D. Serpa, What is thermal fatigue ? ASTM, pp.3-9, 1976.

A. Oudin, Thermo-mechanical fatigue of hot work tool steels, 2001.

A. Persson, S. Hormark, and J. Bergström, Thermal fatigue cracking of surface engineered hot work tool steels, Surface and Coatings Technology, vol.191, issue.2-3, pp.216-227, 2005.
DOI : 10.1016/j.surfcoat.2004.04.053

A. Srivastava, V. Joshi, and R. Shivpuri, Computer modeling and prediction of thermal fatigue cracking in die-casting tooling, Wear, vol.256, issue.1-2, pp.38-43, 2004.
DOI : 10.1016/S0043-1648(03)00281-3

F. Vallet, Etude de la fissuration d'un disque de frein à partir de l'analyse de son comportement thermomécanique, 1999.

G. Degallaix and P. Dufrenoy, Fatigue thermique de disques de frein ferroviaires, 23emes Journées de Printemps de la SF2M "Fatigue sous Sollicitations Thermiques, 2007.

M. Seyedi, S. Taheri, and F. Hild, Numerical modeling of crack propagation and shielding effects in a striping network, Nuclear Engineering and Design, vol.236, issue.9, pp.954-964, 2006.
DOI : 10.1016/j.nucengdes.2005.10.002

URL : https://hal.archives-ouvertes.fr/hal-00086961

N. Malésys, L. Vincent, and F. Hild, A probabilistic model to predict the formation and propagation of crack networks in thermal fatigue, International Journal of Fatigue, vol.31, issue.3, pp.565-574, 2009.
DOI : 10.1016/j.ijfatigue.2008.03.026

L. Augustins, R. Billardon, and F. Hild, Constitutive model for flake graphite cast iron automotive brake discs: from macroscopic multiscale models to a 1D rheological description, Continuum Mechanics and Thermodynamics, vol.8, issue.3, pp.161-176, 1007.
DOI : 10.1007/s00161-015-0448-z

L. Augustins, R. Billardon, F. Hild, F. Bagnoli, F. Dolce et al., Constitutive model for flake graphite cast iron automotive brake discs Induced anisotropic damage model under complex loadings. Continuum Mech. Therm., accepted manuscript. 11 Thermal fatigue cracks of fire fighting vehicles gray iron brake discs Role of heat-flux density and mechanical loading on the microscopic heat-checking of high temperature tool steels under thermal fatigue experiments, Eng. Fail. Anal. Int. J. Fat, vol.16, issue.51, pp.152-163, 2009.
DOI : 10.1007/s00161-015-0487-5

URL : https://hal.archives-ouvertes.fr/hal-01383893

V. Maillot, A. Fissolo, G. Degallaix, and S. Degallaix, Thermal fatigue crack networks parameters and stability: an experimental study, International Journal of Solids and Structures, vol.42, issue.2, pp.759-769, 2005.
DOI : 10.1016/j.ijsolstr.2004.06.032

URL : https://hal.archives-ouvertes.fr/hal-00071172

J. Rupil, L. Vincent, F. Hild, and S. Roux, IDENTIFICATION AND PROBABILISTIC MODELING OF MESOCRACK INITIATIONS IN 304L STAINLESS STEEL, International Journal for Multiscale Computational Engineering, vol.9, issue.4, pp.445-458, 2011.
DOI : 10.1615/IntJMultCompEng.v9.i4.70

URL : https://hal.archives-ouvertes.fr/hal-00614889

J. Stephan, F. Curtit, C. Vindeirinho, S. Taheri, M. Akamatsu et al., Evaluation of the risk of damage in mixing zones: EDF R&D Thermoelastic instabilities in the sliding of conforming solids Coupling between thermal localisation and friction mechanisms: heat accumulation effect RMG 4015 Crack Depth Measurement Exact theory of fiber fragmentation in single-filament composite Random sequential addition of hard spheres to a volume, Proceedings fatigue Proceedings of the 6th European Conference on Braking, pp.381-394, 1707.