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Abstract. In this article, we present simple and robust numerical methods for two-dimensional geometrical

shape optimization problems, in the context of viscous flows driven by the stationary Navier-Stokes equations

at low Reynolds number. The salient features of our algorithm are exposed with an educational purpose; in
particular, the numerical resolution of the nonlinear stationary Navier-Stokes system, the Hadamard bound-

ary variation method for calculating the sensitivity of the minimized function of the domain, and the mesh

update strategy are carefully described. Several pedagogical examples are discussed. The corresponding
programs are written in the FreeFem++ environment; they are freely available and can easily be elaborated

upon to deal with different, or more complex physical situations.
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1. Introduction

The first industrial developments of shape optimization in contexts involving fluid mechanics arose in
the fields of aeronautic and aerospatial engineering. These developments were motivated by the tremendous
production and running costs of aircraft: even small improvements on the performance of a design entail
very large savings. Perhaps the most famous issue in this field is the design optimization of an airfoil, which
dates back to at least 1964 [17]; see also [41, 42], and [60] where optimal profiles for minimum drag problems
are calculated thanks to shape sensitivity analyses. We generally refer to [36], Chap. 1 for a historical
perspective about the emergence of optimal design techniques in the context of fluid mechanics. Since the
aforementioned pioneering works, applications of shape optimization in fluid mechanics have raised a great
interest in various areas such as the automotive industry - see [20] about the numerical optimization of a
cooling fan - or in computational biology: for instance, in [2, 3], the design optimization of an artery graft
for preventing the formation of a stenosis is investigated from a numerical point of view.

Let us briefly outline the main features of the most popular shape optimization strategies in the literature,
without looking for exhaustivity. For more in-depth discussions in the context of fluid mechanics, we refer to
[36, 50], or to the review article [49]. Any shape optimization method relies on a parametrization of shapes,
that is, on the definition of a set of design variables. Depending on the situation, these design variables may
be physical parameters of shapes (the length of some pipe, or thickness of a region), control points of a CAD
description, or the vertices of a meshed representation. In all cases, the sensitivity (i.e. derivative) of the
objective and constraint functionals of the optimization problem with respect to the design variables - which
is a key ingredient in most numerical optimization algorithms - can be evaluated either by approximate
methods (for instance by finite differences featuring small perturbations of the parameters), or analytically,
by relying on adjoint techniques from optimal control theory [43, 47, 61]. In this last class of methods, which
is by now quite popular, these sensitivities may be calculated at the discrete level (i.e. the derivative of
the finite-dimensional functional resulting from the discretization of the shape and the physical equations
is considered), which requires a perfect knowledge of the discretization and numerical methods involved
in the resolution of the flow equations (but allows for the use of automatic differentiation methods). The
opposite view consists in calculating first the derivative of the optimized criterion at the continuous level,
then in discretizing it when it comes to the numerical implementation. This ‘continuous’ approach relies on
advanced mathematical tools, but the stages of the optimization process associated to the calculation of the
derivatives and the numerical resolution of the mechanical problem are more independent.

In any event, a great numerical challenge faced by all these methods is that of updating the design of
the shape from one iteration of the process to the next, while avoiding that the numerical representation
becomes invalid. For instance, if the shape is consistently described by means of a computational mesh,
the latter is likely to develop self-intersecting elements in the course of the optimization process, causing it
to abort prematurely; see the discussion in Section 3.4. Recently, several strategies have been devised to
circumvent this difficulty, and more generally to allow for more freedom in terms of the variety of designs
that can be represented, to the point that they make it possible to account for changes in their topology.

In this direction, quite popular density-based methods in structural mechanics - and notably the famous
SIMP method (see [10] and references therein) - have been introduced in the context of fluid mechanics in
[12]; see also [57] and [1], where a large-scale example is discussed. These relaxation methods rely on an
extension of the set of admissible designs: ‘black-and-white’ shapes Ω contained in a fixed computational
domain D, or equivalently their characteristic function χ : D → {0, 1}, taking values 1 inside Ω, and 0 in
the ‘void’ region D \ Ω, are replaced with density functions ρ : D → [0, 1], which may assume intermediate,
‘grayscale’ values in (0, 1). The flow equations have then to be given an appropriate meaning to account for
the presence of ‘void’ and ‘grayscale’ regions. This is typically achieved by adding a ρ-dependent damping
term (or Brinkman’s law) to the flow equations [12], a heuristic inspired from the theory of porous media
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whereby the void is filled with a fluid with very low permeability, thus mimicking no slip boundary conditions
at the interface between the fluid and void domains (see [35] and [30], then [33] for a generalization to the
case of Navier-Stokes flows). Let us eventually mention the contribution [46] where topology optimization
problems are tackled in the context of the unsteady Navier-Stokes equations, and reveal the limitations of
this penalization approach as far as the accuracy of the resolution of the flow equations is concerned.

Another class of shape and topology optimization strategies relies on the level set method, pioneered in
[56], then introduced in structural optimization in [62, 5, 66]. Such methods describe a shape Ω via the use
of a scalar function φ defined on the whole computational domain D: the negative subdomain of φ coincides
with Ω, while its positive subdomain accounts for void (or, in practice, another fluid with low permeability,
according to the aforementioned ‘Brinkman’ penalization approximation). In the two-dimensional work [28],
the level set method is used to deal with Navier-Stokes flows, in a variational framework which alleviates
the need for the redistancing stage inherent to many level set based algorithms; this idea is continued in
[67] in the three-dimensional setting. See also [14] for another use of the Level Set method in the context
of Navier-Stokes flows. Recent contributions have proposed alternative efficient level set methods where the
flow equations are solved by the Lattice Boltzmann method [57, 45] or the Extended Finite Element method
[44], alleviating the need for the ‘Brinkman’ penalization method. On a different note, in [18], the Level Set
method is used to combine the information supplied by shape and topological derivatives, in the context of
Stokes flows, in two and three space dimensions.

Eventually, let us also mention phase-field methods, which share a lot of features with level set methods,
except for the fact that they bring into play shapes, or phases, with ‘thickened boundaries’ [32].

Following the lead of [63] and [6], which take place in the context of structural mechanics, this article is a
pedagogical introduction to several basic shape optimization techniques in fluid mechanics. The discussion
is didactic: we deliberately keep technicalities to a minimum, and provide adequate references when needed.
We present a simple numerical framework, yet robust enough to deal with physically relevant situations,
which is dedicated to solving shape optimization problems in the context of fluid mechanics. The proposed
examples can be easily reproduced and elaborated upon to deal with more advanced models.

In the setting of the stationary Navier-Stokes equations at low Reynolds number, we optimize shapes in
terms e.g. of the dissipated viscous energy, under volume or perimeter constraints. To this end, we rely
on an augmented Lagrangian algorithm based on the first order information supplied by shape derivatives,
in the sense of the Hadamard boundary variation method. From the numerical point of view, shapes are
represented by a computational mesh, on which the flow equations are solved owing to the Finite Element
method. The update of the shape between each iteration of the optimization process is achieved by moving
the vertices of this mesh according to the calculated descent direction.

The numerical developments proposed in this article rely on the FreeFem++ [37] software, a free envi-
ronment allowing to solve a wide variety of Partial Differential Equations (PDE for short) using the Finite
Element method within a few command lines.

A particular attention has been paid to the development of a user-friendly source code, which is available
online at

https://github.com/flomnes/optiflow

with the hope that it serve as a useful basis for further investigations.

The remainder of this article is organized as follows. In Section 2, we introduce the model physical problem
at stake, as well as the shape optimization problem considered in this context. In passing, we recall in an
elementary way some basic facts about shape derivatives. In Section 3, we describe in more details the main
ingredients of the proposed numerical method: after a short motivating outline in Section 3.1, we discuss
the salient features of our shape optimization algorithm in Sections 3.2, 3.3, 3.4, 3.5 and 3.6; a sketch of this
algorithm is then provided in Section 3.7. Section 4 is then a short guide of our practical implementation;
it is expected that, together with the thorough comments left throughout our code, this will allow the user
to define and solve his own shape optimization test cases in a user-friendly way. In Section 5, we introduce
and comment five test cases which are dealt with by our algorithm. Finally, Section 6 concludes by evoking
limitations of our approach as well as perspectives for possible improvements and extensions.

3

https://github.com/flomnes/optiflow


2. Shape optimization for flows governed by the Navier-Stokes equations

In this section, we present the model physical situation and the shape optimization problem at stake,
together with the necessary theoretical background. Notice that, while the concrete applications discussed
in this article arise in two space dimensions (see Section 5), most of the presented techniques are available
in the general, d-dimensional setting. For this reason, the discussion takes place in d dimensions inasmuch
as it is possible without giving up simplicity and clarity.

2.1. The Navier-Stokes equations.

In our applications, shapes are smooth bounded domains Ω ⊂ Rd (d = 2, 3 in practice), occupied by a
homogeneous Newtonian fluid with kinematic viscosity ν > 0. The boundary ∂Ω is made of three disjoint
regions: ∂Ω = Γin ∪ Γout ∪ Γ, where

• Γin is the ‘inlet’, on which a known velocity profile uin is imposed;
• Γout is the ‘outlet’, which is free from of surface forces;
• Γ is the ‘free’ boundary; no slip boundary conditions are imposed on Γ, accounting for the fact that

the fluid particles are stuck on it;

see Figure 1 for an illustration. In the applications ahead, Γ is the only region of ∂Ω which is subject to
optimization, i.e. Γin and Γout are fixed. From the physical point of view, Ω may represent a mammal’s
lung, a duct in a ventilation system or a water radiator, etc.

⌦

��in

�out

uin

Figure 1. Illustration of the model setting introduced in Section 2.

The equilibrium behavior of the fluid inside Ω is classically described in terms of its (vector) velocity
field u = (u1, ..., ud) : Ω → Rd and (scalar) pressure p : Ω → R, which solve the stationary incompressible
Navier-Stokes equations:

(2.1)


−ν∆u + (u · ∇)u +∇p = 0 in Ω,

div(u) = 0 in Ω,
u = uin on Γin,
u = 0 on Γ,

σ(u, p)n = 0 on Γout.

In the above system, the stress tensor σ(u, p) is defined by

σ(u, p) = 2νe(u)− pI, where e(u) =
1

2
(∇uT +∇u).

From the physical point of view, the first equation in (2.1) is the law of balance of momentum between
viscous forces −ν∆u, acceleration forces (u · ∇)u and pressure forces ∇p. The second equation div(u) = 0
accounts for the incompressibility of the fluid. Because of this incompressibility feature, a simple calculation
allows to rewrite the law of balance of momentum under the equivalent form:

−div(σ(u, p)) + (u · ∇)u = 0.
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For further reference, let us recall that this nonlinear system is often considered from the variational view-
point, in particular when it comes to its numerical resolution using FreeFem++; the pair (u, p) satisfies:

For all (v, q) s.t. v = 0 on Γin,{
a(u,v) + c(u,u,v) + b(v, p) = 0

b(u, q) = 0

(2.2)

where we have defined

a(u,v) = 2ν

∫
Ω

e(u) : e(v) dx,

b(u, p) = −
∫

Ω

p div(u) dx,

c(u,v,w) =

∫
Ω

(u · ∇)v ·w dx,

and the notation A : B stands for the usual Frobenius inner product of two d × d matrices A, B, that is

A : B =
∑d

i,j=1AijBij . In the following, we also denote by ||A||= (A : A)1/2 the associated Frobenius norm.

In the dimensionless version (2.1), (2.2) of the Navier-Stokes equations, the Reynolds number Re is
proportional to 1/ν: it is an indicator of the type of regime of the flow [51]. At low Reynolds number,
viscous effects are prevailing and the flow is laminar; in particular, its velocity stays relatively low. On
the contrary, at moderate to high Reynolds number, convective forces become dominant and the flow is
turbulent. The theoretical and numerical study of (2.1) is notoriously much harder in the latter situation,
and still leaves room for many open questions. In the present, introductory work, we limit ourselves to the
low Reynolds number regime (say, Re ≈ 200).

Remark 2.1. Let us say a few words about the functional setting and well-posedness of the stationary Navier-
Stokes system (2.1). When the viscosity ν is large enough, i.e. the Reynolds number Re is low, (2.1) is well-
posed. It has a unique weak solution (u, p) ∈ H1(Ω)d × L2

0(Ω), where L2
0(Ω) :=

{
p ∈ L2(Ω),

∫
Ω
p dx = 0

}
,

in the sense that the variational problem (2.2) is fulfilled; see [65], Chapter II about these matters. In the
following, we systematically assume ν to be large enough so that (2.1) is well-posed.

2.2. Statement of the shape optimization problem.

In the context of Section 2.1, the shape optimization problem of interest reads

(2.3) min
Ω∈Oad

J(Ω) s.t. G(Ω) = 0.

Here, the objective criterion J(Ω) may stand for

• The energy E(Ω) dissipated by the fluid owing to the work of viscous forces, i.e.

(2.4) E(Ω) =

∫
Ω

σ(u, p) : e(u) dx = 2ν

∫
Ω

‖e(u)‖2 dx,

• A least-square discrepancy

(2.5) D(Ω) =
1

2

∫
Γout

|u− uref|2 ds

between the velocity u of the fluid, solution to (2.1), and a given reference profile uref. Such criteria
are often involved in shape optimization-based methods for the detection or the reconstruction of an
obstacle immersed in a fluid from the data of boundary measurements [8, 48].

As we have mentioned in Section 2.1, all the considered domains enclose the inlet Γin and the outlet
Γout as (fixed) subsets of their boundaries, so that the free boundary Γ is the only region of ∂Ω subject to
optimization. Accordingly, the set Oad of admissible domains featured in (2.3) reads:

Oad = {Ω ⊂ Rd, open, smooth and bounded, such that

Γin ∪ Γout ⊂ ∂Ω}(2.6)
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Last but not least, as far as the constraint functional G(Ω) is concerned, we shall restrict ourselves to
equality constraints on the volume Vol(Ω) =

∫
Ω
dx or the perimeter Per(Ω) =

∫
∂Ω
ds of shapes, namely:

G(Ω) = Vol(Ω)− VT , or G(Ω) = Per(Ω)− PT

for some given volume or perimeter target values VT and PT .

Remark 2.2. The existence of global minimizers of problems of the form (2.3) is a long-standing question
in shape optimization theory, not only in the context of fluid mechanics, but already in simpler situations,
bringing into play the conductivity equation, or the linearized elasticity system. Let us simply mention that,
in order to guarantee the existence of optimal shapes, two classical remedies consist in either restricting the
set of admissible shapes (for instance by adding constraints on the perimeter, or the regularity of shapes), or
on the contrary in enlarging this set, so that it includes ‘density functions’, and not only ‘black and white’
shapes. See for instance [15, 38, 64] about these issues, or [39, 40, 11] in the context of fluid mechanics.

Often, in numerical practice, one is rather interested in searching for local minimizers of (2.3), which are
close to an initial guess inspired by physical intuition. These are the ‘optimal’ shapes which are typically
delivered by local optimization methods, such as the steepest-descent algorithms used in the present article.

2.3. Shape sensitivity analysis using Hadamard’s boundary variation method.

Most optimization algorithms - such as steepest-descent methods - rely on the knowledge of the derivatives
of the objective and constraint functionals. As we have already hinted at in the introduction, two different
paradigms exist in the context of PDE constrained optimization problems of the form (2.3). In a nutshell, in
‘discretize-then-optimize’ approaches, the optimized domain is first discretized into a set of design variables
(for instance, the vertices of a mesh); the PDE system (2.1) becomes finite-dimensional (it is e.g. discretized
using a Finite Element method), and its coefficients depend on the design variables; accordingly, the objective
and constraint functionals J(Ω) and G(Ω) are functions of the design variables, and the derivatives of
these discrete functionals are calculated. On the contrary, ‘optimize-then-discretize’ approaches advocate to
calculate the derivatives of J(Ω) and G(Ω) at the continuous level; the resulting theoretical formulae are
then discretized by relying on a discretization of the domain and of the PDE system (2.1).

The approach described in this article belongs to the second category, and therefore requires to compute
derivatives with respect to the domain. Several ways exist to define a notion of shape derivative, and we rely
on Hadamard’s boundary variation method, a brief sketch of which is now provided; see for instance to [38],
Chap. 5, or [4, 53] for in-depth expositions. See also [55] for an overview of the rival notion of topological
derivative, and [7] for the calculation of topological derivatives in the context of fluid mechanics.

In the framework of Hadamard’s method, the sensitivity of a function of the domain is assessed with
respect to small perturbations of its boundary: variations of a given shape Ω are considered in the form

(2.7) Ωθ = (Id + θ)(Ω),

where θ : Rd → Rd is a ‘small’ vector field, and Id is the identity mapping from Rd into itself; see Figure 2
for an illustration.

Since admissible shapes Ω ∈ Oad are smooth and only Γ is subject to optimization, it is natural that θ
belong to the set Θad of admissible perturbations defined by:

Θad =
{
θ : Rd → Rd smooth, θ = 0 on Γin ∪ Γout

}
;

so that variations (2.7) of admissible shapes stay admissible.

Definition 2.1. A function of the domain F (Ω) is shape differentiable at Ω ∈ Oad if the underlying mapping
θ 7→ F (Ωθ), from Θad into R, is differentiable at θ = 0 (in the sense of Fréchet). The corresponding
derivative is denoted by θ 7→ F ′(Ω)(θ), and the following Taylor expansion holds:

(2.8) F (Ωθ) = F (Ω) + F ′(Ω)(θ) + o(θ)

where o(θ)→ 0 as θ → 0.

When it comes to shape derivatives, the first result of interest deals with the volume and perimeter
functionals; see [4, 38] for a proof.
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Figure 2. Example of a variation Ωθ of a shape Ω.

Theorem 2.1. Let Ω be a smooth shape. Then,

(i) The volume Vol(Ω) is shape differentiable and its derivative reads:

∀θ ∈ Θad, Vol′(Ω)(θ) =

∫
Γ

θ · n ds.

(ii) The perimeter Per(Ω) is shape differentiable and its derivative reads:

∀θ ∈ Θad, Per′(Ω)(θ) =

∫
Γ

κ θ · n ds,

where κ : ∂Ω→ R is the mean curvature of ∂Ω.

Calculating shape derivatives of functions of the form (2.4) or (2.5) is a little harder, since they bring
into play the solution of a partial differential equation posed on Ω (in the present case, the Navier-Stokes
system (2.1)). This can however be managed by using quite classical adjoint techniques from optimal control
theory. Again, we refer to [4] for a comprehensive introduction to such techniques in the context of shape
optimization, and to Appendix A for a sketch of proof.

Theorem 2.2. Let Ω ∈ Oad; then,

(i) The energy dissipation E(Ω) given by (2.4) is shape differentiable and its derivative reads:

(2.9) ∀θ ∈ Θad, E
′(Ω)(θ) =

∫
Γ

(−2νe(u) : e(u) + 2νe(u) : e(ve))θ · n ds,

where (ve, qe) is an adjoint state, defined as the solution of the linear PDE

(2.10)


−ν∆ve + (∇u)Tve − (∇ve)u +∇qe

= −2ν∆u in Ω,
div(ve) = 0 in Ω,

ve = 0 on Γ ∪ Γin,
σ(ve, qe)n + (u · n)ve = 4νe(u)n on Γout.

(ii) The least-square functional D(Ω) defined by (2.5) is shape differentiable and its derivative reads:

(2.11) ∀θ ∈ Θad, D
′(Ω)(θ) =

∫
Γ

2νe(u) : e(vd) θ · n ds,
7



where the adjoint system for (vd, qd) reads

(2.12)


−ν∆vd + (∇u)Tvd − (∇vd)u +∇qd = 0 in Ω,

div(vd) = 0 in Ω,
vd = 0 on Γ ∪ Γin,

σ(vd, qd)n + (u · n)vd = u− uref on Γout.

Remark 2.3. (1) As is customary in shape optimization - and in optimal control in general -, the
adjoint systems (2.10) and (2.11) are linear, while the original Navier-Stokes system (2.1) is non
linear.

(2) From the mathematical point of view, the adjoint systems (2.10) and (2.12) are well-posed in suitable
functional spaces when the parameter ν is assumed to be large enough (see e.g. [40]).

Like those of the functions Vol(Ω), Per(Ω), E(Ω) and D(Ω) involved in Theorems 2.1 and 2.2, the shape
derivative of a fairly general class of shape functionals F (Ω) has the generic form:

(2.13) F ′(Ω)(θ) =

∫
Γ

φ θ · n ds =: (φ,θ · n)L2(Γ),

where the scalar function φ : Γ → R is the ‘shape gradient’ of F with respect to the L2(Γ) inner product.
This statement is referred to as the Structure theorem for shape derivatives; see [38], §5.9. In particular,
F ′(Ω)(θ) depends only on the values of the normal component θ ·n on the free boundary Γ; this reflects the
intuitive fact that tangential deformations of Ω leave the values of F (Ω) unchanged at first order.

For further reference, the structure (2.13) makes it easy to infer descent directions for F (Ω). Indeed, if θ
coincides with −φn on Γ, it readily follows from (2.8) that, for t > 0 small enough:

(2.14) F (Ωtθ) = F (Ω)− t
∫

Γ

φ2 ds+ o(t) < F (Ω).

3. Numerical methods

In this section, we describe in more detail the numerical methods involved in the resolution of the shape
optimization problem (2.3).

3.1. Description of the numerical setting and outline of the algorithm.

Each shape Ω is represented by means of a simplicial mesh T , composed of K (closed) simplices T1, ..., TK
(i.e. triangles in 2d, tetrahedra in 3d) , and I vertices x1, ...,xI . The mesh T is computational in the sense
of Finite Elements, that is:

• The Tk form a cover of Ω, i.e. Ω =
⋃K

k=1 Tk,
• The Tk do not overlap, i.e. the intersection between the interiors of Tk and Tk′ is empty whenever
k 6= k′,

• The mesh T is conforming ; for instance, in two dimensions, the intersection between any two triangles
Tk and Tk′ , k 6= k′, is either empty, or it is a vertex, or an edge of T .

See Figure 3 for illustrations of these notions.
8



(a) (b) (c)

Figure 3. Examples of (a) a mesh with overlapping triangles (in grey); (b) a mesh with
non overlapping, yet non conforming triangles (in grey); (c) a computational mesh.

In the following, we shall often consider sequences of shapes Ωn and meshes T n, and we denote with a n

superscript all the entities (vertices xn
i , simplices Tn

k , numbers of vertices In and simplices Kn) of T n.

So as to emphasize the needed numerical methods in the resolution of (2.3), we now give a deliberately
hazy sketch of the main stages; a practical version is given in Section 3.7.

• Initialization: The initial domain Ω0 is equipped with a mesh T 0.
• For n = 0, . . . until convergence:

(1) Compute the solution (u, p) of the Navier-Stokes equation (2.1), and the adjoint state (v, q),
solution of (2.10) or (2.12) on Ωn, using the mesh T n.

(2) Compute the shape derivatives of J(Ω) and G(Ω) (see Theorems 2.1 and 2.2) and infer a descent
direction θn for the optimization problem (2.3).

(3) Choose a sufficiently small time step τn and update the shape Ωn into the new shape Ωn+1 :=
(Id + τnθn)(Ωn); a mesh T n+1 of Ωn+1 is obtained.

This program raises a number of issues:

• The numerical resolution of the systems (2.1), (2.10) and (2.12) is by no means trivial; Section 3.2
below is devoted to this issue.

• The calculation of a descent direction for J(Ω) which allows to satisfy the constraint G(Ω) demands
the use of an adapted optimization algorithm, which is described in Section 3.3.

• The deformation of the mesh T n of Ωn into a computational mesh T n+1 of Ωn+1 is a difficult
task. We describe in Section 3.4 the stakes of mesh deformation, and in Section 3.5 a strategy for
calculating a nice shape gradient which eases this purpose.

3.2. Numerical resolution of the Navier-Stokes equations.

The numerical resolution of the Navier-Stokes system (2.1) with the Finite Element method is faced with
two relatively independent difficulties. The first one is related to the treatment of the nonlinear convective
term (u · ∇)u; the second one is quite common in the resolution of saddle-point problems: it is about the
choice of adequate Finite Element spaces for the discretization of the velocity u and pressure p. Notice that
the adjoint systems (2.10) and (2.12) are linear, so their resolution is not concerned by the first issue, but it
is by the second one. We only discuss the case of the nonlinear Navier-Stokes system (2.1) in this section,
which is in all regards more difficult.

3.2.1. Dealing with the nonlinear convective term using Newton’s method. We rely on a fairly standard
Newton method for nonlinear problems. Writing (2.1) in the abstract form

(3.1) A(u, p) = 0,
9



Newton’s method achieves the solution as the limit of the sequence (uk, pk), where each update (δuk, δpk)
between the steps k and (k+1) is calculated as the solution to the linearized version of (3.1) around (uk, pk):

(3.2) d(uk,pk)A(δuk, δpk) = −A(uk, pk),

where d(uk,pk)A is the linearization of the mapping (u, p) 7→ A(u, p) at (uk, pk). In the particular case of
interest for us, the iterative procedure (3.2) reads as follows:

(1) Initialization: The pair (u0, p0) is the solution to the Stokes counterpart of (2.1) (i.e. the version
of (2.1) where the non linear term is omitted):

(3.3)


−ν∆u0 +∇p0 = 0 in Ω,

div(u0) = 0 in Ω,
u0 = uin on Γin,
u0 = 0 on Γ,

σ(u0, p0)n = 0 on Γout.

(2) For k = 1, ..., (uk+1, pk+1) is obtained by

(uk+1, pk+1) = (uk, pk) + (δuk, δpk),

where (δuk, δpk) is the solution to the linear system (viz. (3.2)),

(3.4)


−ν∆(δuk) + (uk · ∇)(δuk) + ((δuk) · ∇)uk

+∇(δpk) = ν∆uk − (uk · ∇)uk −∇pk in Ω,
div(δuk) = 0 in Ω,
δuk = 0 on Γ ∪ Γin,

σ(δuk, δpk)n = 0 on Γout,

which is sometimes referred to as the Oseen system.
(3) Ending criterion: The algorithm ends when

(3.5) ek < εstop, with ek :=

√√√√‖δuk‖2
L2(Ω)d

+ ‖∇(δuk)‖2
L2(Ω)d×d

‖uk‖2
L2(Ω)d

+ ‖∇uk‖2
L2(Ω)d×d

for a fixed, user-defined tolerance εstop.

This ending criterion is inspired from [34, Chapter 6], where the sequence (uk, pk) is proved to converge
quadratically to the solution of (2.1), provided the initial pair (u0, p0) is ‘close’ enough to the latter. In other

terms, the error ek behaves as ek+1 ≈
(
ek
)2

. In practice, only 3 or 4 iterations are required to fulfill (3.5)

with εstop = 10−10.
Let us mention that many other methods are available for the numerical resolution of (2.1), such as the

Oseen iteration method, the Least-Square gradient method, the Peaceman-Racheford method (an increment
of the Least-Square gradient method), with different assets and drawbacks which we do not discuss here; see
[34].

On a different note, Newton-like algorithms are well-known to experience difficulties as far as convergence
is concerned, especially when the initial state is ‘far’ from the sought solution; in our context of the numerical
resolution of the Navier-Stokes system (2.1), this is likely to happen in the case of moderate-to-high Reynolds
numbers, where the solution (u0, p0) to the Stokes equation (3.3) is ‘too far’ from that (u, p) to (2.1). In
such a case, one may resort to mixed strategies (e.g. starting with the Oseen iteration method for some
iterations, then branching with the Newton method), or continuation methods (which advocate to increase
steadily the Reynolds number) to improve and make the convergence process more robust. As we have
already mentioned, the model examples considered in this article (see Section 5) arise in the regime of low
Reynolds number, and we did not run into the need for such elaborated strategies.
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Remark 3.1. In practice, we do not solve exactly (3.3), but the slightly modified version

(3.6)


−ν∆u0 +∇p0 = 0 in Ω,
div(u0) + εp0 = 0 in Ω,

u0 = uin on Γin,
u0 = 0 on Γ,

σ(u0, p0)n = 0 on Γout.

where ε is a very small parameter (typically ε = 10−6). The reason is that only the gradient of p0 is involved
in the system (3.3), which is not well-posed as a result: p0 is only defined up to a constant; see Remark
3.3. In contrast, (3.6) is well-posed; the matrix associated to its resolution by the Finite Element method is
positive definite, which allows to use efficient numerical linear algebra solvers; see e.g. [34, Chapter 4] about
this approach. The same trick applies to (3.4).

3.2.2. Choice of the Finite Element discretization. When it comes to the numerical resolution of linear saddle
point problems of the form (3.3) or (3.4), one should pay attention to the choice of the Finite Element spaces
used for the discretization of the unknown velocity u and pressure p. In our case, (3.3) and (3.4) are solved
with the Finite Element method in mixed velocity-pressure formulation, using P2 Lagrange elements for the
velocity u and P1 Lagrange elements for the pressure p. This choice as regards Finite Element spaces is one
among those ensuring that the so-called Brezzi inequality holds, and thereby that the discrete linear systems
corresponding to (3.3) and (3.4) are invertible. Details about numerical methods for the resolution of saddle
point problems can be found in [27] or [29].

3.3. The augmented Lagrangian algorithm for equality-constrained problems.

In order to drive the numerical resolution of (2.3), we rely on the augmented Lagrangian method, a basic
sketch of which is provided; we refer to [54] §17.4 for detailed explanations.

The augmented Lagrangian algorithm transforms the constrained optimization problem (2.3) into the
series of unconstrained problems (hereafter indexed by the superscript n):

(3.7) inf
Ω∈Oad

L(Ω, `n, bn),

where

(3.8) L(Ω, `, b) = J(Ω)− `G(Ω) +
b

2
G(Ω)2

In the definition of the augmented Lagrangian L, the parameter b is a (positive) penalty factor for the
violation of the constraint G(Ω) = 0, and ` is an estimate of the Lagrange multiplier associated with this
constraint in (2.3).

The augmented Lagrangian algorithm intertwines the search for the minimizer Ωn of Ω 7→ L(Ω, `n, bn) for
fixed values of `n and bn, and the update of these coefficients according to the rule:

(3.9) `n+1 = `n − bnG(Ωn), and bn+1 =

{
αbn if b < btarget,
bn otherwise;

in other terms, starting from a ‘small’ value b0, the penalty b is increased by a user-defined factor α > 1
during the first iterations of the optimization process, until the maximum, ‘large’ value btarget is reached:
this smooth increase of b urges the optimized domain to fulfill the constraint in an increasingly stringent way
in the course of the optimization process; see Section 5 for the actual values used in our implementation.

We again refer to [54] for an insight about this procedure; let us simply mention that `n is an increasingly
accurate approximation of the Lagrange multiplier for the constraint G(Ω) = 0 featured in (2.3). Notice also
that the penalty coefficient bn is multiplied by a user-defined constant α > 1 during the first iterations of the
algorithm, and that it is kept fixed afterwards. In particular, the augmented Lagrangian strategy does not
require bn to tend to infinity so to enforce the constraint G(Ω) = 0; this guarantees a better conditioning
of (3.7) with respect to the naive quadratic penalty method (featuring only the first and last terms in the
definition of L in (3.7)).
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In our context, where the computational burden of minimizing Ω 7→ L(Ω, `, b) is significant, we rely on the
following practical implementation of these ideas which limits the number of iterations of the optimization
method.

• Initialization: Start from an initial shape Ω0 and coefficients `0 and b0.
• For n = 0, ... until convergence

– choose a descent direction θn for Ω 7→ L(Ω, `n, bn),
– take τn small enough so that
L((Id + τnθn)(Ωn), `n, bn) < L(Ωn, `n, bn), and set Ωn+1 = (Id + τnθn)(Ωn).

– update the coefficients `n and bn of the augmented Lagrangian L according to (3.9).

3.4. Mesh-related issues.

Assume for one moment that a descent direction θn for (2.3) and a descent step τn have been found at
the nth iteration of the procedure described in Section 3.1; we are faced with the realization of the operation
Ωn 7→ Ωn+1 = (Id + τnθn)(Ωn). If T n is the mesh of Ωn, the natural way to carry it out reads:

(3.10) xn
i 7→ xn+1

i := xn
i + τnθn(xn

i ), i = 1, ..., In,

while the connectivities of the mesh are unchanged, i.e. the considered mesh T n+1 of Ωn+1 is made of the
same simplices as T n, but their vertices are relocated according to θn.

Unfortunately, this simple procedure is likely to give rise to very stretched (i.e. almost flat) elements
within a few iterations. This is problematic since the accuracy of the resolution of PDE with the Finite
Element method greatly depends on the quality of the elements in the mesh, i.e. on their being close to
equilateral [21]. It may also happen that the mesh becomes overlapping in the course of the deformation;
see Figure 4 for an illustration of such configurations.

(a)

(b)

Figure 4. Examples of (a) a mesh getting very stretched (grey elements); (b) a mesh de-
veloping overlaps (red elements) in the course of its deformation.

Hence, the numerical resolution of (2.1) may become very inaccurate (not to say impossible) as the
computational mesh is successively deformed, causing the whole optimization process to stop prematurely.
To circumvent this drawback, we rely on two ingredients:
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• The emergence of stretched elements in T n may be postponed: in the transformation of Ωn into Ωn+1

(practically, that of T n into T n+1 via (3.10)), only the values of θn on the boundary Γn determine
the new domain Ωn+1; in the numerical framework, the values of θn inside Ωn are only used to
relocate the internal vertices of T n. In particular, these internal values of θn may be chosen freely,
in a way that makes T n+1 of good quality insofar as possible, as we describe in the next Section 3.5.

• When the quality of the mesh becomes poor, i.e. in our context when the volume of one of its
elements becomes very small, i.e.

min
k=1,...,Kn

|Tn
k | < εmesh,

where εmesh is a user-defined parameter (see [31] Chap. 18 for more details, in particular about
other possible quality measures of a mesh, which could be easily implemented in FreeFem++.), a
remeshing of T n is carried out: in a nutshell,

– ‘Too long’ edges are split,
– The endpoints of ‘too short’ edges are merged,
– The connectivities of ill-shaped triangles (e.g. nearly flat triangles) are swapped,
– Vertices are moved,

as long as the overall quality of the mesh is improved. See Figure 5 for an illustration of these
operations.

• •

(a) (b)

(c)

• •

(d)

Figure 5. Illustrations of the remeshing operations described in Section 3.4: (a) splitting of
a ‘long’ edge; (b) collapse of the two endpoints of a ‘short’ edge; (c) swap of the connectivities
of a configuration of two ill-shapes triangles; (d) relocation of one vertex.

From the practical implementation viewpoint, this complex series of operations is conveniently
carried out owing to the movemesh command in FreeFem++.

3.5. Extension-regularization of the shape gradient.

As we have seen, our optimization procedure amounts to a series of minimizations of functionals of the
form (3.7), which we generically denote by F (Ω) in the present section. We have seen in Section 2.3 that a
natural candidate for a descent direction is

(3.11) θ = −φ n,

where the scalar function φ : Γ→ R is the L2(Γ)-shape gradient of F (Ω), which is identified from the shape
derivative of this functional via (2.13).
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Unfortunately, this choice is generally ill-suited for at least two reasons:

(i) Strictly speaking, (3.11) only makes sense on the boundary Γ of the actual shape Ω, while the numerical
setting requires the velocity field θ to be defined on Ω as a whole, see (3.10).

(ii) The L2(Γ) shape gradient φ of F (Ω) may be very irregular, especially in the areas surrounding Γout

because of the change in boundary conditions occurring there. This may cause numerical artefacts
when it comes to the mesh procedure (3.10); see for instance [50] §6.2.4. It is therefore often desirable
to smooth the velocity field θ on Γ before performing (3.10).

The popular extension-regularization procedure provides alternative ways to calculate a descent direction
θ for F (Ω) from the knowledge of the shape derivative F ′(Ω)(θ) while overcoming both difficulties; see
e.g. [16, 23, 26]. The basic idea consists in identifying a shape gradient for F (Ω) from its shape derivative
F ′(Ω)(θ) (see (2.13)) by means of a different inner product (·, ·)V than (·, ·)L2(Γ), acting on a (Hilbert) space
V of more regular vector fields, defined on Ω as a whole. More precisely, one searches for θ ∈ V such that
for all test function ψ ∈ V ,

(3.12) (θ,ψ)V = J ′(Ω)(ψ) =

∫
Γ

φψ · n ds.

Doing so ensures that:

J ′(Ω)(−θ) = −(θ,θ)V < 0,

which together with (2.14) guarantees that θ is also a descent direction for F (Ω).
To be quite precise, in our context, we rely on the space

V = {v ∈ H1(Ω)d,v|Γin∪Γout
= 0, ∇Γv ∈ L2(Γ)d},

where ∇Γf := ∇f − (∇f · n)n is the tangential gradient of a (smooth) function f ; V is equipped with the
inner product

(3.13) ∀θ,ψ ∈ V, (θ,ψ)V = γ

∫
Ω

Ae(θ) : e(ψ) dx+ (1− γ)

∫
Γ

∇Γθ · ∇Γψ ds.

This definition features two contributions, balanced by the parameter γ ∈ [0, 1]:

• The first term in (3.13) is inspired by the linearized elasticity equations. Here, A is the Hooke’s law,
acting on symmetric matrices e with size d× d,

Ae = 2µe+ λtr(e),

where λ and µ are the Lamé coefficients of the fictitious elastic material. This choice - which
is widespread in meshing [9, 25] to help in keeping a mesh with fine quality - is motivated by the
intuition that elastic displacements tend to induce little compression (i.e. local change in the volume).

• The second term in (3.13) corresponds to the Laplace-Beltrami operator on Γ; its role is to enforce
the smoothness of the descent direction θ on Γ.

With these definitions at hand, the desired ‘regularized’ shape gradient θ is calculated by solving (3.12) with
a standard Finite Element method on a mesh of Ω.

Remark 3.2. In our implementation, the Lamé parameters λ, µ of the elastic material used for the extension-
regularization procedure are homogeneous over Ω. Notice that the above strategy could be easily improved by
considering inhomogeneous elasticity coefficients λ, µ, for instance coefficients characterized by a larger
Young’s modulus (which measures the resistance to traction and compression efforts) in regions where the
mesh of Ω has stretched elements, so to penalize the relative compression rate they undergo.

Remark 3.3. A perhaps more natural idea consists in choosing

V =
{
v ∈ H1(Ω)d, v|Γin∪Γout = 0

}
,

with associated inner product:

(θ,ψ)V = γ

∫
Ω

∇θ : ∇ψ dx+

∫
Ω

θ ·ψ dx,
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where γ > 0 is a ‘small’ parameter. In this context, (3.12) amounts to solving the regularizing, elliptic
system:

(3.14)


−γ∆θ + θ = 0 in Ω,

θ = 0 on Γin ∪ Γout,
γ ∂θ
∂n = −φn on Γ.

However easy to implement, this choice is less efficient than (3.13) insofar as it does not show the same
efficiency in preventing the emergence of stretched elements; see the example in Section 5.3 about this point.

3.6. Calculation of the curvature.

Most of the numerical methods involved in the resolution of the shape optimization problem (2.3) imply
the calculations of the normal vector n and the curvature κ of the boundary ∂Ω of a shape Ω (see for instance
Theorem 2.1). In practice, these quantities are evaluated from the discrete geometry of a mesh T of Ω, which
is not a completely straightforward task. In this section, following [31], we describe a simple, yet robust
method to achieve this goal in the case of two space dimensions: d = 2. Similar approximations hold in the
general case, which involve more tedious notations.

Let xi be a vertex of T lying on ∂Ω, and let xi−1 (resp. xi+1) be the vertex on ∂Ω located immediately
before (resp. after) xi when ∂Ω is oriented counterclockwise; see Figure 6.

⌦

•

•

•

xi

xi�1

xi+1

t(xi)

n(xi)

Figure 6. Calculation of the tangent and normal vectors to ∂Ω from the data of a triangular
mesh.

In this situation, the tangent vector t(xi) to ∂Ω at xi is calculated as:

t(xi) =
−−−−−−→xi+1xi−1

|−−−−−−→xi+1xi−1|
,

and the unit normal vector n(xi) to ∂Ω at xi, pointing outward Ω is estimated as the rotate of t(xi):

n(xi) =

(
−t2(xi)
t1(xi)

)
.

Thence, the curvature radius r(xi) at xi is approximated as:

(3.15) r(xi) =
1

4

( −−−−→xixi−1 · −−−−→xixi−1

−n(xi) · −−−−→xixi−1
+
−−−−→xixi+1 · −−−−→xixi+1

−n(xi) · −−−−→xixi+1

)
,
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and the curvature κ(xi) at xi is simply κ(xi) = 1
r(xi)

if none of the denominators featured in (3.15) equals 0

(it is set to 0 otherwise).

3.7. Algorithmic description of the implemented method.

We are now ready to provide a precise sketch of the shape optimization algorithm arising from the previous
considerations. The brief account below follows exactly the steps of the file main.edp of the (commented)
supplied code.

(1) Initialization.
• The initial shape Ω0 ∈ Oad is equipped with a triangular mesh
T 0.
• Select initial values for the coefficients `0, b0 > 0 of the augmented

Lagrangian algorithm.
(2) Main loop: for n = 0, ...

(i) Calculate the solution (un, pn) to the Navier-Stokes system (2.1)
on the mesh T n of Ωn by using the material in Section 3.2.

(ii) Calculate the solution (vn, qn) to the adjoint system (2.10) or
(2.12) on Ωn.

(iii) Calculate the L2(Γn) shape gradient φn of Ω 7→ L(Ω, `n, bn) by
using Theorem 2.2.

(iv) Infer a descent direction θn for Ω 7→ L(Ω, `n, bn) by solving (3.12)
(3.13) on the mesh T n.

(v) Find a descent step τn such that

(3.16) L((Id + τnθn)(Ωn), `n, bn) < L(Ωn, `n, bn)

(possibly up to a small tolerance)
(vi) Move the vertices of T n according to τn and θn:

(3.17) xn+1
i = xn

i + τnθn(xn
i )

• If the resulting mesh is invalid, go back to step (v), and use
a smaller value for τn,

• Else, the positions (3.17) define the vertices of the new mesh
T n+1.

(vii) If the quality of T n+1 is too low, use a local remeshing as described
in Section 3.4.

(viii) Update the augmented Lagrangian parameters according to (3.9).
(3) Ending criterion. Stop if

‖θn‖L2(Γn) < εstop

Return Ωn.

4. Practical implementation of the shape optimization algorithm

In this section, we describe the practical code used in the numerical experiments of Section 5. In addition
to the detailed comments accompanying the sources, we focus our discussion on the parts that should be
modified for the user to implement a different geometric or physical situation (i.e. to change the initial
shape, the objective function, the shape derivative, etc.).

The user is supposed to have installed the free software FreeFem++. This environment allows to solve
partial differential equations by the Finite Element method from the input of their variational formulation
via an adapted pseudo-language. We recommend using the latest release, although our programs work with
any version above 3.42. FreeFem++ is available at

http://www.freefem.org/ff++/,
16
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--config Number of the considered test-cases;
config ranges from 1 to 7

--navsto The Stokes (resp. Navier-Stokes) sys-
tem models the flow if navsto is 0 (resp.
1)

--tau Value of τ , initial step in the gradient
descent, see (3.10)

--errc Value of the stopping criterion εstop

--gamma Value of the regularization parameter
γ; see (3.13)

--beta The constraint function G(Ω) is Vol(Ω)
if beta is 1, and Per(Ω) if beta is 0.

--delta The objective J(Ω) is the dissipated en-
ergy (2.4) if delta is 1, and the least-
square discrepancy (2.5) if delta is 0.

--binit Initial value for the penalty parameter
b in (3.8)

--btarget Limiting value for b
--cv Desired constraint (volume or perime-

ter) over initial value for the constraint
G(Ω)

--optraff 0 for no remeshing, 1 for remeshing
when necessary

--raffinit Value of the raff parameter used in the
routines for mesh adaptation (see Sec-
tion 4.8)

Table 1. Main parameters passed on the command line.

and it comes along with a comprehensive documentation [37].

4.1. Organization of the repository and of the program.

Our code may be downloaded from the address:

https://github.com/flomnes/optiflow.

The main repository is organized as follows:

• The folder ./meshes contains the mesh files associated to the initial shapes of the test cases of
Section 5: mesh1.mesh, mesh2.mesh, etc.

• The FreeFem++ source code used to generate these meshes is in the file geometry.edp.
• As the name suggests, the file main.edp contains the main routines of the optimization process.
• The file macros.edp contains several useful macros; see Section 4.3.
• The file curvature.edp gathers the routines involved in the calculation of the mean curvature κ of

shapes; see Section 4.5.
• The files run case.sh and run all.sh are shell scripts containing the sample command lines

needed to launch any, or all of the proposed test cases in Section 5.

4.2. Main parameters.

The main program, written in the file main.edp, is executed by using the command line

FreeFem++ --param1 value1 ... main.edp,

where --param1, ... are the computational parameters of the considered test case; see Table 1.
17
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Seven geometric settings (associated to different meshes of the initial shape and applied boundary condi-
tions) are implemented in our code, corresponding to values of the config parameter ranging from 1 to 7.
The precise command lines used to launch these examples are supplied in the file run case.sh. The first
five configurations correspond to the numerical results of Section 5.

4.3. Main macros.

Our program relies on macros insofar as possible: it is a convenient way in FreeFem++ to ensure that the
various operations carried out resemble their mathematical counterparts. The shortcuts that are consistently
used throughout the implementation are stored in the file macros.edp; see Listing 1 for a sample.

1 /∗ St ra in t enso r ∗/
2 macro EPS(u , v ) [ dx (u) , 1 . /2∗ ( dx ( v )+dy (u) ) , 1 . /2∗ ( dx ( v )+dy (u) ) , dy ( v ) ] // EOM

3

4 /∗ Jacobian matrix ∗/
5 macro GRAD(u , v ) [ dx (u) , dy (u) , dx ( v ) , dy ( v ) ] // EOM

6

7 /∗ (u \ cdot \nabla ) V ∗/
8 macro UgradV( u1 , u2 , v1 , v2 ) [ [ u1 , u2 ] ’ ∗ [ dx ( v1 ) , dy ( v1 ) ] , [ u1 , u2 ] ’ ∗ [ dx ( v2 ) , dy ( v2 ) ] ] // EOM

Listing 1. Several macros (from macros.edp)

4.4. Definition of the geometry and of the Finite Element setting.

The meshes associated to the proposed test cases are supplied in the folder ./meshes. The mesh Th

corresponding to the considered situation (i.e. associated to the actual value of the config parameter) is
read at the beginning of the main.edp file; see Listing 4.

1 /∗ Load i n i t i a l mesh ∗/
2 s t r i n g meshname = ”meshes/mesh”+c o n f i g+” . mesh” ;

3 cout << ”Loading mesh ” << meshname << ” . . . ” ;

4 Th = readmesh(meshname) ;

5 cout << ”done . ” << endl ;

6 cout . f l u s h ;

Listing 2. Reading the initial shape (from main.edp)

The Finite Element spaces on the mesh Th are then defined as in Listing 3.

1 fespace Qh(Th, P1) ;

2 fespace Vh(Th, P2) ;

3

4 Vh ux , uy , vx , vy , wx , wy , dux , duy , uxx , uyy , c lx , c l y ;

5 Qh p , q , mx, dpx , dpy , dp , qq , phix , phiy , kappa , phi , p s i ;

Listing 3. Definition of the Finite Element spaces and functions (from main.edp)

These meshes may be generated using the code in the file geometry.edp, which can easily be modified and
adapted to describe a different physical setting.

For instance, the code in Listing 4 allows to create the mesh of the initial shape in the bend test case of
Section 5.1; see Figure 10 (top).

1 /∗ Bend with orthogona l i n l e t and o u t l e t ∗/
2 i f ( c o n f i g==1) {
3 border in ( t =0 ,1){x=param ( 0 , 1 . / 3 , t ) ;

4 y=0;

5 l a b e l =2;} ;

6 border s i g 1 ( t =0 ,1){
7 x=c i r c l e a r c x ( 1 , 2 . / 3 , pi , p i /2 , t ) ;

8 y=c i r c l e a r c y ( 0 , 2 . / 3 , pi , p i /2 , t ) ;

9 l a b e l =3;} ;

10 border out ( t =0 ,1){x=1;
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11 y=param ( 2 . / 3 , 1 , t ) ;

12 l a b e l =1;} ;

13 border s i g 2 ( t =0 ,1){
14 x=c i r c l e a r c x (1 , 1 , p i /2 , pi , t ) ;

15 y=c i r c l e a r c y (0 , 1 , p i /2 , pi , t ) ;

16 l a b e l =3;} ;

17 Th=buildmesh ( in (pp/2)+s i g 1 (pp)

18 +out (pp/2)+s i g 2 (pp) ) ;

19 Th=adaptmesh(Th, I sMet r i c =1 ,1./30) ;

20 }

Listing 4. Creation of the initial mesh in the bend example of Section 5.1 (from geometry.edp)

4.5. Practical calculation of the mean curvature.

The routines dedicated to the calculation of the mean curvature kappa of the boundary of the optimized
shape are a little involved. They are gathered in the file
curvature.edp and in principle, they do not need to be modified.

The calculation of kappa in main.edp is then carried out along the lines of Listing 5.

1 kappa=0;

2 c a l c u l c o n n e c t (Th, ordre ) ;

3 courbure (Th, ordre , kappa [ ] ) ;

4 kappa=kc∗kappa ;

Listing 5. Calculation of the mean curvature in main.edp

4.6. Resolution of the flow equations.

As outlined in Section 3.2, the Navier-Stokes equations are solved iteratively thanks to the Newton method.
To achieve this, the Stokes equation is first defined as a variational problem; see Listing 6 and Remark

3.1:

1 problem s t oke s ( [ ux , uy , p ] , [ vx , vy , q ] ) =

2 int2d (Th) (2∗mu∗ t r (EPS(ux , uy ) ) ∗EPS( vx , vy ) − p ∗ div ( vx , vy ) )

3 +int2d (Th) ( div (ux , uy ) ∗q )

4 −int2d (Th) (p∗q∗ e p s i l o n )

5 +on (3 , ux=0,uy=0)

6 +on (1 , ux=clx , uy=c ly ) ;

Listing 6. Variational problem for the Stokes system (from main.edp)

The Navier-Stokes system is solved for the velocity and pressure [ux,uy,p] by using the macro ns

reprinted in Listing 7. In a nutshell, the Stokes system is solved as an initial guess; then, if the param-
eter navsto is set to 1, a loop is performed during which the Oseen equation is solved for the increment
[dux,duy,dp], from which [ux,uy,p] is updated.

1 macro ns ( ) {
2 /∗ Only s o l v e when nece s sa ry i f ns has

3 never been executed or i f the mesh

4 has changed s i n c e the l a s t r e s o l u t i o n ∗/
5 i f ( s o l v e f l u i d ) {
6 /∗ I n i t i a l i z e Newton loop with the s o l u t i o n o f Stokes ∗/
7 s t oke s ;

8 /∗ I f we want to s o l v e Navier−Stokes ,

9 i t e r a t e s u c c e s s i v e Oseen problems ∗/
10 i f ( navsto ) {
11 i n t n ;

12 r e a l e r r =0;

13 cout << ” Navier−Stokes ” ;

14 /∗ Newton Loop ∗/
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15 f o r (n=0; n< 15 ; n++) {
16 solve Oseen ( [ dux , duy , dp ] , [ vx , vy , qq ] ) =

17 int2d (Th) (2∗nu∗ t r (EPS(dux , duy ) ) ∗EPS( vx , vy )

18 + t r (UgradV(dux , duy , ux , uy ) ) ∗ [ vx , vy ]

19 + t r (UgradV(ux , uy , dux , duy ) ) ∗ [ vx , vy ]

20 − div (dux , duy ) ∗qq − div ( vx , vy ) ∗dp

21 − e p s i l o n ∗dp∗qq )

22 +int2d (Th) (2∗nu∗ t r (EPS(ux , uy ) ) ∗EPS( vx , vy )

23 + t r (UgradV(ux , uy , ux , uy ) ) ∗ [ vx , vy ]

24 − div (ux , uy ) ∗qq − div ( vx , vy ) ∗p
25 − e p s i l o n ∗p∗qq )

26 +on (1 , 3 , dux=0,duy=0) ;

27

28 ux [ ] += dux [ ] ;

29 uy [ ] += duy [ ] ;

30 p [ ] += dp [ ] ;

31 e r r = s q r t ( int2d (Th) ( t r (GRAD(dux , duy ) ) ∗GRAD(dux , duy ) + t r ( [ dux , duy ] ) ∗ [ dux , duy ] ) / int2d (Th

) ( t r (GRAD(ux , uy ) ) ∗GRAD(ux , uy ) + t r ( [ ux , uy ] ) ∗ [ ux , uy ] ) ) ;

32 cout << ” . ” ;

33 cout . f l u s h ;

34 i f ( e r r < ar rns ) break ;

35 }
36 /∗ Newton loop has not converged ∗/
37 i f ( e r r > ar rns ) {
38 cout << ”NS Warning : non convergence : e r r = ” << e r r << ” / eps = ” << e p s i l o n << endl ;

39 }
40 }
41 cout << endl ;

42 /∗ I t i s not nece s sa ry to s o l v e ns u n t i l the mesh i s moved or adapted ∗/
43 s o l v e f l u i d = 0 ;

44 n f l s o l v e d ++;

45 }
46 }//EOF

Listing 7. Resolution of the flow equations (from main.edp)

4.7. Calculation of the objective function and of the shape derivative.

The considered objective function J(Ω) in (2.3) is the energy dissipation (2.4) if the parameter delta is
set to 1, and a least-square difference (2.5) between the fluid velocity and a target velocity if delta is 0.
These are calculated from the macro in Listing 8.

1 /∗ Object ive func t i on = weighted sum of energy d i s s i p a t i o n and l e a s t−square d i f f e r e n c e with

a

2 p r e s c r i b e d f low ∗/
3 macro J ( ) (2∗ d e l t a ∗mu∗ int2d (Th) ( t r (EPS(ux , uy ) ) ∗EPS(ux , uy ) ) + ((1.− d e l t a ) /2) ∗ int1d (Th, 2 ) ( ( ux−

uxx ) ˆ2+(uy−uyy ) ˆ2) ) //EOM

Listing 8. Macro for the objective function (from macros.edp)

Likewise, the constraint function G(Ω) is Vol(Ω) if beta is 1, and Per(Ω) if beta is 0; these are calculated
from the macro in Listing 9.

1 /∗ Constra int func t i on = weighted sum of volume and per imeter ∗/
2 macro contr (Th) ( beta ∗ int2d (Th) ( 1 . )

3 +(1.−beta ) ∗ int1d (Th) ( 1 . ) ) //EOM

Listing 9. Macro for the constraint function (from macros.edp)

Thence, the value of the augmented Lagrangian functional is calculated by means of the macro EL,
reprinted in Listing 10.
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1 /∗ Augmented Lagrangian ∗/
2 macro EL( ) ( J/J0 + l ∗( contr (Th) − c t a r g e t ) / c0 + b/2 ∗ ( ( contr (Th) − c t a r g e t ) ˆ2) /( c0 ˆ2) ) //

EOM

Listing 10. Macro for the augmented Lagrangian (from macros.edp)

At each iteration of the optimization loop (see Section 4.8 below), the adjoint states [vx,vy,q] are
calculated as the solution to (2.10) if delta is 1 or (2.12) if delta is 0. This is achieved by calling the macro
adjoint reprinted in Listing 11. Notice the presence of the navsto variable in the variational problem for
the adjoint states, corresponding to the term induced by the non linearity of the flow equation (2.1) if navsto
equals 1.

1 macro a d j o i n t ( ) {
2 solve probad jo int ( [ vx , vy , q ] , [ wx , wy , qq ] ) =

3 int2d (Th) (2∗nu∗ t r (EPS( vx , vy ) ) ∗EPS(wx , wy)

4 −q∗div (wx , wy)

5 −qq∗div ( vx , vy )

6 +navsto ∗( t r (UgradV(wx , wy , ux , uy ) ) ∗ [ vx , vy]+ t r (UgradV(ux , uy , wx , wy) ) ∗ [ vx , vy ] ) )

7 +int2d (Th) (−4∗nu∗ d e l t a ∗ t r (EPS(ux , uy ) ) ∗EPS(wx , wy) )

8 +int1d (Th, 2 ) (−(1−d e l t a ) ∗ ( ( ux−uxx ) ∗wx+(uy−uyy ) ∗wy) )

9 +on ( 1 , 3 , 5 , vx=0, vy=0) ;

10 }//EOM

Listing 11. Macro for the resolution of the adjoint system (from main.edp)

The shape derivatives of the considered objective and constraint functions J(Ω) and G(Ω), and that of the
augmented Lagrangian L(Ω, `, b) are then computed, again, thanks to a set of macros defined in the file
macros.edp; see Listing 12.

1 /∗ St ra in t enso r ∗/
2 macro EPS(u , v )

3 [ dx (u) , 1 . /2∗ ( dx ( v )+dy (u) ) ,

4 1 ./2∗ ( dx ( v )+dy (u) ) , dy ( v ) ] // EOM

5 /∗ Shape d e r i v a t i v e o f the o b j e c t i v e func t i on ∗/
6 macro IJ ( )

7 (−2∗ d e l t a ∗nu∗ t r (EPS(ux , uy ) ) ∗EPS(ux , uy )

8 +2∗nu∗ t r (EPS(ux , uy ) ) ∗EPS( vx , vy ) ) //EOM

9 /∗ Shape grad i en t o f the c o n s t r a i n t func t i on ∗/
10 macro gradC ( ) ( beta ∗1+(1.−beta ) ∗kappa ) //EOM

11 /∗ Shape−grad i en t o f the Lagrangian ∗/
12 macro gradDF ( )

13 ( IJ /J0 + l ∗gradC/c0

14 +b∗gradC ∗( contr (Th)−c t a r g e t ) /( c0 ˆ2) ) //EOM

Listing 12. Macros for shape derivatives (from macros.edp)

The shape gradient of the augmented Lagrangian on Γ is then extended to the whole computational mesh
using the regulbord macro; the result of which is stored in the variable [dpx, dpy]; see Listing 13.

1 macro regu lbord ( ) {
2 solve regb ( [ dpx , dpy ] , [ phix , phiy ] ) =

3 int2d (Th) (gamma∗ t r (SIG(dpx , dpy ) ) ∗EPS( phix , phiy ) )

4 +int1d (Th, 3 ) (gamma1∗ t r ( gradT ( dpx ) ) ∗gradT ( phix ) )

5 +int1d (Th, 3 ) (gamma1∗ t r ( gradT ( dpy ) ) ∗gradT ( phiy ) )

6 +int1d (Th, 3 ) ( gradDF∗dotN ( phix , phiy ) )

7 +int1d (Th, 4 ) ( 1 . / epspen∗dotN (dpx , dpy ) ∗dotN ( phix , phiy ) )

8 +on (1 , 2 , dpx=0)

9 +on (1 , 2 , dpy=0) ;

10 }//EOM

Listing 13. Macro for the extension-regularization procedure of the shape gradient (from
main.edp)
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4.8. Main optimization loop : gradient descent with line search.

Last but not least, we now discuss our implementation of the algorithm of Section 3.7 for the resolution
of the shape optimization problem (2.3), properly speaking.

This is achieved by means of two nested loops; see Listings 14 and 15. The main, outermost loop, reprinted
in Listing 14, drives the update of the shape. At the beginning of each iteration, the actual shape is stored
in the mesh Th2; then the direct and adjoint problems are solved thanks to the macros ns and adjoint

respectively (see Line 4); a descent direction [dpx,dpy] from the actual shape Th2 is inferred by using the
macro regulbord (Line 8). Meanwhile, the performance L0 - i.e. the value of the augmented Lagrangian -
of Th2 is calculated (Line 9).

Then, starting from the input parameter tau an appropriate value of the time step tau1 is found by the
inner loop of Listing 15, which is described below.

This inner loop results in a mesh Th of the new shape; the coefficients `n and bn of the augmented
Lagrangian are eventually updated (Line 29). This main loop stops if either the maximum number of
iterations jjmax is reached or if the ending criterion

sv ≤ errc

is fulfilled; see Line 23 in Listing 14 and Section 3.7.

1 /∗ The algor i thm stops when j j r eaches jjmax or the ending c r i t e r i o n i s low enough ∗/
2 f o r ( j j = 0 ; ( sv > e r r c ) && ( j j < jjmax ) ; j j ++) {
3 Th2 = Th; // Keep a copy o f the mesh

4 ns ; // Solve the NS equat ion i f needed

5 a d j o i n t ; // Solve the a d j o i n t system

6 /∗ Solve the v e l o c i t y ex tens i on / r e g u l a r i z a t i o n problem to get the descent d i r e c t i o n ;

7 the descent d i r e c t i o n i s [ dpx , dpy ] ∗/
8 regu lbord ;

9 L0 = EL; // Value o f the augmented Lagrangian

10 tau1 = tau ;

11

12 /∗ Inner loop f o r l i n e search ∗/
13 ****************************************

14 ** Linear seach loop: see Listing 15 below **

15 ****************************************

16

17 /∗ Maximum number o f i t e r a t i o n s has been reached , and no dec r ea se in the value o f the

augmented Lagrangian i s observed ∗/
18 i f ( kk == kkmax) {
19 cout << ”Warning : L {n+1}>L {n} (L0 = ” << L0 << ” , l = ” << l << ” ) ” << endl ;

20 }
21

22 /∗ Lˆ2 norm o f the shape gradient , used as the ending c r i t e r i o n ∗/
23 sv = s q r t ( int1d (Th, 3 ) ( dpxˆ2+dpy ˆ2) ) ;

24

25 /∗ Print output ∗/
26 r << J << ” ” << EL << ” ” << contr (Th) << ” ” << l << ” ” << sv << ” ” << b << ” ” <<

minarea << endl ;

27

28 /∗ Update o f the va lue s o f the c o e f f i c i e n t s o f the augmented Lagrangian ∗/
29 l = l + b ∗ ( contr (Th) − c t a r g e t ) ;

30

31 /∗ I n c r e a s e b i f i t i s l e s s than btarge t ∗/
32 i f (b < btarge t ) {
33 b ∗= alpha ;

34 }
35 cout << ” j j = ” << j j << endl ;
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36 }

Listing 14. Main loop of the optimization algorithm (from main.edp)

Let us now describe the inner loop, which is nothing but a basic line search procedure for finding a
suitable value of the time step tau1; see Listing 15. This procedure is initialized while tau1=tau, tau being
a user-defined value. At each iteration of the inner loop, the current shape Th2 is deformed along the descent
direction [dpx,dpy] for a time tau1; this yields a new, ‘attempt’ mesh Th (Lines 6-30).

This shape Th is then evaluated: the flow equations are solved on Th (see Line 37), and the value L1 of
the augmented Lagrangian associated to Th is calculated (Line 40). If L1 is smaller than the value L0 of
the augmented Lagrangian of the current shape Th2, the loop ends, and the ‘attempt’ mesh Th is accepted
as the updated shape. Otherwise, the procedure is repeated from the beginning once the value of tau1 has
been divided by 2.

Note that, if after kkmax=10 iterations of the line search procedure, none of the produced ‘attempt’ meshes
Th has produced a value L1 of the augmented Lagrangian smaller than L0, the last iteration kk = kkmax is
accepted nevertheless; the step used in this case being τ/210, Th is then very close to Th2.

1 f o r ( kk = 0 ; kk < kkmax ; kk++) {
2 cout << ”movemesh tau = ”<< tau1 << endl ;

3 minarea = checkmovemesh(Th2 , [ x + tau1∗dpx , y + tau1∗dpy ] ) ;

4

5 /∗ Try to adapt the mesh in case one o f the t r i a n g l e s becomes degenerate ∗/
6 i f ( o p t r a f f ) {
7 /∗ No adaptat ion i f the minimal area i s l a r g e r than parameter minarea0 or i f we a l r eady

t r i e d remeshing 3 t imes in t h i s loop ∗/
8 i f ( minarea > minarea0 | | adaptcount>=3) {
9 Th = movemesh(Th2 , [ x + tau1∗dpx , y + tau1∗dpy ] ) ;

10 s o l v e f l u i d = 1 ;

11 }
12 e l s e {
13 cout << ”∗∗∗ ADAPTMESH ∗∗∗ minarea = ” << minarea << ” minarea0 = ” << minarea0 <<

endl ;

14 Th = adaptmesh(Th, hmax=r a f f , hmin=r a f f / s q r t (2 ) , r a t i o =1.5) ;

15 cout << ” new minarea = ” << minarea << endl ;

16 minarea = checkmovemesh(Th2 , [ x + tau1∗dpx , y + tau1∗dpy ] ) ;

17 s o l v e f l u i d = 1 ;

18 kappa = 0 ;

19 c a l c u l c o n n e c t (Th, ordre ) ;

20 adaptcount++;

21 }
22

23 i f ( adaptcount>=3) {
24 cout << ”Too many conse cu t i v e mesh adaptat ions . Giving up mesh adaptat ion ” << endl ;

25 }
26 }
27 e l s e {
28 Th = movemesh(Th2 , [ x + tau1∗dpx , y + tau1∗dpy ] ) ;

29 s o l v e f l u i d = 1 ;

30 }
31

32 /∗ Calcu la te the mean curvature o f the new shape ∗/
33 courbure (Th, ordre , kappa [ ] ) ;

34 kappa = kc ∗ kappa ;

35

36 /∗ Solve the Navier−Stokes and a d j o i n t equat ions on the new shape ∗/
37 ns ;

38

39 /∗ New value o f the o b j e c t i v e func t i on ∗/
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Case number Duration
1 3m24s
2 10m8s
3 4m28s
4 12m7s
5 6m43s

Table 2. CPU time for the numerical examples of Section 5.

VT

V0

PT

P0
γ τ0 εstop `0 b0 btarget

Case 1 1 10−2 10−2 10−2 0 1 101

Case 2 1 10−2 10−2 5× 10−3 0 10−1 101

Case 3 1 10−2 0 0 0
Case 4 1 1 3× 10−3 2× 10−2 15 101 102

Case 5 0.97 1 10−2 10−2 0 102 102

Table 3. Parameters used for the numerical examples of Section 5. From left to right:
desired volume over initial volume, desired perimeter over initial perimeter, regularization
parameter, initial gradient step, stopping criterion, initial Lagrange multiplier, initial value
of b, target value of b.

40 L1 = EL;

41 tau1/= 2 ;

42 cout << ”L = ” << L1 << ” / L0 = ” << L0 << ” ( v a r i a t i o n = ” << 100∗(L1−L0) /L0 << ”%)” <<

endl ;

43

44 /∗ Accept i t e r a t i o n as soon as the value o f the augmented Lagrangian i s decreased ∗/
45 i f (L1 < L0) {
46 break ;

47 }
48 }

Listing 15. Line search in the optimization algorithm (from main.edp)

One final word about remeshing is in order. If the optraff input parameter equals 1, then whenever the
mesh of the shape is deformed, the minimum area of an element in the tentative mesh Th is compared to the
parameter minarea0 (see Lines 6-30 in Listing 15). If smaller, the mesh is adapted thanks to the adaptmesh

command of FreeFem++ (Line 14 in Listing 15). The resulting mesh has edges with length comprised betwen
raff and raff/sqrt(2), where raff stems from the raffinit parameter from the command line.

Note that, if mesh adaptation occurs, the connectivity of the boundary has to be calculated anew by
calling calculconnect (viz. line 33), so that the routines described in Section 4.5 may be used to calculate
the curvature of the shape.

5. Numerical illustrations

In this section, we present five two-dimensional applications of the numerical algorithm presented in
Section 3.7. The geometric configurations associated to these examples are represented in Figure 7, and
the parameters used in the different test cases (initial parameters of the augmented Lagrangian algorithm,
target volume, etc.) are reported in Table 3. The approximate CPU time when running each example on a
workstation with an Intel Core i5-7600T @ 2.80GHz CPU is indicated in Table 2.

5.1. Minimization of the dissipated energy in a bend.
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(a) (b)

(c) (d)

Figure 7. Settings of the five test cases discussed in Section 5; (a) the bend, discussed in
Section 5.1, (b) the ramified structure of Sections 5.2 and 5.3, (c) the straight pipe with one
inlet, one outlet where a least-square criterion is considered, as studied in Section 5.4, (d)
the dissipated energy minimization example of Section 5.5.

Our first benchmark example is concerned with the optimization of the shape of a pipe with orthogonal
inlet and outlet, as depicted in Figure 7 (a); see for instance [22, 12]. In a nutshell, this test case answers
the question:

“How to build a pipe with fixed volume that spends the least amount of energy to convey a
fluid from Γin to Γout?”

The inlet flow is given by the parabolic profile

uin(x1, x2) = ((1− x2)(
2

3
− x2), 0).

Starting from the initial shape Ω0 represented in Figure 10 (top), we minimize the work of viscous forces,
i.e. J(Ω) = E(Ω), as defined by (2.4), under the volume constraint Vol(Ω) = VT , where VT = Vol(Ω0), i.e.
the target volume is that of Ω0.

The results are displayed on Figure 10, and the associated convergence histories are included in Figure 9.
The dissipated viscous energy decreases by roughly 25% during the process, and as expected, the optimized
design looks like a straight pipe. It is worth mentioning that theoretical arguments in [40] support this
observation for a very close model.

Eventually, let us mention that this test case is fairly insensitive to the computation parameters `0 and
τ , which makes it the easiest of all five to run.

5.2. Minimization of the dissipated energy in a ramified structure with volume constraint.
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Figure 8. Left upper corner of intermediate shapes Ωn obtained in the ramified structure
example of Section 5.3 at iterations (from left to right) n = 15, 60 and 130.

Our second example is a simple model for the ramified structure of a human lung. It can be considered
as an extension of the study in [24].

The situation is that of Figure 7 (b), where incoming parabolic profiles are imposed on each component of
Γin. More precisely, Γin is the reunion of four disjoint line segments; for any of these segments, let us denote
by (xA1 , x

A
2 ) and (xB1 , x

B
2 ) the two ending points, which are assumed to be distributed counterclockwise on

Γin. The imposed inlet flow on the considered segment is then defined by:

uin(x1, x2) = s(1− s)
(
−(xB2 − xA2 )
xB1 − xA1

)
where s =

xA
1 −x1

xA
1 −xB

1
=

xA
2 −x2

xA
2 −xB

2
so that in particular uin is oriented toward inside Ω: uin · n ≤ 0 on Γin.

In this context, we again aim at optimizing the energy dissipated owing to viscous effects, i.e. J(Ω) =
E(Ω), under the volume constraint Vol(Ω) = VT , where VT = Vol(Ω0).

The results are presented in Figure 11, and the associated convergence histories are those in Figure 12.
Interestingly enough, ramifications appear in the course of the iterations and the optimized shape is much
smoother than the initial one. These results are also in accordance with those obtained in [24].

This example shows large mesh deformations, which justifies the importance of using a good extension-
regularization procedure, such as that introduced in section 2.3.

5.3. Minimization of the dissipated energy in a ramified structure with perimeter constraint.

This third example arises in the exact same physical context as that of Section 5.2 (again, see Figure
12. The only difference with the latter is that we now impose a constraint on the perimeter of shapes:
Per(Ω) = PT , with PT = 0.97 Per(Ω0). The convergence histories of the computation are reported on
Figure 13, and the shape at several intermediate stages is represented on Figure 14.

Let us emphasize the role of the regularizing parameter γ featured in the definition of the extension-
regularization inner product (3.13). In this example (as in the previous ones), the L2(Γ) shape gradient of
E(Ω) is not smooth in the vicinity of the transitions between parts of the boundary bearing different types
of boundary conditions (that is, the transitions between Γin, Γout or Γ). Therefore, if no regularization of
this gradient is applied, mesh intersections appear within a few iterations in this region.This phenomenon is
illustrated in Figure 8: all parameters retain the same values except for γ, which is changed to 1. The mesh
irregularities are caused by an irregular shape gradient, and are not observed for 0 < γ < 1.

5.4. Minimization of the discrepancy with a reference velocity profile.

Our third example considers pipes Ω in the situation depicted on Figure 7 (c), where the parabolic profile

uin(x1, x2) = (x2(1− x2), 0)
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Figure 9. Convergence histories of (from left to right, top to bottom) J(Ω), Vol(Ω),
L(Ω, `, b) and `n in the bend optimization example of Section 5.1

is imposed on the inlet Γin. Our aim is to optimize the shape of Ω with respect to the least-square criterion
J(Ω) = D(Ω) given by:

(5.1) D(Ω) =

∫
Γout

|u− uref|2 ds,

where the reference profile uref is slightly off-centered (see Figure 16 (top)), namely:

(5.2) uref(x1, x2) = (2x2
2(1− x2), 0).

This example is motivated by the following consideration: the initial shape Ω0 is a straight cylinder, and it
is well-known that the laminar flow satisfying the Navier-Stokes equations (2.1) is of Poiseuille type ([52],
chapter 6):

(5.3) u(x1, x2) = (x2(1− x2), 0).
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Figure 10. Intermediate shapes Ωn obtained in the bend optimization example of Section
5.1 at iterations (from left to right, top to bottom) n = 0, 5, 100 and 500.

Hence, imposing that the velocity u in the pipe resemble (5.2) on Γout should shift the maximum of the
horizontal component u1 towards the top of the pipe.

No constraint is applied, so that the algorithm of Section 3.7 reduces to a simple gradient method in this
case, i.e. b = `0 = 0.

Several intermediate shapes are presented on Figure 17, and the corresponding one-dimensional profiles
of u1 and u2 on Γout are reported on Figure 16. The least-square criterion D(Ω) decreases by roughly 63%
in the course of the optimization. Note that, as the final value of D(Ω) is not exactly 0, the velocity u does
not match exactly the reference profile uref on Γout.

To achieve this decrease of the least-square criterion, the shape Ω develops a ‘bump’ on its bottom side, so
that the flow is deviated towards the top. After iteration 430, a cusp appears at the bottom-right corner of
Ω, which interrupts the algorithm. However, at this stage, J(Ωn) is only a few percents lower than J(Ω430),
so we decided to stop the optimization process at iteration 430.

5.5. Energy dissipation around an obstacle.

In our last example, depicted on Figure 7 (d), a solid obstacle is immersed in a cavity filled with a fluid,
and the shapes Ω stand for the fluid domain, which is the complement of the obstacle in the cavity. Our aim
is to minimize the dissipated energy in the cavity with respect to the shape of the obstacle, i.e. J(Ω) = E(Ω)
with the volume constraint Vol(Ω) = VT , VT = Vol(Ω0).

A very similar version of this problem is considered in [59] and [13] in the context of Stokes flows. The
same problem was later investigated using more modern topology optimization techniques in [12].

In the model situation discussed here, we impose a horizontal flow on Γin, namely

u = uin(x1, x2) = (1, 0) on Γin,
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Figure 11. From left to right, top to bottom, successive shapes Ωn at iterations n =
0, 5, 240, 1000 in the dissipated energy minimization example in a ramified structure with
volume constraint of Section 5.2.

and no-slip boundary conditions are prescribed on the boundary of the obstacle. The convergence histories
are presented on Figure 18. The resulting shape (see Figure 19, bottom) is roughly similar to those obtained
in references [13, 12], having the visual aspect of a sharp rugby ball.

Finally, let us mention that, from the numerical point of view, this test-case is the hardest to run, since
`0 and τ have to be chosen carefully in order to avoid the collapse of the obstacle, which would result in an
invalid mesh. From a practical point of view, this choice relies on a few trials on very coarse meshes.

6. Conclusion and perspectives

In this article, we have presented a numerical framework for shape optimization in the context of fluid
mechanics, consisting of well-established techniques which we have strived to present in an elementary and
pedagogical way. The resulting strategy has been successfully applied to several benchmark test cases in
the literature; admittedly, the techniques involved suffer from limitations, and there is a lot of room for
improvements, notably:

• As we have explained in Section 3.4, the deformation of the computational mesh according to the
shape gradient throughout the iterations of the optimization process is a delicate operation. Even
though the heuristics described in Section 3.5 allow to overcome this difficulty in many cases, it may
still happen that at some point the computational mesh becomes invalid; this is especially likely to
happen when the evolving shape changes topology (for instance, two holes merge). This stake is a
burning issue in the literature, and it calls for other means to represent shapes numerically than by a
computational mesh, e.g. via the level set method [58, 19], or the SIMP method [46]. To keep a valid
mesh, the gradient step must also be limited to small enough values, which can make convergence
slow.

• The augmented Lagrangian algorithm described in Section 3.3 is well-tailored to impose one or two
equality constraints on shapes. However, many natural constraints are inequality constraints, and it
may be desirable to impose several of them. In such a case, it would be necessary to rely on more
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Figure 12. Convergence histories of (from left to right, top to bottom) J(Ω), Vol(Ω),
L(Ω, `, b) and `n in the dissipated energy minimization example in a ramified structure of
Section 5.2.

elaborated constrained optimization algorithms, such a Sequential Linear Programming (SLP); see
for instance [54] about this point.

The discussed numerical examples have been implemented in the FreeFem++ environment; the source code
and a short manual are available online at

https://github.com/flomnes/optiflow

and it can be handled easily. We hope that it proves useful to students, researchers and industrials, as a basis
for further developments and applications, such as the study of different geometric configurations, involving
for instance other optimization criteria and constraints.
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Figure 13. Convergence histories of (from left to right, top to bottom) J(Ω), Per(Ω),
L(Ω, `, b) and `n in dissipated energy minimization in a ramified structure example of Section
5.3

Appendix A. Sketch of the proof of Theorem 2.2

The differentiability of the solution (u, p) to the Navier-Stokes system (2.1) with respect to the domain
is a technical, albeit quite classical matter, and we admit the result, referring for instance to [38] for the
rigorous definition of this notion, and to [40] or [24] for this precise calculation. The derivative (u′, p′) of
(u, p) with respect to the domain, in the direction θ ∈ Θad, is solution to the problem:

(A.1)


−ν∆u′ + (∇u)u′ + (∇u′)u +∇p′ = 0 in Ω,

div(u′) = 0 in Ω,
σ(u′, p′)n = 0 on Γout,

u′ = 0 on Γin,
u′ = −

(
∂u
∂n

)
(θ.n) on Γ.
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Figure 14. From left to right, top to bottom, successive shapes Ωn at iterations n =
0, 100, 250, 500 in the energy dissipation example in a ramified structure with perimeter
constraint of Section 5.3.
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Figure 15. Convergence history of J(Ω) in the least-square criterion minimization example
of Section 5.4.

Also, we only present the calculation of the shape derivative of the functional D(Ω) given by (2.5), the
calculation being on any point easier in the case of E(Ω); see [24] if need be.

Using the chain rule from the definition (2.5) of D(Ω) yields:

(A.2) D′(Ω)(θ) =

∫
Γout

u′ · (u− uref) ds.
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Figure 16. One-dimensional profiles of (left) u1 and (right) u2 on Γout at several stages
in the example of Section 5.4.

Figure 17. From left to right, top to bottom, successive shapes Ωn at iterations n =
0, 10, 48, 430 in the least-square criterion minimization example of Section 5.4.

The main idea of the proof consists in using the adjoint state (vd, qd), solution to (2.12): performing several
integrations by parts allows to eliminate the unknown derivatives (u′, p′) from the expression (A.2). More
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Figure 18. Convergence histories of (from left to right, top to bottom) J(Ω), Vol(Ω),
L(Ω, `, b) and `n in the dissipated energy minimization example of Section 5.5

precisely, multiplying the first equation in (A.1) by vd and integrating by parts yields

0 =

∫
Ω

(−ν∆u′ + (∇u)u′ + (∇u′)u +∇p′) · vd dx

=

∫
Ω

(2ν e(u′) : e(vd)− div(vd)p′ + (∇u)u′ · vd

+ (∇u′)u · vd) dx−
∫
∂Ω

σ(u′, p′)n · vd ds

=

∫
Ω

(2ν e(u′) : e(vd) + (∇u)u′ · vd + (∇u′)u · vd) dx

(A.3)
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Figure 19. From left to right, top to bottom, successive shapes Ωn at iterations n =
5, 100, 650 in the dissipated energy minimization example of Section 5.5.

where the boundary integral has vanished thanks to the boundary conditions satisfies by (u′, p′) and (vd, qd).
Likewise, multiplying the first equation in (2.12) by u′ and integrating by parts, we obtain:

0 =

∫
Ω

(
−ν∆vd + (∇u)Tv − (∇vd)u +∇qd

)
· u′ dx

=

∫
Ω

(2ν e(u′) : e(vd) + (∇u)u′ · vd − (∇vd)u · u′) dx

−
∫
∂Ω

σ(vd, qd)n · u′ ds.

(A.4)

Combining equations (A.3) and (A.4) leads to:

(A.5) −
∫

Ω

((∇u′)u · vd + (∇vd)u · u′) dx =

∫
∂Ω

σ(vd, qd)n ds.

Now using the identity ∫
Ω

(∇vd) · u · u′ dx =

∫
∂Ω

(vd · u′)(u · n) ds

−
∫

Ω

(∇u′)u · vd dx,

(A.6)

which again follows from integration by parts, Equation (A.5) rewrites:

(A.7)

∫
∂Ω

(σ(vd, qd)n · u′ + (u′ · vd)(u · n)) ds = 0.
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Eventually, taking into account the boundary conditions in the systems (2.1), (2.10) and (A.1) yields:

D′(Ω)(θ) =

∫
Γout

(u− uref) · u′ ds

=

∫
Γout

(σ(vd, qd)n + (u · n)vd) · u′ ds

= −
∫

Γ

(σ(vd, qd)n + (u · n)vd) · u′ ds

=

∫
Γ

(σ(vd, qd)n + (u · n)vd) · ∂u

∂n
θ · nds.

(A.8)

We now use the boundary conditions u = 0 and vd = 0 on Γ to simplify this last expression. For any
tangential vector field τ : Γ→ Rd to Γ, they imply that ∂u

∂τ = 0, and so, using that div(u) = 0,

(A.9)
∂u

∂n
· n = 0

the same relation holds for vd. Hence (A.8) rewrites:

D′(Ω)(θ) =

∫
Γ

2ν e(vd)n · ∂u

∂n
θ · n ds.

After a few algebraic manipulations based again on (A.9), we eventually obtain:

(A.10) D′(Ω)(θ) =

∫
Γ

2ν e(u) : e(vd)(θ · n) ds,

which is the desired result, and terminates the proof of Theorem 2.2.
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