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Abstract

In a framework close to the one developed by Holmstrém and Milgrom [44], we study
the optimal contracting scheme between a Principal and several Agents. Each hired Agent
is in charge of one project, and can make efforts towards managing his own project, as well
as impact (positively or negatively) the projects of the other Agents. Considering economic
agents in competition with relative performance concerns, we derive the optimal contracts
in both first best and moral hazard settings. The enhanced resolution methodology relies
heavily on the connection between Nash equilibria and multidimensional quadratic BSDEs.
The optimal contracts are linear and each agent is paid a fixed proportion of the terminal
value of all the projects of the firm. Besides, each Agent receives his reservation utility,
and those with high competitive appetence are assigned less volatile projects, and shall even
receive help from the other Agents. From the principal point of view, it is in the firm interest
in our model to strongly diversify the competitive appetence of the Agents.

Key words: Principal multi-agents problems, relative performance, Moral hazard, competition,
Nash equilibrium, Multidimensional quadratic BSDEs.
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1 Introduction

By and large, it has now become common knowledge among the economists, that almost ev-
erything in economics was to a certain degree a matter of incentives: incentives to work hard,
to produce, to study, to invest, to consume reasonably... Starting from the 70s, the theory
of contracts evolved from this acknowledgment and the fact that such situations could not be
reproduced using the general equilibrium theory. In the corresponding typical situation, a Prin-
cipal (who takes the initiative of the contract) is (potentially) imperfectly informed about the
actions of an Agent (who accepts or rejects the contract). The goal is to design a contract
that maximizes the utility of the Principal while that of the Agent is held to a given level. Of
course, the form of the optimal contracts typically depends on whether these actions are observ-
able/contractible or not, and on whether there are characteristics of the Agent that are unknown

*Université Paris-Est Marne-la-Vallée & Projet MathRisk INRIA, romuald.elie@univ-mlv.fr. Research par-
tially supported by the ANR grant LIQUIRISK and the Chair Finance and Sustainable Development.
fCEREMADE, Université Paris Dauphine, possamai@ceremade.dauphine.fr.


http://arxiv.org/abs/1605.08099v1

to the Principal. These problems are fundamentally linked to designing optimal incentives, and
are therefore present in a very large number of situations (see Bolton and Dewatripont [4] or
Laffont and Martimort [56] for many examples).

The easiest problem corresponds to the case were the Principal is actually perfectly informed
about the actions of the Agent, and just has to find a way to optimally share the risks associated
to the project he has hired the Agent for, between the two of them: this is the so-called risk-
sharing problem or first-best. Early studies of the risk-sharing problem can be found, among
others, in Borch [5], Wilson [85] or Ross [73]. Since then, a large literature has emerged, solving
very general risk-sharing problems, for instance in a framework with several Agents and recursive
utilities (see Duffie et al. [23]), or for studying optimal compensation of portfolio managers (see
Ou-Yang [67] or Cadenillas et al. [§]).

A more complicated situation arises in the so-called moral hazard case, or second-best, where the
Principal cannot observe (or contract upon) the actions chosen by the Agent. For a long time,
these problems were only considered in discrete-time or static settings@, which are in general
quite hard to solve, and one had to wait for the seminal paper by Holmstréom and Milgrom [44]
to witness the treatment of specific moral hazard problems in a continuous time framework.
Their work was generalized by Schéttler and Sung [77, [78], Sung [80, 8], Miiller [62, 63], and
Hellwig and Schmidt [41], using a dynamic programming and martingales approach, which is
classical in stochastic control theory (see also the survey paper by Sung [82] for more references).
This approach has then been extended to a very general framework in recent works by Cvitanic,
Possamal and Touzi |10, 11]@. Yet another recent seminal paper is the one by Sannikov [75], who
finds a tractable model with a random time of retiring the Agent and with continuous payments,
rather than a lump-sum payment at the terminal time. Since then, a growing literature extending
the above models has emerged, see the illuminating survey paper [76] for a quite comprehensive
list of references.

Another possible extension of the moral hazard problem lies in considering that the Principal
no longer hires just one Agent, but several of them, to manage one or several projects on
his behalf, while being able to interact with each other. This is the so-called multi-Agent
problem. Early works in that direction, again in one-period frameworks, include Holmstrém
[43], Mookherjee [61], Green and Stokey [37|, Harris et al. [40], Nalebuff and Stiglitz [64] or
Demski and Sappington [20]. As far as we know, the first extension to continuous time is due
to Koo et al. [52], who considered roughly the same model as Holmstrom [43], by using the
martingale approach described above. Of course, as soon as one starts to consider contracting
situation involving several agents, the question of these agents comparing themselves to each
other becomes quite relevant. Hence, contemporary to the latter studies, several researchers
tried to understand the impact of the so-called inequity aversion, as formulated by Fehr and
Schmidt [31], on agency costs. The idea is that agents working in a firm dislike inequity, in the
sense that an agent suffers a utility loss if another agent conducting a similar task receives a

1For very early moral hazard models, introducing the so-called first-order approach and then later its rigorous
justification, see Zeckhauser [87], Spence and Zeckhauser [79], or Mirrlees [58] 59, [60], as well as the seminal
papers by Grossman and Hart [38], Jewitt, [48], Holmstrém [42] or Rogerson [72].

2 Another, and in some cases more general, approach is to use the so-called stochastic maximum principle and
FBSDEs to characterize the optimal compensation. This is the strategy used by Williams [84] and Cvitanié,
Wan and Zhang [12] 13], and more recently, by Djehiche and Hegelsson [21] 22]. We also refer the reader to the
excellent monograph of Cvitani¢ and Zhang [14] for a systematic presentation of this approach.



higher wage. The first papers which examined moral hazard problems in view of inequity aversion
are Englmaier and Wambach [28] 29], where a single risk-averse Agent compares himself to the
Principal, as well as and Fehr et al. [32]. Later studies involving a Principal and several Agents
include Itoh [46], Rey-Biel [71], Bartling and von Siemens [2, [3], or Grund and Sliwka [39],
which analyze the consequences of inequity aversion for team incentives. Demougin and Fluet
[177, (18], 19] as well as Neilson and Stowe [65], [66] or more recently Kragl [53], show that a trade-off
between incentive effect and inequity costs also arises with individual performance pay. Another
related paper is Dur and Glazer [24], where the authors study optimal contracts when workers
envy their boss. A continuous time extension of the problem has also been studied by Goukasian
and Wan [36], still in a context where Agents exhibit envy and jealousy towards their co-workers.
Almost all these works show that envious behavior is destructive for organizations.

Our paper still follows the strand of literature described above, but slightly departs from it in the
sense that we aim at studying the impact on optimal incentives and contracts of competitiveness
among Agents in a firm. More precisely, we place ourselves in the continuous-time model of
Holmstrom and Milgrom [44], but we assume that the utility derived by the Agents is increasing
in their wages, but also on their performance, compared to other Agents in the firm. As far as
we know, such a setting has not been considered yet in the contracting theory literature, though
our take on the problem is inspired by Espinosa and Touzi [30], which studied a classical problem
of portfolio optimization in financial markets, where the utility of the investors depended also
on how well they performed compared to other related investors in the market. In our model,
one Principal hires many Agents to manage several, possibly correlated projects, on his behalf.
Furthermore, given the intrinsic notion of competition, we assume that the Agents can decide
to work for their own project, but also that they can try to either help or decrease the value
of the projects managed by the other agents. Besides, all Agents have a Nash equilibrium type
behavior, that is to say that they all compute their best reaction functions given a strategy
chosen by the other Agents, and then agree on an equilibrium. We also assume that we are in
a moral hazard setting, and that the Principal can only observe the outcomes of each project
managed (event though we also solve the first-best problem in Section [ to have a convenient
benchmark setting).

From the mathematical point of view, we are therefore solving a Stackelberg game between the
Principal and the Agents, the latter also playing a non-zero-sum game between each other. Since
we work in continuous-time, we make a very important use of the theory of backward stochastic
differential equations (BSDEs for short, see [26] for more details about the theory), which is
the probabilistic and non-Markovian counterpart of the Hamilton-Jacobi Bellman semi-linear
partial differential equation which characterizes the value function of the Agent, for a given
Markovian contract. Thanks to this theory, we establish that existence of a Nash equilibrium for
the Agents, is basically equivalent to finding a solution to a multidimensional BSDE whose non-
linearity exhibits quadratic growth in the so-called control variable. The wellposedness theory
for such equations is still not well understood at all (see [83, [35], B4L 9, [49] 54], 55, [45], 47, [57] for
more details, partial results and counterexamples), but we actually circumvent this problem by
imposing wellposedness as a requirement for admissibility of the contracts. Such a restriction
could be seen as too important, but the intuition is that if there is a contract for which there
does not exist any Nash equilibrium between the Agents, then the Principal will never propose
it, as he will never be able to check the incentive compatibility constraint, or in other words he



would never know the amount of work the Agents will consent to provide. Anyway, we show
in quite general situations that we can obtain the optimal compensation scheme explicitly, and
that it is indeed admissible in the above sense.

Furthermore, we once again recover the seminal result of [44], and prove that the optimal contract
is a linear function of all the terminal values of the projects managed by the Agents. Therefore,
to provide correct incentives in a framework where Agents compare their own performances,
the Principal has to reward them using not only their own projects, but also the ones managed
by the other Agents. More surprisingly, we also show that in a situation where one Agent is
very competitive compared to another one, it may be more profitable for the Principal to give
incentives to both Agents to work for the project of the very competitive Agent, but also to
decrease the value of the project managed by the less competitive Agent. The intuition here is
that if one Agent is very competitive, it is less costly for the Principal to make sure that he will
be the best in terms of performances, than to compensate him with a higher salary, all the more
since other Agents only care about their wages.

Given such a result, one could argue that, as envy or jealousy, competitiveness among Agents
is destructive for the firm. However, we show that, at least in our model, this is never the case.
Indeed, we prove that given a choice between several type of Agents, with different appetences for
competition, the Principal will either hire Agents with the largest difference in their appetence,
if their marginal costs of working are not too high, or with a fixed difference otherwise, but
never identical Agents. Therefore, the Principal can always get a higher benefit from a diversity
of competition profiles among the firm. Furthermore, as in [44], since all the Agents end up
receiving their reservation utility, they enjoy the same resulting happiness whether they are
competitive or not (assuming of course that their reservation utilities would stay the same),
competition in our model is also socially better. This is in stark contrast with situations where
Agents compare their salaries.

The rest of the paper is organized as follows. We describe our general model in Section Pl Then,
Section [lis devoted to solving the first-best problem in a very general setting, for which we obtain
several explicit solutions in more specific contexts. In Section [ we move on to the second-best
problem, for which we provide in a very general framework the HJB equations satisfied by the
value function of the Principal, and which we solve explicitly in a context similar to the one of
[44].

Notations: Let N* := N\ {0} and let R% be the set of real positive numbers. Throughout this
paper, for every p-dimensional vector b with p € N*, we denote by b', ... bP its coordinates, for
any 1 < i < p, by b=% € RP~! the vector obtained by suppressing the ith coordinate of b, and
forp>1

1 p
[ p— V.
p—1 ._Z .
J=1, j#i
For a, § € RP we also denote by « - the usual inner product, with associated norm ||-||, which

we simplify to |- | when p is equal to 1. We also let 1, be the vector of size p whose coordinates
are all equal to 1. For any (I,¢) € N* x N*, M; .(R) will denote the space of | x ¢ matrices
with real entries. Elements of the matrix M € M, . will be denoted by (Mivj)lgigh 1<j<e, and
the transpose of M will be denoted by M. We identify M1 with R!. When | = ¢, we let
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M(R) := My (R). For any z € M, (R), and for any 1 <i <land 1 <j < ¢, 2% € My (R)
and 7 € R! will denote respectively the ith row and the jth column of M. Moreover, for any
z € M .(R)and any 1 < j < ¢, 777 € M,y will denote the matrix z without the jth column.
For any = € RP, diag(x) € M,(R) will stand for the matrix whose diagonal is « and for which
off-diagonal terms are 0, and I, will be the identity matrix in M, (R). For any x € M, .(R) and
any y € R!, we also define, forany i =1,...,¢, y®; x € M c+1(R) as the matrix whose column
j=1,...,i—11is equal to the jth column of x, whose column j =i+ 1,...,c+ 1 is equal to
the (j — 1)th column of z, and whose ith column is y. We also abuse notations and denote for
any © € M,(R) by ||z|| the operator norm of = associated to the Euclidean norm on RP. The
trace of a matrix M € M;(R) will be denoted by Tr [M].

For any finite dimensional vector space E, with given norm |||, we also introduce the so-
called Morse-Transue space on a given probability space(Q2, F,P) (we refer the reader to the
monographs [69] [70] for more details), defined by

M?(E) := {£ := Q — E, measurable, E [p(a&)] < 400, for any a > 0}, (1.1)

where ¢ : E — R is the Young function, i.e. ¢ : z — exp(||z|z) — 1. Then, if M?(E) is
endowed with the norm ||{[[, := inf{k > 0, E[¢ ({/k)] < 1}, is a (non-reflexive) Banach space.

2 Formulation of the problem

This opening section sets up properly the problem of interest. We first define the dynamics of
the firm. Second, we model the impact of the economic choices made by the system of Agent.
We then define properly the set of admissible strategies for the Agents in such system, and we
finally indicate the objective function of each Agent, as well as the one of the Principal.

2.1 The firm dynamics

We consider a model where a Principal wishes to hire N > 1 Agents, in order to take care of N
different projects. Each Agent, if hired, will have the responsibility of a risky project. In order
to define precisely the outcome of the actions chosen by each Agent, let us start by fixing some
notations.

We fix a deterministic time horizon 7" > 0. We work on a given probability space (€, F,P)
carrying an N-dimensional Brownian motion W. Each component of W will drive the noise
associated to one project of the firm. We denote by F := (F;)o<i<r the (completed) natural
filtration of W. As is customary in the Principal/Agent literature, we will work under the
so-called weak formulation of the problem.

To define this rigorously, let us start by defining the so-called output process X of the firm,
which is RV -valued,

¢
X = / YedWs, 0<t<T, a.s., (2.1)

0
where for any t € [0,7], ¥; € My(R). Each component of the vector X corresponds to one

project of the firm and the matrix 3 characterizes their correlation. Our assumption on X is as
follows



Assumption 2.1. The map ¥ : [0,T] — Mn(R) is (Borel) measurable, bounded and such that
for any t € [0,T], ¥ is invertible.

2.2 The impact of the effort provided by the system of Agents

We will consider that each Agent will be assigned a project but can impact both his own project
as well as the projects of the other Agents. Hence, the controls of all the Agents will be given
by a matrix a € My(R), such that for any 1 < 4,5 < N, a*/ represents the action of Agent
j for the project managed by Agent ¢. In other words, each Agent can choose to make efforts
towards managing his own project, but he can also decide to impact (positively or negatively)
the projects of the other Agents.

We also introduce for any 1 <4 < N the maps b : [0, T] x RN x RYN — R, which are assumed
to satisfy the following

Assumption 2.2. For every i = 1,...,N, and every (t,z) € [0,T] x RN, the maps a —
bi(t,a,x) are Ct, and for every a € RY, the maps x — b'(t,a,x) are uniformly Lipschitz
continuous. We also assume that for some some constant C' > 0,

b'(t,a,2)| < C(A+|al|+|z]), ||Vab'(t,a,2)|| < C, for any (t,a,z) € [0,T] x RN x RV, (2.2)

For any (t,a,x) € [0,T] x My (R) x RY we also denote by b(t, a, x) the vector of R" whose ith
coordinate is b'(t,a"", x).

Notice that by Assumption 2.2] for any My (R)-valued and F-progressively measurable process
a, the following SDE

t t
7y = / b(s,as, Zs)ds +/ Y dWs,t €10, T], P— a.s., (2.3)
0 0

admits a unique strong solution denoted X°.

For any My (R)-valued F-progressively measurable processes a satisfying
T
£ </ b(s,as, Xs)- Zs_ldW8> has moments of order (1 + €) for some € > 0, (2.4)
0

we can then define a new probability measure P* on (2, F), equivalent to P, with

dPe T
= & X)X lawy ) .
P €</0 b(s,as, Xs) - X, dW>

By Girsanov’s theorem, we then know that for any a € A, the following R™-valued process

¢
Wi =W, — / Y710(s, a5, X)ds, 0<t <T, a.s.,
0
is a Brownian motion under P?, so much so that we can rewrite (2.1)), for any a € A, as
¢ t
X :/ b(s,as,Xs)ds—i—/ Y dWe 0<t<T, as.
0 0

Moreover, it is clear that P* coincides with the probability measure Pa = Po(X a(X? ))_1 obtained
from the strong solution of (2.3)).



2.3 The admissible efforts for the Agents

We introduce for any 1 < ¢ < N, the cost function of the Agent i which we denote k' :
[0,T] x RN x RY — R,. We note for any (¢,a,z) € [0,T] x My(R) x RN, by k(t,a,z) € RN
the vector whose ith coordinate is k(t,a"*,z). Our standing assumption on the vector cost
function k is the following.

Assumption 2.3. For any (t,z) € [0,T] x RN, the map a — k(t,a,z) is C', and has each of
its coordinates which are increasing and strictly convex. Moreover, we have for some constants
C>0andt>2

lim

4
lim — +o0, [lk(t,a,2)]| < C (1+ flall* + |l2l})
lal=+oo  llall

IVak(t,a. @)l < C (14 ol ")

We are now in position to define the set of admissible strategies A for the system of Agents. In
our framework of study, each Agent i is restricted to choose a control in a given subset A° of
RY. The set A of admissible controls is then defined as the set of F-adapted processes a, which
are My (R)-valued, such that for any 1 < i < N, (a™)T takes values in A, [24) holds and
fOT b(s,as, Xs)ds as well as fOT k(s,as, Xs)ds are valued in M?(RY). Recall that M?(RY) is the
Morse-Transue space associated to RY, see (IT)).

2.4 The objective function of each Agent

Now that the set of admissible strategies of the agents has been established, let us turn to the
design of their objective function. We assume that the Agents derive utility from two sources.
First, from the salary they receive from the contract, diminished by the cost induced by their
working effort. Second, the Agents derived utility from the success of their project in comparison
to the other ones. In our model, the main motivation for the interaction between the Agents
comes from this feature, which makes them compare to each other.

More precisely, we assume that the utilities of the Agents are exponential and that, for any
1 <i< N, given N contracts £ := (¢',...,6V)T and a choice of actions a € A made by all the
Agents, the utility of Agent ¢ is

T
Us(a'?,a"7% &) .= EF [u;‘ (gi +Ty(X7) — / ki(s,a;’i,Xs)dsﬂ , (2.5)
0
with
U (x) == —exp (-Ryz), z €R, I;: RY — R,
where Rf > 0 represents the risk-aversion of Agent i, and the map I'; corresponds to Agent

i comparing his performance with the performances of the other Agents. This map I'* can be
quite general and a typical example would be

Ti(z) =7 (' —27"), 2 e RY, (2.6)

where ~; is a given non-negative constant, so called competition index of Agent . This setting
corresponds to the case where each Agent compares his performance to the average of the other
Agents performances. The higher 4 is, the more competitive Agent i will be.



In general, we assume that the comparison map I satisfies

Assumption 2.4. For any 1 < i < N, the maps I'; = RN — R are (Borel) measurable and
satisfy, for some C' >0
Ti(2)] < C(1+ [«]), = € RY.

2.5 The contracting setting for the Principal

Now that the incentives of the Agents are well understood, we can turn to the design of those
of the Principal. In our setting, the Principal offers simultaneously a contract to each Agent at
time 0, and he can commit to any such contract. For any 1 < ¢ < N, a contract for Agent 4
will then be represented as a real valued random variable £, which, for now, we only assume to
be Fr-measurable, representing the amount of money that Agent ¢ will receive at time T at the
end of the contract. Observe that there are no intertemporal payments.

Given such vector of terminal payment £, the system of Agents in interaction will choose some
response actions a € A. Hence, each agent will obtain from the game at time 0 the utility value
Ul(a, &Y. In order to ensure that each Agent agrees to enter the game, the Principal will restrict
his contracts offers to those such that each agent i receives at least his reservation utility denoted
U', i.e such that

Ul(a, &) > U, 1 <i < N. (2.7)

Besides, for given contracts (£%)1<;<y and a given choice of actions a € A made by the Agents,

the Principal derives utility from the terminal values of the projects as follows
Uy (a,€) :==E" [=exp (—Rp (X7 = ) - )], (2.8)

where Rp > 0 is the risk-aversion of the Principal.

Of course, for all of this to be meaningful, we still need to impose conditions on a and £ so that
[23) and ([2.8)) are well defined. We will take care of this problem later on when defining the set
of admissible contracts.

To sum up, the Principal will choose N contracts (fi)lgig N, leading to a response effort a of the
system of Agents, such that each Agent wishes to enter the contract, i.e. (2.7)) is satisfied, and
which should be optimal according to the enhanced criterion (2.8). Depending on how much
information is available for the Principal, we now split our study into the so-called corresponding
first-best and second-best settings.

3 The first-best problem

In this section, we concentrate our attention to the so-called first-best framework, where there is
no moral hazard and the Principal can actually choose directly both the contracts (£%);<;<y as
well as the actions of the Agents. As far as we know, this problem in our framework has never

been solved in the literature.

We first rewrite the problem of the Principal in a more tractable stochastic control form. Then,
we provide in Section a representation of the optimal contract in full generality. We finally
focus more closely in Section B3] on the more tractable setting with linear comparison map I" of

the form (2.0]).



3.1 Stochastic control reformulation of the Principal problem

In this case, the set of admissible contracts C'? will be defined as
ctB .= {5, Fr-measurable with £ € Md)(RN)} .

It is then clear by construction that for any (a,&) € A x CFB| the quantities Uj(a™?, a %, &%)
and UZ (a, €) are well-defined.

Given some reservation utility levels (U%)1<;<ny (which are all negative) chosen by the Agents,
the problem of the Principal is then

N
UPFE . sup sup {Ué°<a,s> " sz-Ué(a%",wv-ﬁsf)} , (3.1)

acA ¢cCcFB i—1

where the p; > 0 are the Lagrange multiplier associated to the participation constraints.

Let us start with the maximization with respect to £. In order to do so, for any a € A, let us
consider the following map 2 : M?(R"Y) — R defined by

N _
=9(¢) := B [_e—Rp(XT—§)~1N _ Zpie‘Rfé(f“rFi(XT)‘foT ki(s,a;'l,Xs)ds)] '

—

i=1

a

Since p; > 0 for any 1 < ¢ < N, it can easily be seen that =% is continuous, strictly convex,

proper, and Géateaux differentiable, with Gateaux derivative given, for any h € M?(RY), by

DE“(§)[h] = E** |~Rph - 1ye~fr(Xr=01n

N )
+3° iR b A€+ )= kl(svaé’“XS’ds)] .
i=1

For any a € A, let introduce £*(a) by

({*(a))i = 12. log <ﬁ> (X)) + / k:l (s, a’ ds—l—g—(XT 1y — & (a) - 1y),

Rp N

together with

R RpN
&(a) 1y = = A < L Xr—T(Xp) + / k(s,as, S)ds)-lN
Ra+NRp \ Ra
— N
R 1 iR
PN (" A), (3.2)
Ra+NRp =R, °\ Rp

where T'(X7) € RY is the vector whose ith coordinate is I';(X7), and where
— N

Zi:l Ri‘

Then, for any h € M?(RY), we have DZ%(£*(a))[h] = 0, so that this £*(a) attains the minimum

of 2% and is therefore optimal.




Plugging these expressions back into the Principal problem, we obtain that the principal problem
rewrites in a stochastic control form as

RpﬁA

_ N . __fpfa _
Ra+ NRp II <piRZA> i (RA+NRp) sup B _e%(ﬁ (5,05, Xs)ds— X —T(X1))-1n
EA Rp

i1 acA

We will first consider the case of a general interaction function I' and then tackle a benchmark
case where I is linear, for which the solution is much easier to find.

3.2 General comparison map I
3.2.1 A BSDE solution for the Principal problem

Under the form above, the problem of the Principal is now a classical stochastic control problem
(under weak formulation), with controlled state process X, whose drift only is controlled. Denote
by A := Hf\; | A% Tt is then a classical result (see for instance [25, 26], or similar comparison
arguments in Section below) that we have
— N ; ; RpRy —
UPFE _ _Rat+ NRp H (PiRA> RE, (Ro+NERp) exp <—_RP7RAYO> ,
Ry Rp R4+ NRp

1=1

where (Y, Z) denotes the maximal solution of the following BSDE

T T
n:(XT+r(XT)).1N+/ F(s,XS,ZS)ds—/ Zy-SedWs, t€[0,T], P—a.s., (3.3)
t t

where the generator F' is given by

F(th?Z) ‘= sup {b(t,a,l’) TR k(ta aax) : 1N} - fiplia ”2t2H2 :

acA 2(Ra+ NRp)
We still need to justify why the BSDE (3.3) indeed admits a maximal solution. First, by
Assumptions 1] and 224] we know that the terminal condition has linear growth w.r.t. Xrp
and thus admits exponential moments of any order under P (remember that, under P, Xp is

Gaussian). Moreover, by Lemma [£.] below, we have that

sup {b(t,a,x) - z — k(t,a,x) - lN}‘ <C (1 + ||z||%> .
acA

Hence, since ¢ > 2, F' has at most quadratic growth in z. Since F(¢,z,0) = 0, the existence of
a solution is given by [6]. However, sufficient (but not necessaryﬁ) condition for the existence
of a maximal solution is that F' is bounded from above by a map which has linear growth in z
(see [1]), or that F' is concave or convex in z (see [7]). Such a condition requires the following
additional assumption

3 Another condition would be that F is actually purely quadratic in z, that is to say
F(t,,2) = f(t, ) + |v(t)z])*,

for some maps f : [0,7] x RY — R and v : [0,7] — Mn(R), in which case one can easily show, using an
exponential transformation, that the BSDE actually has a unique solution. This would be the case if for instance
b was chosen linear in a and k appropriately quadratic in a (see the next section).
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Assumption 3.1. FEither the map z — F(t,x, z) is convex or concave for any (t,x) € [0,T] X
RN, or there exists some C > 0 such that for any (t,z,z) € [0,T] x RV x RN

F(t,z,z) <C1+ [z + 2] -
Remark 3.1. Whenever the set A is compact, then Assumption[31] is automatically satisfied.

Denote, for any (t,z,2) € [0,T] x RN x RV, by a*(t,z,z) € My one of the maximizers of the
map a — b(t,a,z) - z — 1y - k(t,a,z). Notice that such a maximizer is well defined since by
Assumptions and 23] & has superlinear growth at infinity, while b has linear growth (see
([222))), so that the map considered here is coercive. By a classical measurable selection argument,
we deduce that the corresponding predictable process a} := a*(t, X;, Z;), defined dt x dP—a.e., is
the optimal effort for the Agents, chosen by the Principal, and that the corresponding contract
€*(a*) is optimal, provided they are both admissible. So as not to complicate further our
presentation, we refrain from giving general conditions under which this holds true.

Using this contract and this action, one still needs to choose the Lagrange multipliers p; such
that

Us((a*), (a*)" 7", (€7 (a"))') = U". (34)
We have thus obtained the following verification type result

Theorem 3.1. Let Assumptions 2.1, [2.3, 2.3, and [31 hold and assume furthermore that
a* € A and £*(a*) € CFB. Then, the contract £*(a*) chosen so that [B4) holds is optimal for
the Principal, with a recommended level of effort a*.

Instead of elaborating further on technical conditions ensuring the admissibility of the effort and
contract, we choose to specialize to a linear-quadratic framework with simpler dynamics, for

which the BSDE (B.3]) can be solved explicitly.
3.2.2 Resolution in a linear-quadratic setting

We now consider a simplified linear-quadratic setting, i.e. where the drift of the output process
and the cost function are respectively linear and quadratic with respect to the control a. Namely,
we work under the additional assumption:

Assumption 3.2. Forany1=1,..., N, we have A* = RY, the maps b* and k* have the form
. . . K y
b'(t,a,x) = Bly -a+ b'(t,z), k'(t,a,z) = > la||® + E'(t,2), V(t,a,z) € [0,T] x RN x RV,

for some B € R, K € (0,400), and some maps b : [0, T|xRY — R and k' : [0, T] xRN — R,
Moreover, we assume that the volatility matriz Xy does not depend on time and is a multiple of
the identity matriz, that is Xy = oly, for some o € (0,400).

Remark 3.2. Observe in particular that Assumption[31 is a direct consequence of Assumption
T2 Similarly the linear upper bound on the driver F required in Assumption[31is automatically
valid if Assumptions[2.2, [2.3, and[32 are satisfied.
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As usual, we denote by b(t,z) (resp. k(t,z)) the vector of R whose ith component is b (t, x)
(resp. ki(t,x)). Under Assumption B2 direct computations show that

- N P12
_ (1B 2 BrRa A ;
F(t,z,z) =N <T —o]* = Z +b(t, )z — k(t,x)

which corresponds to an optimal effort a*(z) € My (R) such that

B

a*(z) == —z1}, z € RV,

k

Recall that (Y, Z) is the maximal solution to the BSDE (B3] and define

N ( B RpRa

= = , P:=exp(nY:), =onPZ, t€|0,T).
Y RA+NRP> 0 p(nY:), Q nkz, [0,T]

A simple application of It6’s formula together with (B3] gives

T (7 B T
P, = X7 +T(X7)-1y +/ (M Qs — nPsk(s, X;) - 1N) ds — / Qs - dWs,
g t

t

that is (P, Q) solves a simple linear BSDE. In particular, defining a new probability measure P

by
dP T h(s, X,)
— =& A\ RS, dW,
dP </0 o ) ’
we rewrite
P, =EP [exp <771N (XT+F (Xr) — / k(s, Xy) >>‘}}] ,
so that

Yt:%log<E~[eXp<nlN <XT+FXT /ksX ))‘ED

In order to have access to the optimal effort a*, we need to reinforce Assumption 2.4
Assumption 3.3. The Borel measurable map I is Lipschitz-continuous.

Then, it is a well known result (see for instance Proposition 5.3 in [26]), that a version of Q) is
given by D, P;, where D is the Malliavin differentiation operator. Since P is given as a conditional
expectation of the composition of a smooth and a Lipschitz-continuous function, we compute
directly using the chain rule of Malliavin calculus that

T ~
Qt |: <DtXT + P (XT) . 1NDtXT — / kx(S,Xs) . 1NDtX8dS>
t

o (v (o 0 - [ s x00) )|

T _ T i
+EP[<1/ bm(s,Xs)DthdWs—i/ bm(s,Xs)b(s,Xs)Dth>
t t

o o2

xexp(nlN <XT—|—FXT / k:sX >>‘]~‘t},
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where for any ¢ € [0,7] and Lebesgue almost every z € RV, F,(aj) denotes the vector of RN
whose ith component is (I')'(z) and k,(t,2) denotes the vector of RN whose ith component is
ki(t,x). We deduce that

B ™ !/ T ~
a*(Z) = — <EP [n (DtXT +T'(Xr) - 1nD X7 —/ fea(s, Xs) - 1NDy X, ds>

kn
X exp <n1N . <XT +T'(X7) — >> ‘ E:|

+EH~D[< /b (5, X) Dy XodW,s — / (5, X)b(s, Xs) De X >

oo s 10— 1)) )
><<Eﬁ[exp<n1N'<XT+F(XT)—/tT )) D 15

Finally, if & and b do not depend on z, we can further simplify the above expression, using the

H-

fact that under ﬁ X7 is, conditionally on F;, an N-dimensional Gaussian random variable with

mean X; + ft s)ds and variance-covariance matrix o2(T — t)Ix

T
~ N
Yi=X;-1n —/ k(s)-1yds — %log (2m0*(T — 1))
t

||:vfftTl_7(s)dsH2
ddog [0 g
n RN

Similarly, we have

x—[; b(s)ds
c+ X+ (x+Xt) f k(s s — w>d
x

9

, 771N<
Qt:nalN/N <1—|—F(:17—|—Xt)-1N)e
R

so that
, nly- (x-i—Xt-i-F (z+X4¢) f K(s 4”36 2?2(};(3);5” )
U/ <1—|—F(x—|—Xt)-1N>e dx
a*(Zt) — ? RN
nln- (m—l—Xt—l-l" (z+X¢) f k w>
/ e dx
]RN

We summarize all the above in the following theorem.

Theorem 3.2. Let Assumptions[2.2, 2.3, [3.2 and[3.3 hold. Then, if the contract £*(a*) (where
the p' are chosen so that (3.4) holds) belongs to CF'B, this contract is optimal for the Principal,

13



where the optimal effort a* is given by the following process

B ™ ’ T
af = <EP |:T] <DtXT +I (XT) . 1NDtXT — / kx(S,Xs) . 1NDtX8dS>
t

kn
xemacﬂN-<X&+JXXT) /Tk@;x ))Pﬂ

+ﬁK;[@@&wﬂmu /bsX (5, X,) Dy )
oo (57 [ )]
T N 6

which is simplified, when k and b do not depend on x to

, nln- (x-i—Xt-i-F (z+X¢) f k w>
<1—|—I‘(3:+Xt)-1N>e dx
*x BU RN

=

/ nly- <x+Xt+F (w4 X0)— [T (s %)d
€
RN

It is worth noticing that our framework allow for the consideration of rather general I" functions,
allowing for example to consider Agents interested in their (smoothed approximate) ranking
within the population of Agents. Nevertheless, in order to obtain more explicit representation of
the solution, we now focus on a particular form of comparison criterium in between the Agents,
relying on a linear I" function.

3.3 Average relative benchmark and linear comparison map I’

In this section, we do not focus anymore on a linear-quadratic setting but specialize the discussion
to another solvable framework by imposing:

Assumption 3.4. We have
Di(z) = 2" — 7% b'(t,a,x) = b'(t,a), k'(t,a,z) = k'(t,a), 1 <i <N, (a,z) € RY x RY.
In this case, we have
D(X7) - ly=(v—7) Xr,

where v € RV is the vector whose ith coordinate is 7; and where 7~ is such that for any
1<i<N, (77) =7"

3.3.1 Explicit solution for the Principal problem

Denote p :=7%~ — 15 —~. The Principal problem can then be rewritten
— = 2 o _RpRy
Rat NRp (357 ) St 7y ()
Ra Rp

i=1

D T RpR T
x sup EF" | -€ <_ e pr / Ettha> eFainap Jo Pb(sa)Flnk(sa)ds
acA Rs+ NRp 0
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Let a*(t) be any (deterministic) minimizer of the map a — p - b(t,a) + 1y - k(t,a). Since W
is a Brownian motion under P?, it is clear that the stochastic exponential which appears above

is a uniformly integrable martingale. Hence, we deduce that

) \ (_RpEa \ T sol2ae Y i i l._RPiﬁA
UPFB < Ry +NRpe§ (§A+NRP) Jo IIZepll H p Ry Ry (Ra+NRp)
' - Ra i=1 Rp
X exp (LRA /T (p-b(s,a) + 1y - k(s,a})) d8>
Ra+NRp Jo T 7S ’

But this upper bound can easily be attained by choosing action a* and contract £*(a*) as in (3.2)).
Moreover, since a* is deterministic, it obviously belongs to A, and we also have &*(a*) € CI'B,
since it is linear in X which has exponential moments of any order.

Finally, let us compute the utility that Agent ¢ obtains from this contract. Recalling (2.3]), we
get

Us((a*)™, (a*)"7", (€*(a)")

N ey

. Rp H iji‘ Ry (Ra+NRp) eﬁfiﬁgplegk(s,a;)ds
Rp

RPEA
N J e RpR T RpR T
- s H <@> FalFatEp) eFAing 1Ny ’f(s,a§)ds+§Aing Jo pb(s,a%)ds

— 2
1 RpR g T 2
() Kol

We therefore need to determine the Lagrange multipliers (p;)1<i<ny so that we have

] RPEA RPﬁA -1 i
R} (Ry+NRp) RY (R4+NRp) A i .
A A _ i
H P; Pi = —R—PAH ) 1<i<N, (3.5)
1<j<N, j#i

where A > 0 is defined by

_ RPEA
A:=e¢ RA+NRp

_ _ 2
T RpR A T 1 RpRA T 2
in-Jo k(s,ag)ds—EA+NRP Jo p-b(s,a§)ds—§(§A+NRP) Jo IIZeplI“dt

Then, if we define vectors (B, R,log(p)) € RY x RN x RY with

)

= ——1 ——2AU"), R = —, 1 Li=1 '),
T TR T ) og(p)" := log(p")

then by taking logarithms on both sides of ([B.H), we obtain that (3.5) is actually equivalent to
solving the linear system

— R NR
<1NRT _fiat Nip

e ) = B.
RrTis N> og(p)
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It can then be checked directly that

J— _1 J—
— R NR RpR
<1NRT—MIN> _ . wpita

=T
— —— |RplyR +1In].
RpRy4 Rs+ NRp ( PN N>

Therefore, we finally have

N e
R
pz:—AngH - ijj Y 1<i<N
Aij:l ARAQ

We have just proved the following

Theorem 3.3. Let Assumptions[21], [2.2, and[JA hold. Then an optimal contract {pp € CFB
in the problem [B.0)), with reservation utilities (U')1<;<n € (—00,0)N, is given, fori=1,..., N,
by

S L1 NG S I (xr-%7) +/T K (s, (a*)5)ds
RpR4 / 1 .
+ b( — = 1y)ds — — log(— U’
Ri,(Ra+ NRp) (5,0 7= 1n)ds ) og(~1")
2
1 RPRA / _ 2
+oor | = Sy — v — 1) ds. 3.6
s () [ s == ffas 36)

where for any t € [0,T], the optimal action af € My(R) is any minimizer of the map a —
(¥~ —v—1n) - b(t,a) + 1y - k(t,a). Moreover, the value function of the Principal is then

N R RZR o 2 __ %

UéD’FB _ _H [(—E)_i] eﬁj\;}m I |2 —y=1n)|| "ds+Rp [ (k1n—bAn+y—7 )(S,as))ds'
i=1

3.3.2 A bidimensional linear quadratic benchmark case

We specialize here the discussion to a setting where everything can be computed explicitly, in
particular the optimal actions of the Agents. For simplicity, we choose N = 2, A1 = Ay =

L1 1,2 L1 1,2
a ’ J— a/ ) a/ ) a ’
b(t,a) = <a2’2 B a271> , for any a := <a2’1 a2’2> € Ms(R),
and for some constants (k! k12 k> k22) € (RY)*

EL1 11 k21 a2l 1,1 1,2
_|_ ) )
k(t,a) = <k22 o 22: N k”: 12} >, for any a := (Zz’l 2272> € Ms(R).

|a

as well as

In this setting, the vector p is simply given by

_ Yo—7—1
71—72—1
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Optimal effort of the agents

In our context, the strictly convex map that we need to minimize is

kl’l k2’1 k2’2 k1’2
f(CL) = T ‘a1’1‘2 + 7 |a2’1|2 + T ‘CL2’2‘2 + 7 |a1’2‘2 - (1 +7 = 72)(a171 - a272)

— (1492 —m)(a'? = a®h).

We have
of 1,1 1,1 of 91 21
8@1,1:]"”“’ — 1=y + 2, 8a271:k’a’ + 149 — 7,
af of
W:k272a2,2+1+,}/1_,y27 W:klzalg_l_’}@‘i"}’l,

so that the optimal actions of the two Agents are

1+y1—72 I+vo—m
* . kl,l k1,2
@ =\ _ 14wy v |-
T 72,2

k2

Hence, if for instance Agent 1 is much more competitive than Agent 2, so that 3 > 14 9, then
Agent 1 will work towards his project and will also work to decrease the value of the project of
Agent 2, while Agent 2 will work to decrease the value of his own project and to increase the
value of the project of Agent 1.

Optimal recruitment scheme for the principal

Let us now ask ourselves the question of the optimal type of Agents that the Principal should
hire. More precisely, given the choice between many Agents, what are the optimal parameters
(71,72) for the Principal?

From our general result, the problem for the Principal is then to maximize his value function,
which is then equivalent to minimizing the map

9(7,72) = (L+ v —¥2)%ar + (L + 72 — m)as,

where

YT Ra+2Rp KT k22 ) 2T Ry oRp 2 L2 T2l )

Then, it is clear that if a; + a3 < 0, the Principal would like to hire Agents with |y — 2| —
400, whereas if a1 + g > 0, the Principal wants to hire Agents with

a9 — (X1

71—72—m-

Notice that this situation is optimal for the Principal, but also for the hired Agents, since in
any case they receive their reservation utility. More importantly, let us emphasize that in our
model, the principal should hire agents with different competitively appetence profile. A firm
has economic gain from hiring Agents with diverse competitive profiles.
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3.3.3 Economic interpretation
The general from of the optimal contract that we have obtained is given by

; RpR4 __ i
N a*) = C; + —— Iy +~v— Xy —y (XA - X R
(€7)"(a”) RZA(RAJFNRP)(N T=) - Xr ’Y( T T)

for some constant Cj, allowing to satisfy the participation constraint.

Hence, the Principal penalizes each Agent with the amount —’y,-(X% — Y;i), S0 as to suppress
the appetence for competition of the Agents. More precisely, Agents who do better than the
average are penalized, while Agents who do worse are gratified, with the exact amount which
makes them indifferent towards the performances of the other Agents. Competitive Agents are
paid less but each other Agent has incentives to work on the project of a competitive Agent.
Moreover, each Agent is paid a positive part of each projects, the percentage depending on the
risk aversion of the Agent, and of the universal vector

RpRA

_714_—__
RA+NRP(N =)

Hence, each Agent receives, for any 1 < i < N, a fraction of the terminal value of the ith project,
which is proportional to 1 4 v; — 5~ *. This therefore means that if an Agent is particularly
competitive, compared to the others, then all the Agents will receive a large part of his project,
which gives them incentives not to work against the interest of this particular Agent. Conversely,
if Agent ig is not very competitive, then the other Agents could be penalized (if 1+, — ()% <
0) by the terminal value of his project, which gives them incentives to reduce the value of his

project as much as possible.

Observe that the objective function of a competitive Agent is such that, whenever his project
succeeds (in comparison to the others), he requires less salary for a similar utility value of the
game at time 0. Hence, we observe that a Principal should allocate competitive Agents to
projects with the highest probability of success, i.e. those with smallest volatility and those
which may benefit from the help of the other Agents. Similarly, it is worth noticing that it is in
the firm (i.e. the Principal) interest to hire Agents with diverse competition appetence profiles.

4 The second-best problem

In this section, we consider the so-called second-best problem when moral hazard exists. In such
a case, the Principal cannot observe the actions chosen by the Agents, and can only control the
salaries that he offers. The main difficulty here compared to the one-Agent case of Holmstrém
and Milgrom [44], is that, given a contract £, we have to be able to find an equilibrium resulting
of the interactions between the Agents. Since the agents are playing simultaneously, we are
looking for a Nash equilibrium.

4.1 Nash equilibria for the Agents
4.1.1 Definition and assumption

The notion of equilibrium of interest is that of a Nash equilibrium. This calls for a first definition.
For any i = 1,..., N, and for any action a™* valued in My y_1 chosen by all the Agents j # i,
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we define the set
Al(a™) = {(as)OSsST, RN -valued, such that a ®@; a™ € .A}.

Definition 4.1. Given a contract £, a Nash equilibrium for the N Agents is an action a*(§) € A
such that for any i =1,..., N, we have

sup Ugla, ()7 7(€),€7) = Ugl(a)7(€), (a*) 7€), €).
acA*((a*)'—*(§))
Since the uniqueness of a Nash equilibrium is more the exception than the rule, we also need to
assume that the community of Agents has agreed on a common rule to choose between different
equilibria. More precisely, we are given a total order on RY, which we denote by >. For, instance
we could consider the order defined by, for any (z,y) € RV x RY

N N
vy, i Y U2 < U,
i=1 i=1

for some given utility function (U4%);<;<y, which means that the community of Agents prefers
the Nash equilibria which maximize the total utility of the Agents. Moreover, we assume that
if the community of Agents is indifferent (for the order =) between several equilibriums, then it
always chooses the ones which are the most profitable for the Principal.

4.1.2 The best reaction functions

The first step towards finding potential Nash equilibria for the Agents is to be able to characterize
the so-called reaction function of the Agents. We therefore start by solving the latter problem, for
i=1,...,N, and for given contract £ and admissible actions of the other Agent a=* € My n_1.
For the time being, we remain rather vague concerning the admissibility conditions for the
contracts, since these will appear naturally later on. The following arguments can therefore be
seen as heuristic in this respect.

Let us first define the value function of the an Agent i by
_; ' ' T
Ul(a™" &) :=  sup EF® [— exp (—Rk <£’ + i (X7) —/ k?Z(S,as,Xs)dS>>:| .
acA (a=?) 0

The dynamic version of this stochastic control problem is then given, for any ¢ € [0,7] by

Ui(a=™,€) = esssup EF"*" [ e RaleH =g W anXo)ds) | ]
acAi(a=?)
Define then for any a € A*(a™?)
Ui(a,a™" €' := EPG@N% [_e_Rfﬁl(g*'Fi(XT)_ftT Ki(s,a5,X5)ds) -7:t] .

Then, efta Jo k(s.a5,Xo)ds i (g, g~ €) should be an (F,P“®i“7i)-martingale. By the martingale
representation property@, there should therefore exist an R™V- valued and F-predictable process

4To be perfectly rigorous, the representation property has to be applied for the measure P, since there is
no reason why in general P should still satisfy it. This means that one has to use Bayes formula to express
Ui (a,a™% ¢) as a conditional expectation under P and then apply the representation property. We thank Said
Hamadéne for pointing out that subtlety to us.
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Zbaa € guch that, after applying It6’s formula
Uio,7 €)= = T 4 [ R a7 €K (5,0, X,)ds
¢

T ; ~ g —i
— / e_RA fo kl(u7QU7Xu)duZ;7a7a 75 . Edeg®la , 0 é t é T’ a.s.
t

By definition of W®i¢ " we deduce that, for any ¢ € [0, 7],

Uj(a,a™, &) = — e Fal@HTir) 4 / RYyUi(a, a6 2054 - 5 dW,
t

7

T , .
— / RQUﬁ(a, a_i,fi) <b(s, as ®; a;i,Xs) . Zsi’a"fl’£ — kl(s,aS,XS)> ds, a.s.,
¢

where we have introduced the notation

o R ftki(sas Xs)ds o
: —i ¢ (& AJo B > et
Z = Uiaaie) 2 ©, dt < dP —ae.
abila, a7,

Then, if we set ' o
viaaie _  log (ZUi(a,a™,€))

t == iz

A

, t€[0,7T], a.s.,

we deduce by Ito’s formula (remember that Ut(a,a™¢, &%) is positive by definition) that for any
t€[0,7], a.s.,

. —i . T . —1 ¢
Y;Z’[La £ _ €+ Ty(X7) — / Zbaa £ Y dW,
t

T
e
t
The above equation can be identified as a linear-quadratic backward SDE with terminal condition

€ + Ty(X7) and generator f&0" : [0,7] x Q@ x RY x RN — R, defined for any (,w,z,a) €
[0, 7] x 2 x RV x RV by

2A ‘ESZ;’“’“ < H +b(s,as ®; a

s

i Xs) . Z;’,a,afi,gi . k;i(s,as,Xs)> ds.

R Rt . .
o (tw, 2, a) = _TA 1Se2)12 + b(t, a ®; a7 (W), Xy(w)) - 2 — ki (E, a, Xy (w)).

Define then, for any (t,w,z) € [0,7] x Q x RN, the map f>* " :[0,T] x @ x RN — R, by

R! ) ]
2A HEtsz + sup {b(t, a®;a; ' (w), X (w)) z—k'(t, a,Xt(w))} .
acAt(a™?)

F (b w, 2) =

Assume then that the BSDE with terminal condition &+ I';(X7) and generator fiv‘fi admits a
maximal solution (Y &' Z5e7"¢") that is to say for any t € [0, 7]

P . T.,i P SV T-fii
YO = 8 Ty(Xr) + /t fet (s 20 ) ds - /t Zy" S SdW, as., (4)

and for any (Y, Z) satisfying (@), we have yha e >Y, as.
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Assume moreover that a comparison theorem holds for the maximal solution of (£I]). Then,
since the supremum in the definition of f“% " is always attained by Assumptions and 23] we
deduce immediately that we actually have

}/;La—i’gi — esssup Y;i,aﬂ*i,fly te [O,T]7 a.s.,
a€Ai(a—?)

which implies in turn that

Uila™,¢) = —exp (~RYF) 1€ [0,7), as.,
and that the optimal action of Agent i, given a contract £ and actions a~* of the other Agents,
is given by any

ap € argmax o (1,20 a) , dbx dP - ae.
acAi(a—?)

Of course, in order for our previous argumentation to be truly meaningful, the BSDEs appearing
above have to admit a maximal solution and to satisfy a comparison theorem. In order to discuss
these questions, let us first establish the following lemma

Lemma 4.1. Let Assumptions[2.2 and[Z.3 hold. Then, we have for some constant C > 0
i,a"? —i]2 2
)l < O (1 [l |+ J120?)
and any mazimizer a* in the definition of fi’“ﬂ. satisfies
1
la*(t, ) < € (1+)120177) .

Proof. First of all, notice that for any (¢,2) € [0,T] x RY

; N
o R . o . .
N 2) = = A SR s ST (a @6, X — Kt a, X))

ac€Ai(a—?) j=1

Then, we have

where a*(t, z, X;) verifies the first-order conditions

L . Ok .
(t, (a*(t, 2z, X3) ®; a; "), Xy)2) = @(t, a*(t,z, Xy),Xt), j=1,...,N.

o

da’
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Since Vb and VE!(t,a*(t, 2, X;), X1)/ ||a*(t, 2, X;)||“ are bounded according to Assumptions
and 2.3, we deduce immediately that, for some constant C' > 0

_1
la*(t, 2 Xl < C (1+]12077) .

Finally, since ¢ > 2, we have ¢/(¢ — 1) < 2, from which the desired result follows. O

Hence, by LemmaldT] the generator of the BSDE (4.1]) has quadratic growth in z. Thus, existence
of a solution is ensured by the results of [511 6] [1] for instance, as soon as & € M?(R). Whether
a maximal solution exists, shall a priori require more assumptions. As for the comparison result,
it is less clear, but since we will only use heuristically the result of this section, we do not try to
address this question here (see nonetheless [7, [15] 3] for related results).

4.1.3 Nash equilibria and multidimensional quadratic BSDEs

The heuristic reasoning of the previous section naturally leads us to think that there should be
a close connection between Nash equilibria between the N Agents and the solutions (when they
exist) of the following multidimensional BSDE

T T
YE =€+ (Xp) +/ Fs, 28, X,)ds —/ (Z8) TS dWs, a.s., (4.2)
t t

where the map f : [0, 7] x My (R) — RY is defined, for =1,..., N, by
Filt,2,) = 6028 (5 ) for every (s,7) € [0,T] x M(R),

with the matrix a*(s,z,z) € My(R) being defined, for = 1,..., N, and for every (s,z,x) €
[0,T] x My (R) x RV, by

(a*)"(s,z,x) € argmax ij a®; (@) (s, z,x)) 7, x)2 — k' t,a,x) p,  (4.3)
acAi((a*)H

where it is implicitly assumed that a given maximizer has been chosen if there are more than
one.

The attentive reader should have realized that Equation (@3] defining the map a* was actually
circular, since a* appears on both sides of the equation. In general, it is not clear at all that a*
is then well-defined. We therefore need to impose an implicit assumption on the maps b and k
as follows

Assumption 4.1. For every (s,z,z) € [0,T] x Mn(R) x RN, there is at least one matriz
a*(s,z,z) in My(R) such that for any 1 <i < N,

(a*)"(s,2,2) € argmax Zb’ a®; (a) (s, z,x)), )2 — ki(t,a, )
a€A((a*

We denote by A*(s,z,x) the set of all matrices satisfying the above equation.
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A typical example where Assumption [ 1lis satisfied, is when the map b has a linear dependence
with respect to the effort matrix a, since in this case the maximisation in (4.3)) no longer depends
on the other columns of a*(s, z,x). For instance, one could consider the case

N
bit,a,x) == bi(t,z) + a’ — Z a,
=1, j#i

which is nothing else than a more involved version of the benchmark case of Section [3.3.2]

Let us now give a precise meaning to being a solution of (42]). Let us first start by defining
the following spaces. Fix some probability measure Q equivalent to P and a finite-dimensional
normed vector space E, with a given norm ||-|| 5

BMO(Q,RY) will denote the space of continuous square integrable F-martingales M (under Q),
RY valued, such that 1M |lpyog) < +0o0, where

M o) = esssup B2 (Tr [(a0)r] = Te (M) £ < +oc,

S

where for any ¢ € [0, 7], 7,7 is the set of F-stopping times taking their values in [t, 7] and where
for any p € [1,+0o0], |||, denotes the usual norm on the space LP(§2, F,Q) of R-valued random
variables.

HE\10(Q, My (R)) will denote the space of My (R)-valued, F-predictable processes Z such that

HZHHQBMO(Q) < 400, where

T
12l = H/ Z.dW,
BMO(®@) 0 BMO(Q)

H?(Q, E) will denote the space of E-valued, F-predictable processes Z s.t. ||Z lm2(q,p) < +00,
where

T
1Z g 0,17y = EC UO ||Zs||%ds} < +o0.

As usual, we denote by HZ (Q, E) the localized version of this space. A solution of ([#2) is

then a pair (Y€, Z¢) such that Y is a continuous F-semimartingale satisfying (@2)), and Z¢ €
HZ (P, My (R)).

loc

Before stating the main result of this section, we need to introduce the so-called reverse Holder
inequality.

Definition 4.2 (Reverse Holder inequality). Fiz some probability measure Q equivalent to P
and some p > 1. A positive, or negative, F-progressively measurable process P is said to satisfy
R,(Q) if for some constant C > 0

P p
esssup EC [(—T> ‘]:T} <C, a.s.
T€TTL Pr

The link between existence of a Nash equilibrium between the Agents and existence of solutions
to (4.2) is given in the following theorem.
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Theorem 4.1. Let Assumptions[2.1), [2.2, and[{1 hold. There is a one-to-one correspondence
between

(1) a Nash equilibrium a*(§) € A such that for any i =1,..., N, there exists some p > 1 such
that

(Epa*(ﬁ) [_e—RZ L (64T (X ) — [ K (s,(a2 (), Xs)ds)

]:tDt 0] satisfies Rp(]P’“*(S)),

)

(ii) a solution (Y, Z) to [@&2), such that in addition Z € Hyy;o(P, Mn(R)),

the correspondence being given by, for any i =1,..., N, ds x dP — a.e.,
(as(©)"" € argmax Zb’ (a3)" (5, Zs, Xs))7, X) 27 — K'(s,0, X;)
a€A*((a*

Proof. Step 1. We start by showing that (i) leads to (ii). For any 1 < i < N, and for any
7 € To,1, let us define the following family of random variables

Ui(r,€) ;= esssup

Epa&(a*(s))“*i [_6_33'4 (614T3(X7)— [T Ki(s,a5,Xs)ds)
a€Ai((a*(£)) %)

7.

It is a classical result that this family satisfies the following dynamic programming principle (see
for instance Theorem 2.4 in [27] as well as the discussion in their Section 2.4.2)

Ui(T7 é_) _ ess SUp ]E[[Da@’i(a*(g)):'*l |:€qu ff ki(s’as’XS)Ui(e,f)‘ -FT] 7
a€A*((a*(§))>)
for any 6 € 7o 7 such that 7 <0, as.
It is then immediate that for any a € A'((a*(€))>~7), the family (efaJo ¥ (sas.Xo)yi(7, E)reTor

is a so-called P“®i(a*(f)):’fi-supermartingale system. Hence, by the results of [16], it can be
aggregated by a unique (up to indistinguishability) F-optional process, which actually coincides,
a.s., with (efafok (s’“S’XS)UZ((a*(ﬁ))"_’,5))te[0ﬂ defined in the previous section.

Moreover, this aggregator remains a ]P’“®i(“*(5)):’7i—supermartingale, which then admits a cadlag
modification (remember that the filtration considered satisfies the usual conditions). Let us
now check that (effa I ki(sv(a*(f));ﬂvXS)Uti((a*(ﬁ))”_i,§))te[0ﬂ is a uniformly integrable P*"(¢)-
martingale.

By definition of a Nash equilibria, (a*(£))"! is optimal for the problem of Agent i, that is
Ué((a*(ﬁ)):’_i,g) — Epa*(&) |:_e—RZ (514‘1—‘ XT fO k* (5 (a*(g)) Xs)ds):| ‘

Next, by the supermartingale property proved above (which holds for any choice of action of
Agent 1), and by definition of the value function of Agent i, we must have

Ui((a*(€)y,) 2 B [eta ’““S“’WWUi<<a*<s>>~—i,sﬂ
> gP [_G—RZ (64T (Xr) = Jg K (5.(a3 () X )ds )}

= Uj((a*(€)"7,€),
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for any ¢ € [0,T]. Hence, all these terms have to be equal, which implies in particular that

R J3 K (@O X i (g* (£))+71, €) = BE"© [_ —Riy (1 4T4(X7)— [§ K (5,(a2(9))"", X)ds)

for any t € [0,7]. This provides the desired result, since the right-hand side is obviously a
P (€)_martingale, as the conditional expectation of an integrable random variable, and since
by Assumptions and 2.3] and by definition of admissible controls, this martingale actually
belongs to LP(Q, F,P*©), for any p > 1 (with moments uniformly bounded in t € [0,7]
by Doob’s inequality). Since it is also negative, by the predictable martingale representation
property, there exists an F-predictable process 710" (€€ ¢ H2(]P’“*(§),}RN ) such that, for any
te[0,7]

i (tgd * BN i * =1 1 * =1 ' i,a* a*
B Jo K (s.(a%(8)) ’XS)Ut((a (€))7 €) = Ub((a* (€))7, 6)E </ Zb ()€ . Y dW§ (5)) , a.s.
t

0

Then, since by assumption eff4 Jo k(s SXOUI((a* (€))7, €) satisfies (Rp(P)), we can use
Theorems 3.3 and 3.4 of [50] to deduce that Z»*" (9 belongs to both HZ,,,(P*" (€ R) and
HBMO(IP’, R). Furthermore, a simple application of Itd’s formula leads to

Ui ((a*(€)",¢)
o T
_ o RA(EHT(X0) | / LU ((a" (€))7, €) 200 O£ 5t
t
T y - . .
- / RLUH(@*(8)"7,€) (bls, aX(), X,) - 207 OF — ki(s, (a3(€), X,) ) ds.
Therefore, we deduce that for any a € A¥((a*(£))"%), we have

(Riy) ™Mo Koy ((a* (€))7, )

_ UOZ((a*(§>):’_Z=§) _/ R[Sk Tar7Xr)dT’U’l(( (5)):,—2' g)Zi,a*(ﬁ)é.Edea&(a*(f))”*i
qu 0 Y S S

¥ /0 S K X0 U (04(€)) 7€) (b, 03(6). Xe) - 207 O — (s, (a3(6), X))

_/0 Ry Jo K ran Xe)drri( (g (€))7, €)(b(s, as @i (a2(€))77, Xy) - Z0% O — ki (s, a4, X,))ds.

Now remember that this process must be a P*®i(a" (5)):'7i—supermartingale. This therefore implies
that we must have for any a € A*((a*(¢))"7%), a.s.,

b(s, a3 (&), Xs)- 20" O ki (s, (a3(€)) ", Xs) > (s, as @i (a}(€))"7F, X) - Z0% O =k (s, a5, X,).
In other words

(@) e argmax {b(s,a®; (a1(€), X,) - 25O~ k(5,0,X,)} .
ac€Ai((a*)7)

Define then . ey
log (—U{((a*(€))"~",€))
RY ’

Y (a*(€),6) == — € [0,7], a.s
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We have immediately for any ¢ € [0,T7], a.s.,

. ) T
Y/ (a*(€),€) = €+ Tu(Xr) — / 70O 5 qw,

t
T
I
t
Since all of this has to hold true for any i = 1,..., N, we deduce that if we define Y;(a*(£),&)
as the vector in RY whose ith coordinate is Y} (a*(€),¢), and if we define Z% ()€ as the N x N

matrix whose ith column is Z»* (€€ then the pair (Y;(a*(€),£), 2% ©)€) is a solution of the
BSDE ([@2), such that Z% €€ € H (P, My (R)).

Step 2. Conversely, let us be given a solution (Y, Z) to [@2) s.t. Z € Hiy 0P, My (R)).
A classical measurable selection argument allows us to define a My (R)-valued F-predictable

s

Ry
2

. 2 L . »
2,22 O 4 (s, a2(6), X,) - 25O — ki, <a*>~vZ,Xs>) ds.

process a* such that for any i =1,..., N

(ag):’i € argmax {b(s,a R (a’;):’_i(Zs,Xs),Xs) . ZsZ — ki(s, a,XS)} .
a€Ai((a*)-—7)

Define then for any ¢ =1,..., N
U} := —exp (—RQYti) , @.S.

We can then go backwards in all the computations of Step 1, to obtain that, thanks to the
fact that Z € H3) o (P, Mn(R)), (efta I ki(s’“*XS)Uf)te[O’T} is a Po®i(@")"""_supermartingale for
any a € Ai((a*)>"), and that (eFa I ki(s’(ag):’i’XS)Uti)te[o’T] is a P*"-martingale. This uses in
particular the fact that the Doléans-Dade exponential of a BMO-martingale is a uniformly
integrable martingale. By the martingale optimality principle, this implies that

U = Ug((a*)"7",€),

and that (a*)" is optimal for the problem of Agent 4. Since this holds for any i = 1,..., N, this
means that a* is a Nash equilibrium.

Finally we have to check that the a* we have defined is such that for any ¢ = 1,..., N, there
exists some p > 1 such that

<EPG* [ e BT )= Ko X))

]-}])t o satisfies R,(P*").

)

But
e BU(E4Ti(Xr)— [ Ki(s,(a)"" Xa)ds) _ Rl [of ki(s,(ag)’vi,XS)dsU%7

so that for any ¢ € [0, T]

Xi = EPY [ e Ba€4TXr)— [ K (s, (a1) Xo)ds)

E] — efals k"(sv(a;)“i,xs)dsUz

= UlE (/ Z;'-z:sdwg*> .
0 t

Hence, since Z € H3 o (P, My (R)), we deduce from Theorem 3.4 in [50] that the desired result
holds. O
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4.1.4 On existence of Nash equilibria and admissible contracts

The main result of the previous section gives a complete characterization of the Nash equilibria
for the Agents, which satisfy some integrability conditions, as solutions to the multidimensional
quadratic BSDE (4.2)). However, this does not address the question of existence of these equilib-
ria, and this is exactly where the heart of the problem lies. Indeed, unlike in the one-dimensional
case (that is N = 1) wellposedness results for this kind of BSDE are extremely scarce in the
literature. Tevzadze [83] was the first to obtain a wellposedness result in the case of a bounded
and sufficiently small terminal condition. It was then proved by Frei and dos Reis [35] and Frei
[34] that even in seemingly benign situations, existence of global solutions could fail. Later on,
Cheredito and Nam [9], Kardaras et al. [49], Kramkov and Pulido |54 55], Hu and Tang [45],
Jamneshan et al. [47], or more recently Luo and Tangpi [57] all obtained some positive results,
but only in particular instances, which do not readily apply in our setting. Recently, Xing
and Zitkovi¢ [86] obtained quite general existence and uniqueness results, but in a Markovian
framework.

Therefore, since the Principal wants to offer contracts which reveal the actions of the Agents,
he will never offer a contract for which a Nash equilibria between the Agents does not exist. For
simplicity, let us introduce, for any ¢ € CZ, the set NA(¢) of Nash equilibria associated to &
and which satisfy condition (¢) in Theorem H.I] (which can be the empty set according to the
above discussion). Furthermore, we also define

NAI(§) := {a € NA({), a = b, for any b € NA(£)}.

Besides, we remind the reader that, in line with the classical literature on the subject, we assume
that since the Agents are indifferent between Nash equilibria in NAI(), the Principal can make
them choose the one that suits him best.

This motivates the following definition of admissible contracts for the second-best problem
B.— {f e CI'B, NAI(¢) is non—empty}.

As a consequence of Theorem E.I], we know that for any & € C3B, there exists a pair (Yoé, ANE
RY x HZ\10(P, Mn(R)) such that

T
=Y —T(Xrp) - / f(s, 25, X,) ds+/ (Z§)T£dWs, a.s. (4.4)
0

where, the optimal feedback control a* being given by 777, we recall that the vector function f
is defined by

Ri g o N
2A HEtz"le—k’(t, (@) (t,z,x),a:)—i—Zb](t, (@) (t,z,x),x)z"" .

j=1

fie (t,z,x)

4.2 Solving the Principal problem
4.2.1 The general case
For any (Yp, Z) € RY x H3;6(P, Mn(R)), define

T T
07 =Yy —T(X7) — / f(s,Zs, Xs)ds + / (Zs) " 8edW,.
0 0
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By (@4)), we know that the set of admissible contracts C5F is actually included in the set
{€°7, (Y0, 2) € RY x Hipo (P, My (R))} -

As usual in Holmstrom-Milgrom type problems, we know that the value of the constant vector
Yy in the contract will be fine-tuned so that each Agent receives exactly his reservation utility.
But this exactly corresponds to choosing

Yi=L":=—In(-U")/RY, 1<i<N.

We can therefore consider the following problem, which is, a priori, an upper bound of the
Principal value function

Ué)’SB = sup sup EY [—e‘RP(XT_gL'Z)'lN] . (4.5)
Z€Hg 16 (P,Mp(R)) a€NAI(EL-Z)
Then, under this form, we can interpret EL’Z = ¢8Z 1 T(Xr) as the terminal value of the

following Markovian controlled diffusion
t t
Y, =1L —/ f(s,Zs, Xs)ds +/ (Zs)T8,dWs, t € 0,7,
0 0

where the control process is actually Z. Furthermore, for simplicity of notations, we assume
that the maximizer in the definition of f is actually unique. We are thus back into the realm of
classical stochastic control, and, at least formally, we can identify U(I)D 5B with the value v(0,0, L)
of the uniquﬁ solution in an appropriate sense to the following HJB equation

(Ut + G('a 7vmvvyvvmmavyy7va)) (t,x,y) =0, (t,:z:,y) € [O’T) X R2N, (4 6)
'U(Taxay) = —eXp(—RP (‘T + P(.Z') - y) : 1N) ) (‘Tay) € R2N7
where
1
G(t,x,p,q,7,n,v) = sup {b(t,a*(t,z,x),w) p—f(t,z,x) g+ FTr [Etﬁfﬂ
2eMy(R) 2

1
—|—§Tr [ZTEtE;l—Z’I’]} + Tr [EtE;rzy} } .

The following result follows from a classical verification argument, see for instance [33], so that
we will not provide its proof.

Proposition 4.1. Assume that the PDE (&8) admits a unique classical (that is C1*2) solution,
and that the supremum in the definition of G is attained for at least one z*(t,z,p,q,v,n,V).
Assume that z; € Hayo (P, My(R) where

af o= 20 X v (6 XT, V) vy (6, X7 YY), vaa (8, X7, YY), vy (8, X7 Y00, 0y (8, X7 YY),

where X* and Y* are the unique solutions (assumed to ezist) of the coupled SDEs
t t
X} = / b(s,a*(s, 2}, X7), XZ)ds +/ Y dWs,
0 0

t ¢
Y =Yy — / f(s, 25, X2)ds —l—/ (25) T8 dWs.
0 0

Assume furthermore that for any Yo € RN, the contract €Y02" € C5B. Then, the value function
of the Principal is given by v(0,0, L).

50f course uniqueness needs to be verified in practice
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Of course, as usual with verification type results, the above proposition is a bit disappointing.
This is the reason why we consider in the next section a more specific problem for which the
problem of the Principal can actually be solved diretly, without having to refer to the HJB
equation (4.0]). This particular case consists in considering a linear comparison function I' as in

Section [B.3]

4.2.2 The simpler setting of linear comparison map I

We now focus on the particular case where « is linear and each agent compares the terminal
value of his project to the average of those of all the projects. Namely, we again suppose as in
Section B3] that Assumption 3.4 holds. The Principal problem can be written as

UOP SB — sup sup EF

£€CSBaeNAI(€)

o Rp(Xr—§)1 ZP e_Rl (gq_%(x XT) S Ki(s,a8 )ds)]
i=1
(4.7)

where the Lagrange multipliers (p;)1<i<n are once again here to ensure the participation con-
straints of the Agents. Plugging (£4)) in (£7), we deduce

Uy**% = sup  sup EP“[—g(/( NZE+ 149" = ()7 )SudWy ) e
£eCSBaeNAI(E) 0 T

S e, [ (T |

where the map 3 : [0,T] x My(R) — R is defined by
N i ‘
Bt,2) = (1 + 7 =77) - b(t,a(=)) = k(t,a(=)) - 1 = Y 54 [z

R 2
-z HEt <ZT1N+1N+7—7_>H :

Now it is clear by Assumptions 2.2] 23] and Lemma H.1] that the map [ is continuous in z
and goes to —oo as ||z|| goes to oo, so that it admits at least one deterministic maximizer,
which we denote by z;. Then, recalling that Z¢ belongs to H3;o (P, My (R)) and thus also to
HE 0 (P, My (R)) for any a € A by Theorem 3.3 in [50], we deduce that

N
Uy *% < sup {_eRPY§~1N—foT floids 3™ p,.e—RWé)Z} .

3
Yy €RN

The right-hand side is a concave function of YO5 on RY, whose supremum is attained at Yy, with
o (3) - i s (42)
R! Rp Ry (Ra+ NRp) = R}, Rp

+ R /Tﬂ(s 2N)ds, i=1,...,N
R%(EA—’-NRP) 0 ] ) gtV

(Yg) =

and we directly deduce that

Ra+ NRp RAf;;RP( o o (et )~ Blosetas )

Ué%SB < _ =
A

(4.8)
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In order to attain this upper bound, we would like to consider the contract £* defined by

T T
& =Y] — diag(y)(Xr — Xp) — / f(s,25)ds + / 25N sdWs.
0 0

But under this form, it is clear that the corresponding BSDE ({.2]) admits at least as a solution
(Y™, z*), where

S / f(s ds+/ (z2)TSdW,, t €[0,T], a.s

Moreover, since z* is deterministic, it is clearly in H%MO(]P’,M ~(R)). Hence, we do have {* €
C5B so that equality holds in (&F).

Finally, it remains to choose the Lagrange multipliers so as to satisfy the participation constraints
of the Agents, with reservation utilities (Qi)lgig ~. We must therefore solve

—e Ba() = U, i=1,...,N.

Arguing exactly as in the first-best case, we compute that

—1
U 5 (TN W

We have thus proved

Theorem 4.2. Let Assumptions [2.1, 2.3, 2.3, and [{1] hold. Then an optimal contract
Esp € C9B in the problem (ER), with reservation utilities (U')1<i<n € (—00,0), is given, for
i=1,...,N, by
%B:=—;;kg<cm—me%—if#w+(/ )+ [ R s
A
Rt .
+ —A H Y(z ZHZ ds,

where the matriz ai(z) € Mn(R) is defined implicitly , for every (s,z) € [0,T] x My (R) and
for =1,...,N, by

(aX(z))"" € argmax {b(t, a®; (a(2) 7% - 2 — k:i(t,a)} ,
a€ A ((a* 1)

and where 2§ is any mazimizer of the map

s (Iy v —7) bt af(2)) — k(ta}(2) - Ly — EZEZH&Z\
=1

B (a7
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4.2.3 Back to the bidimensional linear-quadratic benchmark setting

We once again focus on the benchmark case developed in Section [.3.2] for which explicit com-
putations are available. In this framework, let’s recall that

11 _ 12 L1 12
abt —av at av
b(t,a) := <a2,2 _ a2,1> ; for any a:= <a2,1 a2,2> € Ma(R),

and for some constants (kU1 kb2 k31 k22) € (RY)*

&,1‘ | k_| ‘2 (11’1 12
k(t,a) := (%‘ | é| 12‘ >,foranya:: <a2’1 >€M2( )-

Easy computations show that the optimal control matrix a*(z) is given by

Lo gh2
a*<z>=<: o5

2,

T T
N

| =

>

) -

) N

SN—

To find the optimal value z*, we therefore need to maximize the map

1,1 21’2 2,2 2,1 ‘Z11|
g:z— (14+v — )<k11_W>+(1+72_71)<W_W>_2k—171
‘21,2| |z2’1\ |22,2‘2

o7 2 2
TRz T 92l 922 __1<R}4‘Z171| +R124|Z1’2‘ >

2
_%<Rg|z2’1\2+Ri\z272|2) R2P2( + 22 1y — )

R 2
- TPOS ("2 +222 41+ —m)".

Easy (but lengthy) calculations show that g is actually concave, and admits a unique critical
point given by, for i,j = 1,2

. 1 L
()" = = ((1 + k" Ry Ry o1 03) (1 + i — ;) + 2k k™ \R,,aff)
*\J,t 1 1,0 i ,J 1,0 ( L
() = = =5 (@ oK RY) (1 + 5 — %) + Ryof K (1 + o7k (R + Ry)) (1 + %5 = %)) »

where

o =1+ c?(RYy + Rp)k™ + (O’?Ri; + 02Rp)k + U?RQ(UJQ-(RQ + Rp) + 0ZRp)kP k.
Whenever v, is significantly higher than -5, observe that once again Agent 2 optimal strategy
can be to work against its own project.

4.2.4 Economic interpretation

As in the first best case developed above, observe that the optimal contract is linear. Moreover
each agent obtains his reservation utility and is paid a given proportion of the value of each
project. As observed explicitly in the linear-quadratic benchmark case, the analytic form of the
optimal contract is more intricate than in the first best setting, but most qualitative properties of

the optimal contract and strategies remain unchanged. In particular, each agent has incentives
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to help the project of a very competitive colleague, whereas he may have to work against the
project of a poorly competitive one. In some sense, a competitive agent rewards himself via his
appetite for competition, and therefore it is in the economic interest of the Principal to provide
him a project with higher probability of success, e.g. with less volatility or the help of the other
Agents.

We recall that we assumed throughout the paper that the competition indexes v of candidates
are observable for the Principal. In such framework, we emphasize that our results imply in
particular that it is not optimal for the Principal to hire Agents with similar appetence for
competition. Economic benefits for the firm (i.e. the Principal) follows from a diversification
of competitive profiles, while each Agent always recovers his reservation utility. A pertinent
future research topic may be to inquire if such conclusions remain valid, in an adverse selection
framework, where the competitive appetence of the agent are ex-ante unknown, and shall be
determined via the design of a well suited menu of contracts.
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