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ERGODIC CURRENTS DUAL TO A REAL TREE

THIERRY COULBOIS, ARNAUD HILION

Abstract. Let T be an R-tree with dense orbits in the boundary of Outer space. When the free group FN

acts freely on T , we prove that the number of projective classes of ergodic currents dual to T is bounded
above by 3N − 5.

We combine Rips induction and splitting induction to define unfolding induction for such an R-tree T .
Given a current µ dual to T , the unfolding induction produces a sequence of approximations converging
towards µ.

We also give a unique ergodicity criterion.

1. Introduction

1.1. Main results. Let FN be the free group with N generators. M. Culler and K. Vogtmann [CV86]
introduced Outer space: the space CVN of projective classes of free minimal actions of FN by isometries
on simplicial metric trees. We denote by cvN the space of free minimal actions of FN by isometries on
simplicial metric trees: cvN is the unprojectivised Outer space. The space CVN is a contractible simplicial
complex, with missing faces. The maximal dimension of a simplex in CVN is 3N − 4. Outer space admits
a Thurston boundary, denoted by ∂CVN , which gives rise to a compactification CVN = CVN ] ∂CVN of
CVN . This compactification consists of projective classes of R-trees with a minimal, very small action of FN

by isometries [CL95, BF95]. Again, we denote by ∂cvN and cvN the corresponding unprojectivized spaces.
The group Out(FN ) of outer automorphisms of the free group FN acts on CVN . One basically considers

that the Outer space plays the same role for Out(FN ) as the Teichmüller space of a surface S for the mapping
class group MCG(S) of S – see for instance [BV06] where the analogy is carried on.

Another space on which Out(FN ) naturally acts, and which appears to capture slightly different informa-
tion from Out(FN ), is the space PCurr(FN ) of projective classes of currents [Kap06, Kap05]. Let us recall
what a current is.

The space ∂FN of ends of the free group FN is a Cantor set, equipped with an action by homeomorphisms
of FN . The space ∂FN is also the Gromov boundary of FN . The action of FN on itself by left multiplication
extends continuously to ∂FN . We denote by ∂2FN = (∂FN )2 r ∆ the double boundary of FN , where ∆
stands for the diagonal. The double boundary inherits a product topology from ∂FN , and the action of FN

on ∂FN gives rise to a diagonal action on ∂2FN . The involution (X,Y ) 7→ (Y,X) of ∂2FN is called the flip
map. A current µ is a FN -invariant, flip-invariant, Radon measure (that is to say a Borel measure which
is finite on compact sets) on ∂2FN . We notice that a linear combination, with non-negative coefficients, of
currents is still a current.

The space Curr(FN ) of currents of FN is equipped with the weak-∗-topology: it is a locally compact
space. The group Out(FN ) naturally acts on Curr(FN ) – see for instance [Kap06] for a detailed description
of this action. The space PCurr(FN ) of projective classes of (non-zero) currents equipped with the quotient
topology is a compact set, and the action of Out(FN ) on Curr(FN ) induces an action on PCurr(FN ).

The spaces Curr(FN ) and cvN can be viewed, to some extent, as dual spaces. Indeed, M. Lustig and
I. Kapovich [KL09] defined a kind of duality bracket:

〈·, ·〉 : cvN × Curr(FN ) → R≥0

(T, µ) 7→ 〈T, µ〉.
This bracket is characterized as being the unique continuous Out(FN )-equivariant map cvN × Curr(FN )→
R≥0 which is R≥0-homogeneous in the first entry and R≥0-linear in the second one, and which satisfies that
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for all T ∈ cvN and for all rational current µw induced by a conjugacy class of a primitive element w of FN ,
〈T, µw〉 is the translation length of the conjugacy class of w in T – see [KL09]. The number 〈T, µ〉 is the
intersection number of T and µ.

A tree T ∈ cvN and a current µ ∈ Curr(FN ) are dual when 〈T, µ〉 = 0. We notice that the nullity of
the intersection number 〈T, µ〉 = 0 only depends on the projective classes of T and µ. The main goal of this
paper is to explain how to build all the currents dual to a given tree. We remark that the set of projective
classes of currents dual to a given tree T is convex: the extremal points of this set are ergodic currents.

Theorem 1.1. Let T be an R-tree with a free, minimal action of FN by isometries with dense orbits. There
are at most 3N − 5 projective classes of ergodic currents dual to T .

The duality between trees and currents can also be understood by considering laminations. An R-tree T
with an action of FN by isometries with dense orbits has a dual lamination L(T ) [CHL08b]. I. Kapovich
and M. Lustig [KL10] proved that a current is dual to T if and only if it is carried by the dual lamination.
Thus we can rephrase our main Theorem to:

Theorem 1.2. Let T be an R-tree with a free, minimal action of FN by isometries with dense orbits. The
dual lamination L(T ) carries at most 3N − 5 projective classes of ergodic currents.

1.2. The surface case. Generally speaking, the present work is inspired by the situation of hyperbolic
surfaces which we recall here.

Let S = Sg be an oriented surface of genus g with negative Euler characteristic χ(S) = 2 − 2g < 0.
The mapping class group of S acts on Teichmüller space Teich(S) which is homeomorphic to a ball of
dimension 6g− 6. Teichmüller space can be compactified by adding its Thurston boundary ∂Teich(S) which
is homeomorphic to a sphere of dimension 6g− 7. There are several useful models to describe ∂Teich(S), see
for instance [Pau88]. In particular, points in ∂Teich(S) can be seen alternatively as projective classes of:

• R-trees with a minimal small action by isometries of the fundamental group of the surface,
• measured geodesic laminations on S,
• measured singular foliations on S (up to Whitehead equivalence).
• currents (see [Bon88])

A geodesic lamination may carry more than one transverse measure (even if the lamination is minimal).
The simplex of measures carried by a given geodesic lamination embeds in the boundary of Teichmüller
space and thus has dimension less than 6g− 5. In fact, G. Levitt [Lev83] proved that an orientable foliation
carries at most 3g − 3 distinct projective ergodic measures, see also [Pap86].

It is not easy to exhibit a non-uniquely ergodic minimal foliation. Examples come from interval exchange
transformations (IET). Indeed, the mapping torus of an IET gives rise to a foliated surface (through zip-
pering process). H. Keynes and D. Newton [KN76] and M. Keane [Kea77] gave examples of non-uniquely
ergodic minimal IET (and thus of non-uniquely ergodic minimal foliations on a surface). E. Sataev [Sat75]
constructed minimal IET with exactly k ergodic measures for 1 ≤ k ≤ 2g. The main tool to investigate
ergodic properties of the foliation of an IET is to use a suitable induction such as Rauzy-Veech induction.

In the case of Outer space, there are fewer models available to describe points in the boundary ∂CVN .
In particular, I. Kapovich and M. Lustig [KL07] proved that there is no Out(FN )-equivariant continuous
embedding of ∂CVN in the space of currents. Although D. Gaboriau and G. Levitt [GL95] proved that the
dimension of ∂CVN is 3N − 5 (see also V. Guirardel [Gui00] where this result is reinterpreted in terms of
length measures), we cannot deduce from this fact a bound on the number of ergodic currents dual to an
R-tree. This leads us to follow the alternative strategy of analyzing the ergodic properties via an induction.

1.3. Outline of the proof. The general strategy to prove Theorem 1.1 consists in mimicking what has
been done for interval exchange transformations. However, a tree in ∂cvN is not necessarily transverse to
the foliation of an interval exchange transformation. Thus we cannot use the Rauzy-Veech induction. Instead,
for an R-tree T in ∂CVN with dense orbits and a basis A of FN , we defined, together with M. Lustig [CHL09],
a kind of a band complex SA = (KA, A): the mapping torus of the system of isometries on the compact
heart given by A. For such a band complex we can use the unfolding induction which consists in either the
Rips induction [CH14] or the splitting induction [CHR11].

First, let us recall that a current can be seen as a Kolmogorov function. Given a graph Γ and a marking
isomorphism FN

∼→ π1(Γ), the universal cover Γ̃ is a (simplicial) tree with an action of FN . Points in ∂FN
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correspond to points in the boundary of ∂Γ̃ and elements (X,Y ) ∈ ∂2FN are represented by bi-infinite lines
in Γ̃. The topology on ∂2FN is given by the cylinders: sets of lines that share a common subpath. Currents
are completely described by the measures of the cylinders: For a current µ and a finite path γ in Γ (or rather
its lift in Γ̃), the Kolmogorov function associated to µ, assigns to γ the measure µ(γ) of the cylinder defined
by γ. (Note that the fuzziness about the absence of base-point in the marking isomorphism or the choice of
a lift of γ in Γ̃ is justified by the FN -invariance of currents.)

For a marked graph Γ and a current µ we consider the non-negative vector µΓ = (µ(e))e∈E(Γ) of the µ-
measure of the cylinders defined by the edges of Γ. The unfolding induction, starting from an indecomposable
R-tree T in ∂CVN , produces a sequence (Γn) of marked graphs and a sequence of non-negative integer
matrices (Mn) such that for any current µ dual to T :

(1) the sequence of vectors (µΓn
) completely determines µ,

(2) µΓn = MnµΓn+1 .
Using properties (1) and (2), we derive that the bound on the the dimension of the simplex of currents dual
to T is given by the Euler characteristic of the graphs Γn which remains constant through splitting induction.

In fact, the sequence of marked graphs (Γn) given by the unfolding induction limits to the support of
the currents dual to T . It also gives a decomposition of the cylinders of the dual lamination L(T ) defined
by the edges of Γn similar to the Kakutani-Rokhlin towers approximations of a dynamical system – see for
instance [Dur10, Definition 6.4.1] .

In Section 6, we address the question of unique ergodicity: an R-tree in ∂CVN is uniquely ergodic if it is
dual to a unique projective current. In the context of IET, there is a famous sufficient condition known as
Masur criterion [Mas82]. This criterion can be understood using the sequence of matrices of the Rauzy-Veech
induction, see for instance [Yoc05]. We derive such a criterion for R-trees in ∂CVN in terms of the sequence
of matrices of the splitting induction.

Acknowledgments. We would like to thank John Smillie and Gilbert Levitt for giving us key references
and Hossein Namazi and Alexandra Pettet for pointing out mistakes in previous versions.

2. Preliminaries

2.1. Trees and dual laminations. An R-tree T is a 0-hyperbolic metric space. It has a Gromov boundary
∂T . We denote by T̂ = T ∪ ∂T the union of the metric completion of T and its Gromov boundary. This
is a topological space which is not compact in general. A direction d at a point P in T̂ is a connected
component of T̂ r {P}. We weaken the topology on T̂ by considering the set of directions as a sub-basis of
open sets, we denote by T̂ obs the resulting topological space which is Hausdorff, compact and has exactly the
same connected subsets as T̂ [CHL07]. Indeed T̂ obs is a dendrite in the terminology of B. Bowditch [Bow99].

We denote by ∂FN the Gromov-boundary of FN : ∂FN is a Cantor set. Fixing a basis A of FN , elements of
FN are finite reduced words in A±1 and elements of ∂FN are infinite reduced words in A±1. Let T be an R-
tree in ∂cvN with dense orbits. For a point P in T the orbit map FN → T , u 7→ uP , has a unique continuous
extension to a map Q : ∂FN → T̂ obs. This map Q does not depend on the choice of P [LL03, LL08, CHL07].

We denote by ∂2FN = (∂FN )2 r ∆ the double boundary of FN , where ∆ stands for the diagonal. The
dual lamination [CHL08a, CHL08b] of the tree T is

L(T ) = {(X,Y ) ∈ ∂2FN | Q(X) = Q(Y )}.

This is a closed, FN -invariant, flip-invariant, subset of ∂2FN .
The map Q induces a continuous [CHL09] map Q2 : L(T ) → T (here the topology on T is the metric

topology). The limit set Ω = Q2(L(T )) of T is the image of the lamination by Q. The tree T is of Levitt
type if the limit set is totally disconnected.

2.2. Compact heart. Let A be a basis of FN . Elements of FN are vertices of the Cayley graph of FN with
respect to the basis A. Elements of ∂FN are infinite reduced paths starting at 1. Elements of ∂2FN are
identified with bi-infinite reduced paths in the Cayley graph indexed by Z. The unit cylinder of ∂2FN is
the set of bi-infinite reduced paths going through 1 at index 0:

CA(1) = {(X,Y ) ∈ ∂2FN | X0 6= Y0}
3



where X0 is the first letter of the infinite word X. The unit cylinder CA(1) is a compact set. We denote by
LA(T ) = L(T ) ∩ CA(1) the symbolic lamination relative to A. It is a compact set. Its image by Q2 is the
compact limit set relative to A:

ΩA = Q2(LA(T )) = Q2(L(T ) ∩ CA(1)) ⊆ T .

The convex hull of ΩA is the compact heart KA ⊆ T of the tree T relative to A.
For each element a ∈ A of the basis we consider its restriction to KA as a partial isometry. By allowing

inverses and composition we get a pseudo-action of FN on KA. We denote by SA = (KA, A) this system of
isometries [CHL09].

An element u of FN is admissible if it is non-empty as a partial isometry. An infinite reduced word
X ∈ ∂FN is admissible if all its prefixes are admissible. In this case the domains of the prefixes form a
nested sequence of non-empty compact subtrees of the compact heart KA and the domain of X is their
intersection, it is exactly the image of X by the map Q:

{Q(X)} = domX =
⋂
n∈N

dom(Xn)

where Xn is the prefix of length n. A bi-infinite reduced word Z has two halves and we write Z = (Z−, Z+) ∈
CA(1). It is admissible if all its finite factors are admissible, or equivalently, if its two halves are admissible
with the same domain. In this case, the domain of Z is the common domain of its two halves:

dom(Z) = {Q(Z)} = {Q(Z+)} = {Q(Z−)}.

The set of admissible bi-infinite words of the system of isometries SA = (KA, A) is the admissible lamina-
tion L(SA). This is a shift-invariant symmetric closed subset of the full-shift of bi-infinite reduced words in
A±1. We remark that a bi-infinite reduced word Z corresponds to a pair (Z−, Z+) in ∂2FN , and for a pair
(X,Y ) ∈ ∂2FN , we can define the bi-infinite reduced word X−1Y . This correspondence is rather between a
shift-orbit of bi-infinite reduced words in A±1 and an FN -orbit in ∂2FN . By abuse of notations, using the
above correspondence, we have:

Proposition 2.1 ([CHL09]). Let T be an R-tree with a minimal, very small action of FN by isometries with
dense orbits. Let A be a basis of FN and let SA = (KA, A) be the associated system of isometries.

Then, the admissible lamination of SA is equal to the dual lamination of T : L(SA) = L(T ).

For a word w ∈ FN , the cylinder CA(w) ⊆ L(SA) is the set of bi-infinite admissible words Z in SA which
reads w at index 0: w is a prefix of the positive half Z+. The shifts of the cylinders form a sub-basis of open
sets of the admissible lamination.

2.3. Systems of isometries. More generally a system of isometries S = (F,A) is a compact forest F
together with a finite set A of partial isometries of F . Here a compact forest is a disjoint union of finitely
many compact R-trees. A partial isometry is a non-empty isometry between two compact subtrees. The
graph Γ = Γ(S) of such a system of isometries has the connected components of F as vertices and the partial
isometries in A as edges. The edge a ∈ A goes from the connected component that contains its domain to
the connected component of that contains its image. We always assume that Γ is connected.

A finite reduced path γ in Γ is admissible if it is non-empty as a partial isometry. Its domain dom(γ)
is a non-empty compact subtree of F . The infinite reduced path X in Γ is admissible if all its subpaths
are admissible. Its domain dom(X) is the intersection of the nested domains of the initial subpaths of X. A
bi-infinite reduced path Z = · · ·Z−1Z0Z1Z2 · · · has to halves Z− = Z−1

0 Z−1
−1 · · · and Z+ = Z1Z2 · · · . It is

admissible if all its subpaths are admissible or equivalently if its two halves are admissible and its domain
dom(Z) = dom(Z−) ∩ dom(Z+) is a non-empty compact subtree of F .

The admissible lamination L(S) of the system of isometries S = (F,A) is the set of bi-infinite admissible
paths in Γ. For a finite reduced path γ in Γ, the cylinder C(Γ, γ) is the set of bi-infinite admissible paths
Z that goes through γ at index 0: γ is a prefix of the positive half Z+.

Following D. Gaboriau [Gab97], a system of isometries has independent generators if the domain
dom(X) of any infinite admissible path X in Γ contains a single point which we denote by Q(X).

4



2.4. Currents. A current for the free group FN is an FN -invariant, flip-invariant, Radon measure (that is
to say a Borel measure which is finite on compact sets) on ∂2FN . The support of a current is a lamination.

Let T be an R-tree with a minimal very small action of FN by isometries with dense orbits. We denote
by PCurr(T ) the simplex of currents carried on the dual lamination L(T ). Let A be a basis of FN and SA =
(KA, A) be the system of isometries on the compact heart of T . Recall that we identify the dual lamination
L(T ) with the admissible lamination L(SA) which is the shift of bi-infinite admissible words in A±1. In this
setting a current if a shift-invariant, flip-invariant finite Borel measure on L(SA) [Kap06, CHL08c].

For a current µ ∈ PCurr(T ) and a word w ∈ FN , we denote by µ(w) = µ(CA(w)) the finite measure of the
cylinder of w. As the cylinders generate the topology, the current µ is completely determined by the values
µ(w), for w ∈ FN .

Proposition 2.2. Let T be an R-tree with a free minimal action of FN by isometries with dense orbits. Let
µ ∈ PCurr(T ) be a current carried by the dual lamination of T . Then µ has no atoms.

Proof. Let A be a basis of FN and let SA = (KA, A) be the associated system of isometries. Let Z be a
bi-infinite admissible word such that µ(Z) > 0. Then, as µ is shift-invariant, denoting by σ the shift-map

µ({σnZ | n ∈ Z}) = µ(Z) ·
∣∣{σnZ | n ∈ Z}

∣∣ ≤ µ(L(SA)) <∞.
Thus the shift-orbit of Z is finite and there exists n > 0 such that σnZ = Z. Let u be the prefix of the
positive half Z+ of length n. We have u−1Z+ = Z+ and using the equivariant map Q

Q(Z+) = u−1Q(Z+).

But the action of FN on T is free, a contradiction. �

2.5. Non-negative matrices. We recall here basic facts that are folklore in ergodic theory. The statements
here are suitable in our context. In the analog context of interval exchange transformations we refer to the
course of J.-C. Yoccoz [Yoc05] (in particular Corollary III.5 and the proof of Proposition IV.10).

For integers d ≥ 1, 1 ≤ i ≤ d and 0 ≤ j ≤ d we consider the matrices Ai
d ∈ Md×(d+1)(Z≥0) and

Bi,j
d ∈M(d+1)×d(Z≥0):

Ai
d =

(
Id Ci

d

)
et Bi,j

d =

 Ij 0
Li
d

0 Id−j


where Ci

d is the column vector of height d with 0 coefficients except the i-th coefficient which is 1 and
Li
d =t Ci

d is the line vector of length d with 0 coefficients except the i-th coefficient which is 1.
Let (dn) be a sequence of positive integers and (Mn) be a sequence of dn × dn+1 integer non-negative

matrices of the form Ain
dn

or Bin,jn
dn

. For such a sequence we denote by

D = lim inf dn.

The positive cone of the sequence (Mn)n∈N is the set

C = {(vn)n∈N | ∀n ∈ N, vn ∈ Rdn

≥0, and vn = Mnvn+1}.

Lemma 2.3. The positive cone C has projective dimension at most D − 1 = lim inf dn − 1.

Proof. By linearity, the dimension of C is bounded above by lim inf dn and thus the projective dimension is
bounded above by lim inf dn − 1. �

We now state a Lemma that will be used to get a unique ergodicity criterion in Section 6.

Lemma 2.4. Assume that there exists L ≥ 1 and infinitely many n such that
(1) dn = dn+L = D,
(2) the square matrix M[n,n+L−1] = Mn · · ·Mn+L−1 has strictly positive entries.

Then, the projective positive cone defined by the sequence (Mn) contains exactly one point.

Proof. The matrices M[n,n+L−1] are non-negative integer matrices. The entries of M[n,n+L−1] are bounded
by some constant depending only on L. The matrices M[n,n+L−1] uniformly contract the Hilbert distance in
the positive cone. Thus C has zero diameter. �
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3. Levitt case

3.1. Rips induction. Let S = (F,A) be a system of isometries with graph Γ. Let F ′ be the set of elements
of F which belongs to the domains of at least two partial isometries in A±1. The set F ′ is the union of the
intersections of the domains of all possible pairs of distinct elements in A±1:

F ′ = {P | ∃a 6= b ∈ A±1, P ∈ dom(a) ∩ dom(b)} = ∪a6=b∈A±1dom(a) ∩ dom(b).

Thus F ′ is also a compact forest. Let A′ be the set of all possible non-empty restrictions of elements of A
to pairs of connected components of F ′. The system of isometries S′ = (F ′, A′) is obtained from S by Rips
induction.

Let Γ′ be the graph of S′ and let τ : Γ′ → Γ map a vertex K ′ of Γ′ (which is a connected component of
F ′) to the connected component τ(K ′) = K of F that contains K ′. Similarly, τ maps the edge a′ ∈ A′±1 to
the edge a ∈ A±1 of which a′ is a restriction.

The system of isometries S = (F,A) is reduced [CH14] if

(1) the graph Γ is connected,
(2) it has independent generators,
(3) for each P ∈ F there exists at least one infinite reduced admissible path X such that Q(X) = P

and,
(4) for each partial isometry a ∈ A±1, and each extremal point P in dom(a), P is in F ′.

We remark that if the system of isometries S is reduced then the graph Γ does not have vertices of valence
1.

We summarize our previous work in the following Proposition:

Proposition 3.1 ([CH14, Propostions 3.12, 3.13 and 5.6]). Let S be a reduced system of isometries and
S′ be the system of isometries obtained by Rips induction. Then S′ is reduced and the map τ : Γ′ → Γ
is a homotopy equivalence. Moreover, the map τ induces a one-to-one correspondence between bi-infinite
admissible paths in S and S′: For any bi-infinite admissible path Z ′ ∈ L(S′), the bi-infinite path τ(Z ′)
is reduced and admissible and, for any bi-infinite admissible path Z in Γ there exists a unique bi-infinite
admissible path Z ′ ∈ L(S′) such that τ(Z ′) = Z. By abuse of notations we write

L(S) = L(S′).

�
We now proceed to analyze cylinders of the lamination.

Proposition 3.2. Let S = (F,A) be a reduced system of isometries with graph Γ. Let S′ be obtained by
Rips induction from S. Let Γ′ be the graph of S′ and τ : Γ′ → Γ be the graph map.

Then, for each edge e of Γ

C(Γ, e) =
⊎
e′

C(Γ′, e′).

where the disjoint union is taken over all edges e′ of Γ′ such that τ(e′) = e. More generally, for any finite
admissible path w in Γ

C(Γ, w) =
⊎
w′

C(Γ′, w′).

where the disjoint union is taken over all finite reduced paths w′ of Γ′ such that τ(w′) = w.

Proof. First recall that the equalities in the Proposition are understood through the identification of L(S)
and L(S′) via the map τ .

From Proposition 3.1, for each bi-infinite admissible path Z ∈ C(Γ, w) there exists a unique bi-infinite
admissible path Z ′ ∈ L(S′) such that τ(Z ′) = Z. Let w′ be the prefix of Z ′ of length |w|, then τ(w′) = w.
This proves that Z ′ is in C(Γ′, w′) and that w′ is unique. Conversely for any path w′ of Γ′ such that
τ(w′) = w and any bi-infinite reduced path Z ′ ∈ C(Γ′, w′), τ(Z ′) is a bi-infinite reduced admissible path in
C(Γ, w). �
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3.2. Analysis of the lamination. Let T be an R-tree with a free, minimal, action of the free group FN

with dense orbits. Let A be a basis for FN , and let S0 = SA = (KA, A) be the corresponding system of
isometries. Recall that S0 is reduced [CH14, Proposition 5.6]. We perform inductively Rips induction to
get a sequence Sn = (Fn,Γn) of reduced systems of isometries, together with maps τn : Γn+1 → Γn. By
Propositions 2.1 and 3.1, for each n we have that L(T ) = L(S0) = L(Sn).

For a vertex vn in Γn we denote by C(Γn, vn) the set of bi-infinite admissible paths that goes through
vn at index 0. From Proposition 3.1 we get that τn−1(C(Γn, vn)) ⊆ C(Γn−1, τn−1(vn)). Again by abuse of
notations we simply write C(Γn, vn) ⊆ C(Γn−1, τn−1(vn)). Recall also that vn is a connected component of
the forest Fn and that for each Z ∈ C(Γn, vn), Q(Z) is a point in vn.

Let now (vn)n∈N be a sequence such that for each n ∈ N, vn is a vertex in Γn and τn(vn+1) = vn. The
connected components vn of Fn are nested and we denote by v∞ ⊂ KA their intersection. We proved [CH14]
that the tree T is of Levitt type if and only if for each such sequence v∞ consists of a single point. The
cylinders C(Γn, vn) are also nested and their intersection is the set of bi-infinite admissible paths Z in Γ0

such that Q(Z) ∈ v∞. As the action on T is free, the map Q is finite-to-one [CH14, Corollary 5.4] and thus
we proved

Proposition 3.3. Let T be an R-tree in ∂cvN with dense orbits and of Levitt type. Let A be a basis of FN

and (Sn) be the sequence of systems of isometries obtained from S0 = SA = (KA, A) by Rips induction. Let
(vn) be sequence of vertices of the graphs Γn such that τn(vn+1) = vn. Then, the nested intersection of the
compact subtrees vn of KA is a singleton and the nested intersection of the cylinders C(Γn, vn) is finite. �

3.3. Rips induction and currents. Let T be an R-tree with a free action of FN by isometries with dense
orbits. Let A be a basis of FN and S0 = SA = (KA, A) be the associated system of isometries. Let (Sn)n∈N
be the sequence of systems of isometries obtained from S0 by Rips induction. By Proposition 3.1 for each
n ∈ N, we have L(Sn) = L(S). Let Γn be the graph of Sn and for each edge e recall that C(Γn, e) is the set
of bi-infinite admissible paths in Γn that goes through e at index 0.

For a current µ supported on the dual lamination L(T ) = L(S0) = L(Sn), for each n ∈ N, for each edge e
of Γn we consider the finite number µ(e) = µ(C(Γn, e)). If e and e′ are two consecutive edges of Γn separated
by a valence 2 vertex, any path through e goes through e′, and thus µ(e) = µ(e′). A generalized edge ê of
Γn is a maximal reduced path such that all inner vertices have valence exactly 2. Recall that the maps τn
are homotopy equivalences, that Γ0 is the rose with N petals and that the graphs Γn are connected and do
not have vertices of valence 1. The graph Γn has at most 3N − 3 generalized edges. We denote by GE(Γn)
the set of generalized edges of Γn. We pick-up arbitrarily an edge e in each generalized edge ê in GE(Γn).
As the system of isometries Sn is reduced, there is a bi-infinite admissible path Z going through each edge e
of Γn and thus through each generalized edge ê. By Proposition 3.1, τ0 ◦ · · · ◦ τn−1(Z) is a bi-infinite reduced
path in Γ0 and in particular its finite subpath τ0 ◦ · · · ◦ τn−1(ê) is reduced.

The incidence matrix Mn of τn is the non-negative matrix such that for each pair of generalized edges
ê ∈ GE(Γn) and ê′ ∈ GE(Γn+1), the coefficient Mn(ê, ê′) is the number of occurrences of e in the reduced
finite path τn(ê′). We remark that this matrix depends on the choice of the edge e in the generalized edge ê.

To the current µ carried by L(S), for each n ∈ N, we associate the non-negative vector µn = (µ(ê))ê∈GE(Γn).

Proposition 3.4. Let T be an R-tree with a free action of FN by isometries with dense orbits. Let A be a
basis of FN and S0 = SA = (KA, A) be the associated system of isometries. Let (Sn)n∈N be the sequence of
systems of isometries obtained from S0 by Rips induction. Let Γn be the graph of Sn and GE(Γn) its set of
generalized edge and, let Mn be the incidence matrix of τn : Γn+1 → Γn.

Then, for each current µ carried by L(T )

µn = Mnµn+1

where µn = (µ(C(Γn, ê)))ê∈GE(Γn) is the non-negative vector associated to µ at step n.

Proof. From Proposition 3.2, we have

µ(ê) = µ(e) =
∑
e′

µ(e′) =
∑
e′

µ(ê′),

where the sum is taken over all edges e′ such that τ(e′) = e. Grouping together the generalized edges of Γ′,
proves the Proposition. �
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We now use the fact that the tree is of Levitt type:

Proposition 3.5. With the above notations, let (vn)n∈N be a sequence such that for each n, vn is a vertex
of Γn and τn(vn+1) = vn. Then the sequence (µ(C(Γn, vn)))n∈N is non-increasing and converges to 0.

Proof. Recall from Section 3.2 that the cylinder C(Γn, vn) is the set of bi-infinite reduced admissible paths
that goes through vn at index 0. The cylinders C(Γn, vn) are nested and from Proposition 3.3 their inter-
section C(v∞) is finite. By Proposition 2.2 the current µ has no atoms and µ(C(v∞)) is null, which proves
the Proposition. �

3.4. The simplex of currents. We are now ready to prove Theorem 1.1 in the case where the Rips
induction completely decomposes the tree.

Theorem 3.6. Let T be an R-tree with a minimal free action of FN by isometries with dense orbits. Assume
that T is a tree of Levitt type.

Then the simplex PCurr(T ) of currents carried by the dual lamination L(T ) has dimension at most 3N−4
(and projective dimension at most 3N − 5).

Proof. Let A be a basis of FN and S0 = SA = (KA, A) be the associated system of isometries. We perform
the Rips induction to get a sequence of systems of isometries Sn together with maps τn : Γn+1 → Γn.

For each µ ∈ PCurr(T ), we consider the sequence of vectors (µn)n∈N, where µn = (µn(ê))ê∈GE(Γn). We
denote by C = { (µn)n∈N | µ ∈ PCurr(T ) } the positive cone spanned by these vectors. For each n, let Mn

be the incidence matrix of the map τn. From Proposition 3.4, C is the cone associated to the sequence of
matrices (Mn) as in Section 2.5.

The incidence matricesMn are products of matrices of the form Ai
d and Bi,j

d (see Section 2.5). Indeed, the
matrix Ai

d is that of splitting the i-th edge of Γn into two edges and the matrix Bi,j
d is that of replacing the

reduced path made of the the i-th and j-th edges of Γn+1 when they form a generalized edge. Edges splitted
in the Rips induction are incident to branch vertices of Γn and the number of resulting splitted edges is at
most the valence of that branch vertex. Moreover, these splittings creates as many vertices as the number
of new edges. Thus, both the numbers of matrices Ai

d and Bj
d in each Mn is bounded by 2N − 2. Because

T is of Levitt type, the Rips machine goes for ever and the number of edges of Γn goes to infinity.
From Lemma 2.3, the projective dimension of C is at most D − 2 where D is the inferior limit of the

number of generalized edges in Γn. As Γn is homotopic to the rose with N -petals, the number of generalized
edges is bounded above by 3N − 3. The Rips induction applied to a graph Γn with 3N − 3 generalized edges
eventually produces a graph with strictly less than 3N − 3 generalized edges. Thus we get that D < 3N − 3
and the projective dimension of C is at most 3N − 5.

Recall from Section 2.4 that for a finite reduced word w in A±1 the cylinder CA(w) ⊆ ∂2FN is the clopen
set of bi-infinite reduced words in A±1 that reads w at index 0. The set of translates of all such cylinders
is a sub-basis of open sets of the shift of bi-infinite reduced words in A±1. Thus a current is completely
determined by the measures of these cylinders.

Recall that a a generalized edge ê in Γn is mapped by τ0 ◦ · · · τn−1 to a finite reduced admissible path in
Γ0 and that Γ0 is the rose with N petals labeled by A.

We denote by 〈ê|w〉 the number of occurrences of the word w in the reduced word τ0 ◦ · · · τn−1(ê). We
claim that for a current µ ∈ PCurr(T ),

µ(w) = lim
n→+∞

∑
ê∈GE(Γn)

〈ê|w〉µ(ê).

This formula proves that µ is completely determined by the image of µ in C and thus proves the Proposition.
We now prove the above formula.

Using Proposition 3.1, we get
C(Γ0, w) =

⊎
w′

C(Γn, w
′)

where the disjoint union is taken over all reduced paths w′ in Γn with label w. Passing to the current we get

µ(w) =
∑
w′

µ(C(Γn, w
′)).
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If w′ is a subpath of a generalized edge ê of Γn, then all bi-infinite reduced paths through w′ goes through ê
and thus µ(C(Γn, w

′)) = µ(ê). Taking into account only these occurrences of the label w inside generalized
edges, we get the inequality

µ(w) ≥
∑

ê∈GE(Γn)

〈ê|w〉µ(ê).

The difference between the two terms above is exactly the measure of the cylinders of the occurrences of the
label w that are not inside a generalized edge. Those occurrences cross a point of valence at least 3. For
such a vertex v in Γn of valence at least 3, we denote by 〈v|w〉 the number of reduced paths in Γn with label
w that pass through v. We remark that 〈v|w〉 is bounded above by (|w| − 1)(2N − 1)|w|, where |w| − 1 is
the number of vertices inside a path of length |w| and 2N is the maximal valence of a vertex in Γn. (Note
that this bound is very loose but sufficient for our proof). We also use the notation µ(v) = µ(C(Γn, v)). The
difference of the two terms in the above inequality is bounded by

0 ≤ µ(w)−
∑

ê∈GE(Γn)

〈ê|w〉µ(e) ≤
∑
v

〈v, w〉µ(v) ≤ (|w| − 1)(2N − 1)|w|
∑
v

µ(v)

where v ranges over all branch-points of Γn. Now Γn is homotopy equivalent to Γ0 and does not have vertices
of valence 1, thus the number of branch-points in Γn is bounded above by 2N − 2. We get

0 ≤ µ(w)−
∑

ê∈GE(Γn)

〈ê|w〉µ(e) ≤ (|w| − 1)(2N − 1)|w|(2N − 2) max
v

µ(v)

By Proposition 3.5, the last factor goes to 0 when n goes to infinity which concludes the proof. �

4. Splitting induction

There are trees in the boundary of Outer space where the Rips induction is useless: the trees of surface
type [CH14]. For these trees (and in general) we define another kind of induction, which we call splitting
induction. It is a little more involved to use it for analyzing the dual lamination as we are going to miss
finitely many leaves. But this gives us the same results for currents when they have no atoms.

4.1. Splitting. This Section recalls the definitions and results of our previous work with P. Reynolds [CHR11,
Sections 4.2 and 4.3].

Let S = (F,A) be a reduced system of isometries. A point P ∈ F is in the interior of a tree K ⊆ F if P
is in the interior of a segment contained in K. A point P is extremal in a tree K if it is not in the interior.

Let x be an interior point of a connected component Kx of F . Let π0(Kx r {x}) = L
⊎
R be a partition

of the set of directions at x in two non-empty subsets. Then (x, L,R) is a splitting partition of the system
of isometries S = (F,A) if

(1) there exists exactly one partial isometry a0 ∈ A±1 defined at x whose domain dom(a0) meets both
sets of directions L and R and,

(2) for each direction d ∈ L ∪R at x, there is at least another partial isometry a ∈ A±1 r {a0} defined
at d: x ∈ dom(a) and dom(a) ∩ d 6= ∅.

For a splitting partition (x, L,R), let F ′ be the forest obtained by splitting Kx into two disjoint compact
trees L and R:

F ′ = (F rKx)
⊎

(L ∪ {x})
⊎

(R ∪ {x}).

We insist that there are two distinct copies of x in F ′, which we denote by xL and xR.
We also split the partial isometries in A. The partial isometry a0 is replaced by its two restrictions:

aL0 = L∪{xL}ea0 and aR0 = R∪{xR}ea0. Let a ∈ A±1 be a partial isometry distinct from a0 and a−1
0 . If dom(a)

is not reduced to a point, we let a′ be the closure of the restriction (at the source and the target) of a to
F r {x}. For instance, if x is in the domain of a then by definition of a splitting point, x is extremal in
dom(a) and dom(a) meets either L or R, say L. In this case dom(a′) = {xL} ∪ (dom(a) ∩ L). Finally, if
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dom(a) is a singleton {y} and y.a = y′ we define a′ arbitrarily by letting
y.a′ = y′ if x 6∈ {y, y′}
xL.a

′ = xL if y = y′ = x

xL.a
′ = y′ if y = x and y′ 6= x

y.a′ = xL if y 6= x and y′ = x.

Considering the graphs Γ and Γ′ of the systems of isometries S and S′, as above there is a natural map
τ : Γ′ → Γ which is one-to-one, except that it maps both vertices L and R of Γ′ to the vertex Kx of Γ and,
except that it maps both edges aL0 and aR0 of Γ′ to the edge a0 of Γ. Indeed the map τ is a folding.

The splitting induction affects the admissible paths that contain the subpaths aR0
−1
aL0 or aL0

−1
aR0 . We

thus restrict to a sublamination. A finite admissible path u in Γ is regular if dom(u) contains strictly more
than one point. The regular lamination L′(S) of a system of isometries S is the set of bi-infinite admissible
paths Z in Γ such that all finite subpaths u of Z are regular. This regular lamination is also the derived set
L′(S) of non-isolated leaves in L(S):

Proposition 4.1 ([CHR11]). Let T be an R-tree with a free minimal action of FN by isometries with dense
orbits. Let A be a basis of FN and SA = (KA, A) be the associated system of isometries. Recall that the dual
lamination L(T ) of T is equal to the admissible lamination of SA.

Then, the regular lamination L′(SA) is the derived space of L(SA). �

We summarize our previous work with P. Reynolds in the following Proposition:

Proposition 4.2 ([CHR11, Lemma 4.9 and 4.10]). Let S be a reduced system of isometries and let S′ be
a system of isometries obtained by splitting. Then S′ is reduced and the map τ : Γ′ → Γ is a homotopy
equivalence.

For any bi-infinite reduced regular path Z ′ ∈ L(S′) in Γ′, the bi-infinite path τ(Z ′) is reduced, admissible
and regular. For any bi-infinite reduced regular path Z ∈ L(S) in Γ, there exists a unique bi-infinite reduced
regular path Z ′ ∈ L(S′) such that τ(Z ′) = Z.

Through the map τ , we identify the regular laminations:

L′(S) = L′(S′).

We now write the effect of splitting on the cylinders of the lamination of S. As in Section 3, for a finite
reduced path u of Γ (u can be a vertex or an edge), the cylinder C(Γ, u) is the set of bi-infinite admissible
paths that goes through u at index 0. But here we rather consider the regular cylinder C ′(Γ, u): the set of
bi-infinite reduced admissible regular paths that goes through u at index 0. Exactly as in Proposition 3.2
we have:

Proposition 4.3. Let S = (F,A) be a reduced system of isometries with graph Γ. Let S′ be obtained by
splitting induction from S. Let Γ′ be the graph of S′ and τ : Γ′ → Γ be the graph map. For each edge e of Γ:

C ′(Γ, e) =
⊎
e′

C ′(Γ′, e′)

where the disjoint union is taken over all edges e′ of Γ′ such that τ(e′) = e. More generally, for every finite
regular path u in Γ

C ′(Γ, u) =
⊎
u′

C ′(Γ′, u′)

where the disjoint union is taken over all finite reduced paths u′ of Γ′ such that τ(u′) = u. �

4.2. Existence of splittings. To use the splitting induction to analyze laminations and currents we first
need to prove that we can perform it: there exists splitting partitions. From our previous work with
P. Reynolds [CHR11] we know that this is the case, at least when we cannot perform Rips induction. A
system of isometries S = (F,A) is of surface type if any point x of F belongs to the domains of at least
two partial isometries a 6= b ∈ A±1 (equivalently Rips induction does nothing to S).

Proposition 4.4 ([CHR11, Proposition 4.7]). Let S = (F,A) be a reduced system of isometries of surface
type, then there exists a splitting partition for S. �
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5. Unfolding

5.1. Unfolding induction and currents. Let T be an R-tree with a free minimal action of FN by isome-
tries with dense orbits. Let L(T ) be the dual lamination of T . By Proposition 2.2, no leaf of L(T ) is periodic
and, any current µ ∈ PCurr(T ) carried by L(T ) has no atoms. By definition of the derived space we get:

Proposition 5.1. Let T be an R-tree with a free minimal action of FN by isometries with dense orbits.
Then every current µ ∈ PCurr(T ) carried by the dual lamination L(T ) is carried by the regular lamination
L′(T ). �

Let A be a basis of FN and SA = (KA, A) the associated system of isometries. Let Sn = (Fn, An) be a
sequence of systems of isometries obtained from S0 = SA by unfolding induction: at each step n either
Rips or splitting induction is performed. Let τn : Γn+1 → Γn be the map between the graphs. As S0 is
reduced, τn is a homotopy equivalence, Γn is connected and does not have vertices of valence 1. The graph
Γn has at most 3N − 3 generalized edges in GE(Γn).

For each generalized edge ê′ ∈ GE(Γn+1) and each edge e in Γn we consider 〈ê′, e〉 the number of occur-
rences of e (without taking into account orientation) in the finite path τ(ê). The incidence matrix Mn of
the map τn has entry 〈ê′, e〉 for each pair (ê, ê′) ∈ GE(Γn)×GE(Γn+1). Again, we remark that the incidence
matrix depends on the choice of the edge e in the generalized edge ê.

For a generalized edge ê of Γn we consider the non-negative number µ(C ′(Γn, ê)), where C ′(Γn, ê) is the
cylinder of regular bi-infinite admissible paths in Γn that passes through ê at index 0. We consider the
non-negative vector µn = (µ(C ′(Γn, ê)))ê∈GE(Γn).

Proposition 5.2. Let T be an R-tree with a free action of FN by isometries with dense orbits. Let A be a
basis of FN and S0 = SA = (KA, A) be the associated system of isometries. Let (Sn)n∈N be a sequence of
systems of isometries obtained from S0 by unfolding induction. Let Γn be the graph of Sn and GE(Γn) its
set of generalized edge and, let Mn be the incidence matrix of τn : Γn+1 → Γn.

Then, for each current µ carried by L(T )

µn = Mnµn+1

where µn = (µ(C ′(Γn, ê)))ê∈GE(Γn) is the non-negative vector associated to µ at step n.

Proof. The proof is the same as the proof of Proposition 3.4, using Proposition 4.3 if we use splitting
induction at step n. �

We can now prove Theorem 1.1 when the induction completely analyzes the lamination.

Theorem 5.3. Let T be an R-tree with a minimal, free, action of FN by isometries with dense orbits. Let
A be a basis of FN and let SA = (KA, A) be the associated system of isometries. Let Sn = (Fn, An) be a
sequence of systems of isometries obtained from S0 = SA by unfolding induction.

Assume that each nested intersection of connected components vn of Fn is a singleton.
Then, the simplex of currents PCurr(T ) carried by the dual lamination L(T ) has dimension at most 3N−4

(and projective dimension at most 3N − 5).

Proof. Again the proof is the same as the proof of Theorem 3.6, using the regular lamination instead of the
lamination and Proposition 5.2. �

5.2. Decomposable case. The hypothesis of Theorem 5.3 are not always satisfied: there exist R-trees with
no induction sequence that completely analyzes the lamination. Those trees are decomposable in the sense
of V. Guirardel [Gui08]. In this case however, the induction procedure ends up with a subtree with an
action of a subgroup of FN with rank strictly smaller than N . And this allows us to conclude the proof of
Theorem 1.1 by induction on N .

Let T be an R-tree with a minimal free action of FN with dense orbits. Let A be a basis of FN and let
SA = (KA, A) be the associated system of isometries. Let Sn = (Fn, An) be an infinite sequence of systems
of isometries obtained from S0 = SA by unfolding induction. By Proposition 4.4, this is always possible. Let
τn : Γn+1 → Γn be the map between the graphs. As Sn is reduced, Γn is connected, does not have vertices
of valence 1 and τn is a homotopy equivalence. The number of edges of Γn is strictly increasing with n. The
inverse limit of (Γn, τn) is an infinite graph Γ̂. Vertices of Γ̂ are sequences (vn)n∈N such that vn is a vertex
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of Γn and τn(vn+1) = vn, thus (vn)n∈N is a sequence of nested compact subtrees of KA. Edges of Γ̂ are
sequences (an)n∈N such that an is an edge of Γn and τn(an+1) = an, thus an+1 is a restriction of the partial
isometry an.

By our previous work [CH14], the index of Γ̂ is finite and thus it contains a finite core graph Γ∞: the
union of all reduced loops in Γ̂. We remark that Γ∞ can be empty and that it can fail to be connected.

First case: Γ∞ is empty. Equivalently, each connected component of Γ̂ is a tree. Moreover, as the index
of Γ̂ is finite, each connected component of Γ̂ has a finite number of ends. Let (vn) be a vertex of Γ̂, this is
a sequence of vertices of Γn which are nested connected components of the forest Fn. As before, we denote
by v∞ the nested intersection of (vn). There are finitely many infinite reduced paths in Γ̂ starting from v∞.
For each x ∈ v∞ there exists an infinite path in Γ̂ starting at (vn) which reads an admissible reduced regular
word X such that Q(X) = x. We get that v∞ is finite and thus a singleton. Theorem 5.3 applies in this
case.

Second case: Γ∞ is non-empty. As Γ∞ is finite, there exists s ∈ N such that for all n ≥ s, Γ∞ is a
subgraph of Γn and the map τn restricts to the identity on Γ∞. We denote by Γ1

∞, . . . ,Γ
r
∞ the connected

components of Γ∞ in this case r ≥ 1. For each i = 1, . . . , r, let F i
∞ be the compact forest whose connected

components are the nested intersections of the vertices of Γi
∞, and let Ai

∞ be the partial isometries of F i
∞

which are the nested intersections of edges of Γi
∞.

Lemma 5.4. The system of isometries Si
∞ = (F i

∞, A
i
∞) has graph Γi

∞ and, is reduced.
Let Ni be the rank of the free group π1(Γi

∞). Let Ti be the R-tree associated to Si
∞. The action of FNi

on
Ti is free, minimal by isometries and with dense orbits. �

For any finite admissible non-singular subpath u in Γi
∞, we consider the regular cylinder C ′(Γi

∞, u) of
bi-infinite admissible regular paths that passes through u at index 0. The translates of such cylinders form
a basis of open sets of the regular dual lamination L′(Ti). We insist that we consider L′(Ti) as a lamination
with respect to FNi = π1(Γi

∞) (and not with respect to the original FN ). Any current µ ∈ PCurr(T ) carried
by the dual lamination L(T ) induces a current µi ∈ PCurr(Ti) by letting

µi(C(Γi
∞, u)) = µ(C(Γi

∞, u)).

For each n > s, as the homotopy equivalence τn fixes the subgraph Γ∞ the incidence matrix Mn is reducible
and we denote by MGE

n its submatrix corresponding to generalized edges in GE(Γn r Γ∞). Let C be the
positive cone of non-negative vectors ((µn(ê))ê∈GE(ΓnrΓ∞))n≥s.

Lemma 5.5. The map

PCurr(T ) → PCurr(T1)× · · · × PCurr(Tr)× C
µ 7→ (µ1, . . . , µr, ((µn(ê))ê∈GE(ΓnrΓ∞))n≥s)

is injective.

Proof. Indeed for any finite reduced word w in A±1, we claim that

µ(w) = µ(C(Γ0, w)) =

i=r∑
i=1

∑
w′ occurence of w in Γi

∞

µi(w′) + lim
n→∞

∑
ê∈GE(ΓnrΓ∞)

〈w, ê〉µ(ê).

As in the proof of Theorem 3.6, Propositions 3.1 and 4.2 prove that for each n:

µ(w) ≥
i=r∑
i=1

∑
w′ occurence of w in Γi

∞

µi(w′) +
∑

ê∈GE(ΓnrΓ∞)

〈w, ê〉µ(ê).

and that the difference is given by
∆n =

∑
w′

µ(C ′(Γn, w
′))

where the sum is taken over all occurrences of w as a label of a path w′ in Γn that contains both vertices
of Γ∞ and edges of Γn r Γ∞. By definition of Γ∞, all vertices of Γ∞ have valence at least 2 and thus those
occurrences of w passes over one of the branch points of Γn. Therefore the number of such occurrences is
uniformly bounded (by a constant which depends only on N). Hence, there are finitely many occurrences of
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w in the inverse limit Γ̂ which contains both vertices of Γ∞ and edges out of Γ∞. The vertices out of the
core graph of Γ̂ corresponds to singletons in KA and as the action of FN on T is free there are only finitely
many bi-infinite admissible regular paths Z in Γ̂ that passes through these occurrences of w at index 0.

We thus get that limn→∞∆n = 0 �

By Proposition 5.2 and by definition of the cone C, for all (vn)n≥s ∈ C and for n ≥ s, we have vn =
MGE

n vn+1. Thus, the cone C has finite dimension at most the number of generalized edges in Γn r Γ∞
minus one. By induction on the rank of the free group, PCurr(Ti) has dimension at most 3Ni − 5. Let
ΓGE
n be the graph obtained from Γn by replacing generalized edges by edges (so that ΓGE

n has no vertex of
valence 2). Contracting the image of each component Γi

∞ in ΓGE
n to a vertex, we get a connected graph Gn.

By construction Gn has no vertex of valence 1, at most r vertices of valence 2 and |GE(Γn r Γ∞)| edges.
Moreover Gn has Euler characteristic 1−N +N1 + · · ·+Nr. Using that the number of edges of a connected
graph without vertex of valence 1 is bounded above by three times the Euler characteristic plus the number
of vertices of valence 2, we get

|GE(Γn r Γ∞)| ≤ 3(N −N1 − · · · −Nr)− 3 + r

and thus
(3N1 − 4) + · · ·+ (3Nr − 4) + |GE(Γn r Γ∞)| − 1 ≤ 3N − 4− 3r

which concludes the proof of Theorem 1.1 since r ≥ 1.

6. Unique ergodicity

Recall that an R-tree in ∂CVN is uniquely ergodic if it is dual to a unique projective current. There
are known examples of uniquely ergodic trees: As the transition matrix of a train-track of an iwip outer
automorphisms is a primitive integer matrix (up to passing to a power), Perron-Frobenius Theorem implies
that the attracting tree in ∂CVN of a non-geometric iwip outer automorphisms is uniquely ergodic – see for
instance [CHL08c].

In this Section we give a more general concrete criterion of unique ergodicity.
Let T be an R-tree in ∂CVN with dense orbits. Let A be a basis of FN , and (Sn) a sequence of systems

of isometries obtained from S0 = SA = (KA, A) by unfolding induction. As in Section 3.2 and 5.1, let (Γn)
be the sequence of associated graphs and τn : Γn+1 → Γn the homotopy equivalences. We denote by D the
inferior limit of the number dn of generalized edges of Γn:

D = lim inf dn.

We say that all edges are fully splitted between steps n and n + L if the image of each generalized
edge ê of Γn+L in Γn is an edge-path that covers Γn. This is equivalent to saying that the incidence matrix
(for generalized edges) of τn ◦ · · · ◦ τn+L−1 : Γn+L → Γn has strictly positive entries.

Theorem 6.1. Assume that there exists L and infinitely many n such that the number of generalized edges
of Γn is D and between steps n and n+ L all edges are fully splitted.

Then, T is uniquely ergodic.

Proof. Indeed with the hypothesis above the matrices Mn · · ·Mn+L−1 are square matrices with strictly
positive and bounded coefficients. Thus we can use Lemma 2.4. �

7. Approximation of the dual lamination

7.1. Indecomposable trees. We saw in the proof of Theorem 1.1 that our main tool is to approximate
the dual lamination by the sequence of unfoldings (Γn, τn)n∈N obtained by the unfolding induction. In this
section, we focus on this approximation of L(T ) by (Γn, τn)n∈N.

Let T be an indecomposable tree. In our previous work [CH14] we proved that there are two cases: Levitt
type or surface type. According to this dichotomy we describe the unfolding induction used in the present
paper.

• If T is of Levitt type the unfolding induction consists only in Rips induction as defined in [CH14].
• If T is of surface type the unfolding induction consists only in splitting induction introduced in our

paper with P. Reynolds [CHR11].
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In both cases the induction produces a projective system of graphs (Γn)n∈N. If the action on the tree T is free,
the inverse limit is a lamination. If T is of Levitt type then the inverse limit is precisely the dual lamination
of T . If T is of surface type then it misses some diagonal leaves: the inverse limit is a sublamination of the
dual lamination of T and it contains the regular sublamination of T .

Proposition 7.1 ([CH14, CHR11]). Let T ∈ ∂cvN be a free indecomposable tree. Let (Γn)n∈N be the sequence
of graphs obtained by unfolding induction. Then,

• either T is of Levitt type and lim←−Γn = L(T ),
• or T is of surface type and L′(T ) ⊆ lim←−Γn ⊆ L(T ).

We describe now an elementary way to understand this inverse limit of graphs. As explained in [CHL08a],
a lamination L ∈ ∂2FN can be alternatively thought as a symbolic lamination, i.e. a subshift of the shift of
bi-infinite reduced words in A±1, where A denotes a basis of FN .

Let A be the basis of FN that labels the edges of the rose Γ0. A bi-infinite line in the graph Γn reads
off a (not necessarily reduced) bi-infinite word in A±1. The set of reduced bi-infinite words obtained in that
way is the admissible lamination Ln of Γn. The laminations Ln are nested and their intersection is the
inverse limit of (Γn)n∈N:

lim←−Γn =
⋂
n∈N

Ln.

Proposition 7.1 only deals with free indecomposable trees. Another class of interesting trees are the
arational trees. They are used by M. Bestvina and P. Reynolds [BR12] to describe the boundary of the
complex of free factors. As proved by P. Reynolds [Rey12] a tree is arational if and only if it is indecomposable
and either free or transverse to a minimal filling measured geodesic lamination on a once-punctured surface.

We already addressed the case of indecomposable free trees. Let T be an arational tree which is transverse
to a minimal filling measured geodesic lamination on a once-punctured surface. Then the action of FN on
T is not free: the simple closed curved γ around the puncture fixes a point in T . Running the unfolding
induction on T (in this case a splitting induction), the loop γ will not be splitted open and will remain in
the inverse limit of the graphs (Γn)n∈N. However the nested intersection of the admissible laminations Ln is
again in between the regular lamination and the dual lamination of T .

Proposition 7.2. Let T be an arational tree. Let (Γn)n∈N be the sequence of graphs given by unfolding
induction. Let Ln be the admissible lamination of Γn. Then

L′(T ) ⊆
⋂
n∈N

Ln ⊆ L(T ).

7.2. An example of a decomposable tree. In Section 5.2 we warn that, for a decomposable tree, the
unfolding induction does not always converge to the dual lamination. Here is a concrete example.

We consider an R-tree T with a free action of F5. This tree is given by its compact heart described in
Figure 1: T is transverse to (the lift to the universal cover of) the foliation of the suspension of the system
of isometries.

This system of isometries was designed so that:
• the first step of the unfolding induction has to be Rips induction (on a subsegment of EJ)
• the lengths and the point G are chosen such that inductively each step of the unfolding induction

has to be Rips induction (on a subsegment of AB, CH, ID or EF )
• at the end of this infinite Rips induction process, we are left with

– Cantor sets lying in the segments AB, EF , CH and DI
– a surface system of isometries on the segment GJ (which is an interval exchange transformation

of two intervals)
• the unfolding induction then proceed with splitting inductions.

The key point of our example is that the point G is a regular point of the limit set. We checked that
this is the case when for instance α is any irrational number in (0; 1), β = 0.311 . . . is the positive root of
β3 − β2 − 3β + 1 = 0, and γ = 1

2 + β + 1
2β

2 = 0.859 . . .. The system of isometries made of a, b and c is
inspired by the interval translation mapping of M. Boshernitzand and I. Kornfeld [BK95].

14



u uu

u u

u u
u

u

u

a b c

e

D

F

C

A B

d

E

G

I

H

J

Figure 1. The compact heart of the tree T with the partial isometries.
In bold the compact subtree has six extremal points A, . . . , F and four points of valence 3:
G,H, I, J . The five partial isometries a, b, . . . , e are defined on intervals that are represented
by arrows (orientation indicates the isometries between domains and ranges, the label of each
partial isometry is located next to its domain). Length are given by

AB = EF = GJ = 1, AG = DI = EJ = γ, BG = CH = FJ = 1− γ,
GI = HJ = α, GH = IJ = 1− α

The widths of the partial isometries are
width(a) = 1− β, width(b) = β − β2, width(c) = β2

Note that in the same spirit, we could have built an example of a decomposable tree for which the unfolding
induction consists only of splitting inductions but the process is twice infinite, see Figure 2. Such a tree is
surface in our terminology [CH14].
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