuj − λuk − λun + λum = 0} is a discrete subset of D(0). As R is a finite set Ũε := {u ∈ D : ∀(j, k, n,m) ∈
R
∣∣ |λuj −λuk −λun +λum| ≥ ε} has positive measure for ε > 0 small enough. Moreover, for any δ > 0 small,

there exists ε0 > 0 such that dist(0, Ũε0) < δ.

2) Let ((j, k), (n,m)) ∈ (IN )2 \ R be different numbers. We know that|λ0
j − λ0

k − λ0
n + λ0

m| = π2|j2 −
k2 − n2 + m2| > π2. First, thanks to (38), we have λuj ≤ |aj |2λj + |u|C1 and λuj ≥ |aj |2λj − |u|C2 for
suitable constants C1, C2 > 0 non depending on the index j. Thus

|λuj − λuk − λun + λum| ≥ ||aj |2λj − |ak|2λk − |an|2λn + |am|2λm| − |u|(2C1 + 2C2).

Now, limk→∞ |ak|2 = 1. For any u in D(0) and ε small enough, there exists Mε ∈ N∗ such that
||aj |2λj−|ak|2λk−|an|2λn+|am|2λm| ≥ π2−ε for every ((j, k), (n,m)) ∈ RC := (IN )2\R and j, k, n,m ≥
Mε. However lim|u|→0 |ak|2 = 1 uniformly in k thanks to (39) and then there exists a neighborhood
Wε ⊆ D(0) such that, for each u ∈ Wε, it follows ||aj |2λj − |ak|2λk − |an|2λn + |am|2λm| ≥ π2 − ε for
every ((j, k), (n,m)) ∈ RC and 1 ≤ j, k, n,m < Mε. Thus, for each u ∈ Wε and ((j, k), (n,m)) ∈ RC
such that (j, k) 6= (n,m), we have |λuj − λuk − λun + λum| ≥ π2 − ε.

3) The proof is achieved since, for ε1 > 0 small enough, Ũε1 ∩ Wε is a non-zero measure subset of

D(0). For any u ∈ Ũε1 ∩ Wε and for any ((j, k), (n,m)) ∈ (IN )2 such that (j, k) 6= (n,m), we have
|λuj − λuk − λun + λum| ≥ min{π2 − ε, ε1}.

Remark B.9. Let B be a bounded symmetric operator satisfying Assumptions I. By using the techniques
of the proofs of Lemma B.5 and Lemma B.8, one can ensure the existence of a neighborhood D1 of u0

in R and D2, a countable subset of R such that, for any u0 ∈ D(0) := (D1 \D2) \ {0}, we have:

1. For every N ∈ N∗, (j, k), (n,m) ∈ IN (see (4)) such that (j, k) 6= (n,m), there holds λu0
j − λ

u0

k −
λu0
n + λu0

m 6= 0.

2. Bu0

j,k = 〈φu0
j (T ), Bφu0

k (T )〉L2 6= 0 for every j, k ∈ N∗.

3. Let T > 0 and ε0 > 0. For |u0| small enough, the neighborhood Ou0

ε0,T
(defined in (16)) contains

Oε,T (defined in (12)) for ε > 0 sufficiently small.
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H. Poincaré Anal. Non Linéaire, 26(5):1743–1765, 2009.

[MN15] M. Morancey and V. Nersesyan. Simultaneous global exact controllability of an arbitrary
number of 1D bilinear Schrödinger equations. J. Math. Pures Appl. (9), 103(1):228–254,
2015.

[Mor14] M. Morancey. Simultaneous local exact controllability of 1D bilinear Schrödinger equations.
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