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Dynamic Walking over Rough Terrains by Nonlinear
Predictive Control of the Floating-base Inverted Pendulum

Stéphane Caron1 and Abderrahmane Kheddar1,2

Abstract— We present a real-time rough-terrain dynamic
walking pattern generator. Our method automatically finds
step durations, which is a critical issue over rough terrains
where they depend on terrain topology. To achieve this level of
generality, we introduce the Floating-base Inverted Pendulum
(FIP) model where the center of mass can translate freely and
the zero-tilting moment point is allowed to leave the contact
surface. We show that this model is equivalent to the linear-
inverted pendulum mode with variable center of mass height,
aside from the fact that its equations of motion remain linear.
Our design then follows three steps: (i) we characterize the
FIP contact-stability condition; (ii) we compute feedforward
controls by solving a nonlinear optimization over receding-
horizon FIP trajectories. Despite running at 30 Hz in a model-
predictive fashion, simulations show that the latter is too slow
to stabilize dynamic motions. To remedy this, we (iii) linearize
FIP feedback control computations into a quadratic program,
resulting in a constrained linear-quadratic regulator that runs
at 300 Hz. We finally demonstrate our solution in simulations
with a model of the HRP-4 humanoid robot, including noise
and delays over both state estimation and foot force control.

I. INTRODUCTION

A walking pattern is dynamic when it contains single-
support phases that are not statically stable, i.e. the center of
mass (COM) of the robot leaves the area above contact and
undergoes divergent dynamics. These dynamic phases can
be used not only to increase the walking speed, but also for
stabilization as illustrated by reactive stepping strategies [1],
[2]. To measure the dynamic capabilities of a rough-terrain
walking pattern generator1 (RT-WPG), we can measure the
relative duration of double-support phases, or the amount of
time spent in statically-stable configurations. For instance,
our previous RT-WPG [3] spends roughly 40% of its gait in
double-support, and about 90% of the time in statically-stable
configurations. In contrast, our present RT-WPG, in a similar
setup, spends less than 5% of its gait in double-support, and
about 40% of the time in statically-stable configurations.

One reason why previous solutions tended to be conser-
vative lies in enforcing contact stability, i.e. making sure
that contacts sustain while the robot pushes on them to
move. To generate contact-stable trajectories, one needs to
guarantee that all contact wrenches throughout the motion
lie inside their respective contact wrench cones. So far, the
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1Pattern generators compute both feedforward and feedback walking

controls under real-time constraints, as opposed to motion generators, which
only compute feedforward controls without time constraints.

full problem has only been solved in whole-body motion
generation [4], or more recently in centroidal motion gener-
ation [5], [6], [7], where computation time is provided until
a solution is found. For real-time control, it is common to
reduce the number of variables by regulating the centroidal
angular momentum to L̇G = 0. Doing so simplifies the
equations of motion of the COM to:

p̈G = λ(pG − pZ) + g,

with pG the COM position, λ a positive quantity, pZ the
whole-body zero-tilting moment point (ZMP) and g the
gravity vector. When the COM motion is constrained to lie
on a plane, λ is constant and we obtain the Linear Inverted
Pendulum Mode (LIPM). Predictive control of the COM in
the LIPM can be formulated as a quadratic program, where
the cost function encodes a number of desired behaviors
while inequalities enforce the contact-stability condition: the
ZMP lies within the convex hull of contact points. (This
condition is actually incomplete; we will derive the complete
condition below.) This formulation successfully solved the
problem of walking over flat surfaces [8], [9], [10]. However,
it did not extend to the rough terrains where the shape of
ZMP support areas varies during motion [11].

Solutions for rough terrains were proposed that tracked
reference COM or base-link trajectories across contact
switches [12], [13], yet they were not designed to compute
their own feedforward controls. In pattern generation, de-
velopments went in three directions. In one line of work,
3D extensions of the LIPM [14], [15] provided the basis for
the first RT-WPGs, but they enforced only two out of the
three requirements for contact stability, namely unilaterality
and center-of-pressure conditions (friction is missing). Other
works went for harder nonlinear optimization problems [16],
[17], [18], but again they did not model friction and were
only applied to walking on parallel horizontal surfaces. Fi-
nally, we recently proposed in [3] an RT-WPG that enforces
full contact stability and walks across arbitrary terrains, but
at the cost of a conservative problem linearization (a similar
idea appeared in the motion generator from [6]).

We now bridge the gap between these three directions with
an RT-WPG that is (1) based on a 3D extension of the LIPM
for which we (2) derive the full contact stability condition
and consequently (3) formulate and solve as a nonlinear
optimal-control problem. The latter being experimentally too
slow for predictive control, we further derive a constrained
linear-quadratic regulator based on the same model for high-
frequency stabilization.

http://www.comanoid.eu/


II. THE FLOATING-BASE INVERTED PENDULUM

Let us consider a biped in single support. We define the
surface patch S as the convex hull of contact points, and
denote by C the contact friction cone. In the pendulum mode,
the center of pressure (COP) C is located at the intersection
between S and the central axis of the contact wrench, which
is then also a zero-moment axis. Contact breaks when this
intersection becomes empty, or switches to another mode
when C reaches the boundaries of S. The Newton equation
of motion of the COM in the pendulum mode is:

p̈G = λ(pG − pC) + g. (1)

In general, this equation is bilinear as the stiffness value
λ and COP location pC are two different components of
the time-varying contact wrench. Making time explicit, the
differential equation of the COM position is:

p̈G(t)− λ(t)pG(t) = −λ(t)pC(t) + g

The additional constraint of the LIPM is that pG and pC
lie in parallel planes separated by a fixed distance h = n ·
(pG − pC), so that λ = (n · g)/h becomes a constant by
Equation (1). Interestingly, Koolen et al. [19] recently studied
the symmetric problem where pC is fixed and a variable λ(t)
is used to stabilize the COM along a cubic polynomial.

A. Contact stability in single support

Proposition 1: A motion of the system (1) in single
contact (S, C) is contact-stable if and only if :

λ ∈ R+ (2)
pC ∈ S (3)
pG ∈ pC + C (4)

where S and C respectively denote the surface patch and
friction cone of the contact.

Proof: This result follows from injecting Equation (1)
into the analytical formula of the single-contact wrench
cone [20]. See Appendix A for calculations.

The constraints (2)–(4) are written in V-representation
for a geometric intuition. Denoting by S and C the H-
representation matrices of the polygon S and cone C, re-
spectively, we can formulate these constraints equivalently
in H-representation as:

−λ ≤ 0 (2H)
SpC ≤ 1 (3H)

C(pG − pC) ≤ 0 (4H)

Equation (4)-(4H) provides the condition that is missing in
previous works [14], [15], [16], [17], [18] to model friction.
It also completes the observation we made in [11] (Figure 6)
by showing that, on horizontal floors, the points pC where
pG 6∈ pC + C are exactly those that need to be removed
from the convex hull of ground contact points to obtain the
ZMP support area. The area thus admits a direct geometric
construction:

Corollary 1: When contacts are coplanar, the ZMP sup-
port area Z is the intersection between the surface patch and
the backward friction cone rooted at the COM:

Z = S ∩ (pG − C) (5)
Proposition 1 also gives us a geometric construction of the

COM static-equilibrium polygon in single support:
Corollary 2: The COM static-equilibrium polygon in sin-

gle support is either:
• empty when the friction cone C does not contain the

vertical g, or
• equal to the vertical projection of the surface patch S

onto a horizontal plane.
Proof: This result immediately follows from Proposi-

tion 1 by recalling that, in static equilibrium, the COP C is
located at the vertical below the COM G.

Proposition 1 shows how contact-stability inequalities,
which are bilinear in general, linearize without loss of gener-
ality when rewriting the contact wrench in terms of λ and pC .
It is the main result we use in this paper, as dynamic walking
patterns spend most of the gait cycle in single support. Note
that this linearization is not specific to single support: bilinear
inequalities in multi-contact are linear whenever the contact
wrench is expressed in terms of an attractor/repulsor point
and a stiffness coefficient, as we show in Appendix B for the
interested reader. The advantage of the single-support case
is that we have derived an analytical formula, otherwise we
rely on numerical polytope projections.

B. Transferring nonlinearity

Equations (1)–(4) characterize the pendulum mode under
full contact stability:

p̈G(t) = λ(t)(pG(t)− pC(t)) + g

s.t.

 −λ(t) ≤ 0
SpC(t) ≤ 1

C(pG(t)− pC(t)) ≤ 0

COP-based Inverted Pendulum

This system is linearly constrained, but its forward equation
of motion is nonlinear due to the product between λ and pC .
We transform it by replacing C with the ZMP2 Z defined
by:

pZ = pC +

[
1− λ

ω2

]
(pG − pC) (6)

where ω2 denotes a user-defined positive constant, for in-
stance chosen as g/` with ` the leg length of the robot.
In the pendulum mode, this definition coincides with the
Enhanced Centroidal Moment Pivot [15] associated with the
constant ω2. This transformation has the benefit of making
the forward equation of motion linear:

p̈G(t) = ω2(pG(t)− pZ(t)) + g (7)

It does not eliminate nonlinearity, but merely transfers it to
the system’s inequality constraints.

2Recall that all points of the zero-moment axis (GC) can be called “zero-
moment points”.



Proposition 2: A motion of the system (7) in single
contact (S, C) is contact-stable if and only if :

pZ ∈ pG + rays(S − pG) (8)
pG ∈ pZ + C (9)

where S and C respectively denote the surface patch and
friction cone of the contact.

Proof: We proceed by double-implication between the
systems (1)–(4) and (7)–(9). (⇒) Let us rewrite Equation (6)
as

pZ − pG =
λ

ω2
(pC − pG) (10)

In this form, it is clear that (2) ∧ (3)⇒ (8). Left-multiplying
by C, this equation further shows that C(pG − pZ) and
C(pG−pC) have the same sign, therefore (2) ∧ (4) ⇒ (9).
(⇐) For the reciprocal implication, let us write the inverse
transform on the stiffness coefficient:

λ = ω2n · (pG − pZ)

n · (pG − pC)
= ω2n · (pG − pZ)

n · pG − a
(11)

where n · p = a is the equation of the supporting plane of
the surface patch S. Note that n is both the plane normal
and the inner axis-vector of the friction cone C. Thus, with
the implicit assumption that the COM is not located below
contact (which is not physically possible), n·pG > a and (9)
imply that λ ≥ 0. Then, Equation (10) shows once again that
C(pG − pZ) and C(pG − pC) have the same sign, so that
(9) ⇒ (4). Finally, the COP being located at the intersection
between (GZ) and the supporting plane of S, (8) implies
(3) by construction.

Denoting by {Vi} the vertices of the surface patch S,
the two conditions (8)–(9) can be written equivalently in H-
representation as:

∀i,
−−−−→
ViVi+1 · (

−−→
GVi ×

−−→
ViZ) ≤ 0 (8H)

C(pG − pZ) ≤ 0 (9H)

Using the transform (6), we have therefore reformulated the
COP-based inverted pendulum into an equivalent ZMP-based
model where the ZMP is allowed to leave the surface patch.
We coin this model the Floating-based Inverted Pendulum
(FIP):

p̈G(t) = ω2(pG(t)− pZ(t)) + g

s.t.

{
∀i,
−−−−→
ViVi+1 · (

−−→
GVi ×

−−→
ViZ) ≤ 0

C(pG − pZ) ≤ 0

Floating-base Inverted Pendulum

The forward equation of motion of the FIP is linear, which
will prove useful when we implement a constrained linear-
quadratic regulator (LQR) using the single-shooting method.
Its friction constraint is linear as well. Its ZMP constraint
is bilinear and involves a COM-varying boundary cone, but
it can be handled efficiently by present primal-dual interior
point methods.

Fig. 1. The two necessary and sufficient conditions for contact stability
in the Floating-base Inverted Pendulum model. Friction (left): the COM
belongs to the contact friction cone C projected from the ZMP z. Center of
pressure (right): the ZMP z belongs to the cone projected from the COM
and containing the vertices of the contact surface S.

III. NONLINEAR PREDICTIVE CONTROL OF THE FIP

We now formulate FIP predictive control as a nonlinear
program (NLP). Our main motivation in switching from
convex [3] to non-convex optimization is twofold: on the
one hand, solving the bilinear COP constraint (8H) without
approximation, and on the other hand, deriving step timings
as output variables rather than user-defined parameters. This
second feature is crucial over rough terrains, where proper
timings depend on terrain topology. Adapting step timings
has been recently realized for walking on horizontal floors
using quadratic programming [21], but it had not been
demonstrated yet on uneven terrains.

A. Multiple shooting formulation

As in [5], we formulate the nonlinear predictive control
(NMPC) problem by direct multiple shooting. A receding
horizon over future system states is divided into N time
intervals of durations ∆t[k], so that each interval k ∈
{0, . . . , N − 1} starts at time t[k] =

∑
j<k ∆t[j]. We use

brackets x[i] to index NLP variables and subscripts xi for
constants. The variables of our NLP are:
• pG[k]: COM position at time t[k],
• ṗG[k]: COM velocity at time t[k],
• pZ [k]: ZMP position at time t[k],
• ∆t[k]: step duration, bounded by [∆tmin,∆tmax].
The differential equation of the FIP (7) is solved over each

interval with constant pZ(t) = pZ [k] to obtain the matching
conditions:

pG[k + 1] = pG[k] + ṗG[k]
sh[k]

ω
+ p̈G[k]

ch[k]− 1

ω2
(12)

ṗG[k + 1] = ṗG[k]ch[k] + p̈G[k]
sh[k]

ω
(13)

where the decision variables pZ [k] and ∆t[k] appear in:

p̈G[k] = ω2(pG[k]− pZ [k]) + g (14)
ch[k] = cosh(ω∆t[k]) (15)
sh[k] = sinh(ω∆t[k]) (16)



The next constraints that need to be enforced over at collo-
cation points are friction and COP inequalities (8)–(9). It is
important to note here that contact-stability is only checked at
collocation times t[k], as done in the vast majority of present
works that solve constrained optimal control problems [5],
[6], [7], [9], [10], [11], [13], [16], [18]. This does not
guarantee that the constraints will not be violated between
t[k] and t[k + 1].

Having at hand a solver able to handle both linear and
nonlinear constraints, we tried two variants for the friction
cone (9):
• FC1: the linear constraints (9H) corresponding to the

linear approximations of the friction cone C;
• FC2: the second-order isotropic friction cone, i.e. with-

out linear approximation, which can be written as:

‖
−→
ZG‖22 − (1 + µ2)(

−→
ZG · n) ≤ 0. (17)

Using a second-order inequalities reduces the constraint
dimension: an n-sided friction pyramid FC1 yields n inequal-
ities in the NLP, versus only one with a second-order cone.
In our implementation, computations are roughly 10% faster
when using FC2 compared to FC1.

B. Boundary conditions

We include both initial and terminal conditions in our
control problem:
• pG[0] is equal to the estimated COM position at the

beginning of the control cycle,
• ṗG[0] is equal to the estimated COM velocity at the

beginning of the control cycle,
• pZ [N − 1] = ξdend the desired capture point at the end

of the preview window.
The ability to define capture points is another advantage

of the FIP compared to models with nonlinear forward
equations of motion. From Equation (7), and following the
derivation from e.g. [15], the instantaneous capture point in
the FIP is:

ξ(t) = pG(t) +
ṗG(t)

ω
+
g

ω2
. (18)

The boundary value ξdend is derived from the next contact
location and a reference walking velocity vd provided by
the user. Speficically, if p′F is the next contact location and
(t, b,n) the next contact frame, then:

ξdend = p′F +
vdt

ω
. (19)

It corresponds to a desired COM position Gd located at the
vertical above F ′, along with a forward COM velocity equal
to vd. Note that, due to the COP constraint (8), vd should
be small enough compared to ω so that ξdend belongs to the
surface patch S.

The terminal condition pZ [N − 1] = ξdend is used so that,
if the NMPC stops providing updated preview trajectories
for some reason (which may happen as we are solving
non-convex problems), at least regulation around the latest
successful preview will steer the system to a stop. One could

replace this simple post-preview behavior with more general
boundedness constraints [22], based e.g. on heuristic post-
preview ZMP trajectories based on terrain topology.

C. Cost function

The cost function of our NLP is a weighted combination
of three integral and one terminal terms:∫ T

t=0

(wZ‖pZ−pF ‖2+wG‖p̈G‖2+wT )dt+wξ‖ξ[N ]−ξdend‖2

•
∫
‖pZ−pF ‖2dt, where F is the center of the supporting

foot (note that there may be two different supporting
foot in a preview window due to contact switches). This
term biases trajectories toward the nominal behavior
defined by ω2. We give it a weight of wZ = 10−5.

•
∫
‖p̈G‖2dt, a regularization term used to avoid un-

necessarily high accelerations. We give it a weight of
wG = 10−3.

• T =
∫

1dt, the total duration of the trajectory. This
term plays a significant role in balancing the accel-
eration regularization term, which otherwise generates
local minima where the system tries to avoid moving
altogether. We give it a weight of wT = 10−2.

• ‖ξ[N ]−ξdend‖2, where ξ[N ] is the capture point defined
by the COM state (pG[N ], ṗG[N ]) at the end of the pre-
view window. This term is the state analog of the ZMP
boundary condition. The problem is better conditioned
when it is put in the cost function rather than as a hard
constraint. We give it a weight of wξ = 1.

D. Contact switches

Contrary to horizontal-floor solutions that preview several
future footsteps [9], [10], our NMPC previews exactly one
step ahead during single-support phases (we use our con-
servative linear MPC [3] during double-support phases). Its
NLP does not model the swing foot trajectory. Rather, it
relies on an estimate of the time to heel strike, which we
construct as in [23]:
• A polynomial path is interpolated between pS and the

next foot step (spherical linear interpolation is used to
interpolation swing-foot orientation as well).

• Time-Optimal Path Parameterization (TOPP) [24] is
used to generate a path timing under conservative foot
acceleration constraints.

• The duration Tswing of the retimed path is taken as
estimate for the time to heel strike.

The N time intervals of the receding horizon are then split
into two categories. The first half of them is dedicated to
the swing interval [0, Tswing] until heel strike, where contact
stability is enforced with respect to the current supporting
foot, while for the second half it is enforced with respect
to the next foothold. This assignment is matched with step
durations by the last constraint of our NLP:

N/2∑
k=0

∆t[k] ≥ Tswing. (20)



E. Implementation details

We release our source code at [25] for open review and
reproducibility. In this implementation, we construct NLPs
using the CasADi symbolic framework [26] and solve them
with the primal-dual interior-point solver IPOPT [27]. Major
settings that allowed us to reach fair computation times
include:
• Using MX rather than SX CasADi symbols.
• Using the MA27 or MA97 linear solvers within IPOPT.
• Capping the CPU time and number of solver iterations

to 100 ms and 100, respectively. When these budgets
are exceeded, the solver has most likely diverged away
from any feasible solution.

• Using the adaptive rather than monotone update strategy
for the barrier parameter, which made computations
roughly 40% faster.

With this implementation, it takes roughly 10 to 40 ms to
solve an NMPC problem (see Section V for details). These
computation times are on the same scale as those reported in
the warm-started phase of [5]. We don’t suffer a significant
cold start in our setting, most likely because the problem we
solve is smaller (single-contact) and we have reformulated
its structure concisely with the FIP model.

F. Tunings for variable time steps

Each step duration ∆t[k] in the NLP is lower and upper
bounded by two parameters ∆tmin and ∆tmax that affect
solver performances. Expectedly, computation time increases
with ∆tmax, but this parameter cannot be too low as the
problem becomes infeasible below a certain threshold ∆tlimmax.
Figure 2 shows how computation times3 are influenced by
varying ∆tmax at the beginning of a feasible single-support
phase. A “sweet range” extends from 200 to 500 ms, with
the best (also riskiest) performance obtained close to the
threshold. Below this range, computation times and failure
rate increase beyond usable values. In practice, values of
∆tlimmax ranged between 100 ms and 300 ms during the gait
cycle. We therefore adopted a uniform setting of ∆tmax =
350 ms.

The influence of ∆tmin is of a different nature. First, we
note that ∆tmin cannot be equal to zero in practice: all
integral terms in the cost function bias convergence toward
∆t[k] → 0, so that the solver then ends up in local optima
that shrink the receding horizon rather than exploring motion.
Setting ∆tmin to the control cycle gives good performance
in practice. Larger values further improve computation times
at the beginning of single-support phases, but jeopardize
convergence in the middle of the step where Tswing becomes
small. We dealt with this case by reducing ∆tmin on the
fly for swing-interval time steps when the bound incurs an
overshoot of the time to heel strike:

if
∑N/2
k=0 ∆t[k] > (1 + 1

4 )Tswing then
∀k ≤ N/2, ∆tmin[k]← ∆tmin[k]/2

end if
3All computations reported in this paper were run on a personal laptop

computer, CPU: Intel(R) Core(TM) i7-6500U CPU @ 2.50 Ghz.
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Fig. 2. Effect of ∆tmax on computation times (yellow) and failure rate
(red) of the NLP solver, for a feasible step and N = 10 collocation points.
Each bar includes a standard deviation estimate (blue line) computed over
200 runs. Above a minimum value ∆tlimmax, the problem becomes feasible
and all runs should ideally converge to a solution. In practice, computations
become unstable for large values of ∆tmax.

In a motion generation scenario where computation time
is abundant, one could devise global strategies such as a
bisection search to tune ∆tmin and ∆tmax. The heuristic
above is rather a local parameter search spread over control
cycles. It has the benefit of incurring no additional cost.

G. Failure rate accross the gait cycle

While computation times look promising, another metric
suggests that nonlinear optimization is not sufficient in itself
to solve the NMPC problem: its failure rate, in our case, is
around 40%. This means that, on average one out of two
to three control cycles, the solver either does not terminate,
or returns a certificate of infeasibility, or converges to an
aberrant solution. We found that the terminal capture-point
error ‖ξ[N ] − ξdend‖ is a good indicator of this latter case,
and chose to discard all previews where this error is above
10 cm (a liberal value close to the half-length of HRP-4’s
footprint).

IV. CONSTRAINED LINEAR-QUADRATIC REGULATION

To cope with the 40% of situations where the nonlinear
optimization fails to produce a new preview on time, we
design a constrained linear-quadratic regulator that updates
the last available preview pdG, ṗ

d
G,p

d
Z into a new feasible one

starting from the current state. In order to cast the regulation
problem as a quadratic program, this reference trajectory is
first resampled into M time steps of equal duration ∆T . Let
us define residual states and controls of the FIP as:

∆x[k] =

[
pG[k]− pdG[k]
ṗG[k]− ṗdG[k]

]
(21)

∆z[k] = pZ [k]− pdZ [k] (22)

The discretized linear dynamics of these FIP residuals are:

∆x[k + 1] = A∆x[k] + B∆z[k] (23)

A =

[
cosh(ω∆T )E sinh(ω∆T )/ωE

ω sinh(ω∆T )E cosh(ω∆T )E

]
(24)

B =

[
(1− cosh(ω∆T ))E
−ω sinh(ω∆T )E

]
(25)

where E is the 3 × 3 identity matrix. Inequality constraints
over pG and pZ translate into similar constraints over the
residuals ∆x and ∆z. The friction constraint (9H) becomes:

[C 0 ] ∆x[k]−C∆z[k] ≤ C(pdZ [k]− pdG[k]) (26)



Let us define σi[k]
def
= −

−−−−→
ViVi+1 · (

−−−−−→
Gd[k]Vi ×

−−−−−→
ViZ

d[k]) the
positive slackness of the COP constraint on the ith vertex in
the reference trajectory. Expanding (8H) yields, in geometric
form (we omit indexes [k] to alleviate notations and write ∆p
the first three coordinates of ∆x):

−−−−→
ViVi+1·(

−−−→
GdVi×∆z+

−−−→
ViZ

d×∆p+∆z×∆p) ≤ σi[k] (27)

And in matrix form:

∆p[k]THi∆z[k] + hP [k]T∆p[k] + hZ [k]T∆z[k] ≤ σ[k]
(28)

with Hi the cross-product matrix of
−−−−→
ViVi+1 and

hP [k]
def
= Hi(p

d
Z [k]− pVi

),

hZ [k]
def
= Hi(pVi

− pdG[k]).

At this point, one could put polyhedral bounds on ∆z or ∆p
and solve a (bigger) conservative linearized system. This is
e.g. the approach followed in [3], [6] where COM trajectories
were boxed into user-defined volumes. However, contrary
to these previous works the problem at hand here is on
residuals. Intuitively, if ‖∆p‖ and ‖∆z‖ are both small, then
‖∆p×∆z‖ should be orders of magnitude smaller than the
linear term ‖

−−−→
GdVi×∆z+

−−−→
ViZ

d×∆p‖. We therefore chose to
neglect this residual cross-product term, resulting in a linear
COP constraint:

hP [k]T∆p[k] + hZ [k]T∆z[k] ≤ σ[k] (29)

After implementing the whole pipeline, we checked down
the line the validity of this assumption and found that,
in the simulation framework described in the next section
(which includes noise and delays in both control and state
estimation) the ratio

‖∆p×∆z‖

‖
−−−→
GdVi ×∆z +

−−−→
ViZ

d ×∆p‖

is equal on average to 0.005 with a standard deviation of
0.005 with a sample size of 10,000 corresponding to five
minutes of locomotion. That is, the cross-product term is
roughly two orders of magnitude smaller than the linear one,
which a posteriori legitimates our assumption.

Coming back to problem formulation, our constrained
LQR is finally cast as a quadratic program with cost function:

minimize
{∆z[k]}

∑M−1
k=0

(
wxc‖∆x[k]‖2 + wz‖∆z[k]‖2

)
+ wxt‖∆x[M ]‖2 (30)

subject to ∀k, (23) ∧ (26) ∧ (29) (31)

We solve it using a classical single-shooting formulation,
see e.g. [13], [3] for details.4 In experiments, we set the
terminal weight to wxt = 1 and the cumulative weights to
wxc = wz = 10−3.

4https://github.com/vsamy/preview_controller
provides an open-source C++/Python implementation of this method.

linear

Fig. 3. Walking pattern generation over an elliptic staircase with tilted
steps. At each control cycle, a new trajectory (dotted line) is computed via
nonlinear optimization for the Floating-base Inverted Pendulum (red: current
state, blue: desired state at the end of the preview window). In this model,
the ZMP z can leave the surface patch S and the COM can move freely in
3D while keeping linear equations of motion.

V. SIMULATIONS

We validated the proposed method in simulation with a
model of the HRP-4 humanoid robot. Our benchmark test
is a randomly-generated elliptic staircase that includes all
the characteristics that we deem important of rough-terrain
locomotion: going up, forward and down using tilted contacts
(no two contacts are coplanar).

Our simulations use pymanoid5, an extension of Open-
RAVE for humanoid robotics. Compared to the results re-
ported in [3], these new simulations model both noise and
delay in ZMP control and COM state estimation:
• State estimation: zero-mean noise with amplitudes

of 10 cm s−1 on position and 10 cm s−2 on velocity.
Nominal delay is set to 50 ms.

• ZMP control: zero-mean noise with amplitude
10 mm ms−1. Control delay, i.e. the characteristic dura-
tion before a new command is achieved, is set to 20 ms.

Pattern generation is supervised by a finite state machine
that alternates single and double support phases. In double
support, the conservative multi-contact controller from [3] is
used with the current step target as terminal condition. When
the NMPC (Section III) running in the background finds a
trajectory traversing the next step, the state machine switches
to the next swing phase (single support).

In single support, the multi-contact controller is replaced
by the LQR from Section IV. When the NMPC successfully
finds a new preview, usually with a delay m between 0
and 3 control cycles, this preview is resampled and sent
to the LQR as a new reference. The LQR then produces
a new preview trajectory which is sent to the foot ZMP
controller. The numbers of NMPC and LQR steps are set
respectively to N = 10 and M = 30. With this design, our

5https://github.com/stephane-caron/pymanoid

https://github.com/vsamy/preview_controller
https://github.com/stephane-caron/pymanoid
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Fig. 4. Difference in COM trajectories between this work (blue line) and
our previous multi-contact walking pattern generator [3] (blash dotted line).
Note that the perspective is isometric, not linear. Footholds correspond to the
downward part of the elliptic staircase depicted in Figure 3. Numbers next
to them indicate their z-coordinate in cm. The new trajectory is dynamic as
the COM goes only marginally over the edges of the footholds, as opposed
to the quasi-static one where it nears the vertical of the foot center at each
step.

pattern generator is able to locomote the humanoid accross
the elliptic staircase depicted in Figure 3. However, when
disabling the linear-quadratic regulator, the robot only walks
a couple of steps before the NMPC becomes numerically
unstable. Sample outcomes are shown in the accompanying
videos. For a first-hand experience, we encourage the reader
to try out the accompanying source code that we release
at [25].

One important aspect in these simulations is to perform an
independent check of contact-wrench feasibility at every time
step. Indeed, as mentioned in Section III, constraints are only
enforced at collocation points. Optimal solutions may then
violate constraints in between these points, and additional
validation is needed to make sure that this does not happen.
This point is particularly critical in our NMPC where we use
a small number of variable-duration steps, and all the more
justifies the addition of an LQR with finer discretization.

TABLE I
PERFORMANCE OF THE NMPC AND LQR CONTROLLERS OVER TWO

FULL CYCLES ON THE ELLIPTIC STAIRCASE.

Function # Calls # Successes Time (ms)
Build NMPC 115 115 25± 8.5
Solve NMPC 2000 1452 21± 11

Build LQR 1975 1975 1.9± 0.2
Solve LQR 1975 1975 1.0± 0.4

Table I reports computation times for both the NMPC
and LQR controllers over two full cycles on the elliptic
staircase. Building NMPC problems only occurs around
contact switches, the same nonlinear problem structure being
otherwise re-used between control cycles. In this scenario,
the robot called the double-support controller roughly once
every two steps to handle the extra control cycles needed by
the NMPC to complete its computations.

VI. CONCLUSION

We presented a real-time rough-terrain walking pattern
generator that is able to adjust its step timings automatically.
Our solution rests upon the floating-base inverted pendulum,
a model with linear equations of motion and where contact

stability can be checked using simple geometric construc-
tions. We developed a nonlinear predictive controller that
computes feedforward walking trajectories at roughly 30 Hz,
as well as a constrained linear-quadratic regulator computing
feedback controls one order of magnitude faster. The source
code to reproduce this work is released at [25].
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APPENDIX

A. Proof of Proposition 1

In this Appendix, all coordinates are taken with respect to
the local contact frame. The analytical formula of the contact
wrench cone at the origin O of this frame is given by [20]:

|fx| ≤ µfz, |fy| ≤ µfz (32)

|τxO| ≤ Y fz, |τ
y
O| ≤ Xf

z (33)

τmin ≤ τzO ≤ τmax (34)

where the two bounds on the yaw torque are defined as:

τmin
def
= −µ(X + Y )fz + |Y fx − µτxO|+ |Xfy − µτ

y
O|

τmax
def
= +µ(X + Y )fz − |Y fx + µτxO| − |Xfy + µτyO|

In the pendulum mode, the contact wrench is equal to:

fx = λ(xG − xC)

fy = λ(yG − yC)

fz = λzG

τxO = yCf
z

τyO = −xCfz

τzO = xCf
y − yCfx

Injecting these equations into (32)–(34) yields two sets of
equations (we used a symbolic calculator to avoid painstak-
ing hand calculations here). First,

|xC | ≤ X, |yC | ≤ Y (35)

|xG − xC | ≤ µzG, |yG − yC | ≤ µzG (36)

And second, after rearranging all terms suitably:
0 ≤ (X + xC)(µzG − (yC − yG)) + (Y + yC)(µzG + (xC − xG))

0 ≤ (X + xC)(µzG + (yC − yG)) + (Y + yC)(µzG − (xC − xG))

0 ≤ (X − xC)(µzG − (yC − yG)) + (Y + yC)(µzG − (xC − xG))

0 ≤ (X − xC)(µzG + (yC − yG)) + (Y + yC)(µzG + (xC − xG))

0 ≤ (X − xC)(µzG + (yC − yG)) + (Y − yC)(µzG − (xC − xG))

0 ≤ (X + xC)(µzG − (yC − yG)) + (Y − yC)(µzG − (xC − xG))

0 ≤ (X + xC)(µzG + (yC − yG)) + (Y − yC)(µzG + (xC − xG))

0 ≤ (X − xC)(µzG − (yC − yG)) + (Y − yC)(µzG + (xC − xG))

All right-hand side terms in this second set can be writen
as ab + cd, where a, b, c, d are positive slackness variables
from the first set of inequalities (35)–(36). Therefore, all
constraints in the second set are redundant, and the contact
wrench cone in irreducible form is given by (35)–(36). We
conclude by noting how (35) corresponds to pC ∈ S while
(36) represents pG ∈ pC + C.

B. Contact stability with attractors and repulsors

Let AO denote the inequality matrix of the contact wrench
cone taken with respect to a fixed point O. In the pendulum
mode, contact stability can be written [3] in terms of the
position and acceleration of the COM as

(a+ aO × pG) · (p̈G − g) ≤ 0 (37)

over all rows (a,aO) of the inequality matrix AO. These
expressions are bilinear and not positive-semidefinite in
general, which precludes their direct use with e.g. convex
optimization. There is however one interesting setting where
these inequalities linearize without loss of generality:

Proposition 3: If the COM control law follows a propor-
tional attractor or repulsor H with stiffness k ∈ R, that is

p̈G = k(pH − pG), (38)

then the set of contact-stable positions pG is a polyhedral
cone rooted at the apex ν := pH − g/k.

Proof: Injecting the control law (38) into (37) yields:

k(a+ aO × pG) · (pH − pG − g/k) ≤ 0 (39)

Defining ν := pH − g/k, this expression expands to:

−k(a+ aO × (pG − ν + ν)) · (pG − ν) ≤ 0 (40)
−k(a+ aO × ν) · (pG − ν) ≤ 0 (41)

using the fact that (a× b) · b = 0 (the scalar triple product
is a Gram determinant). We recognize the expression of a
linear polyhedral cone in pG with apex ν.

This property applies to the following two cases:
• Repulsor: k = −ω2 < 0 and H is the Virtual Repellent

Point defined by Englsberger et al. [15]. Then, Equa-
tion (41) defines the cone CVRP(H,ω2) of sustainable
COM positions when the VRP is located at pH .

• Marginal attractor: k > 0 and pH = pdG is a desired
COM location. In this case, Equation (41) defines the
cone of COM positions that can be steered toward pdG
for a given stiffness k.

Stabilizing the COM around a reference position pdG requires
variable VRPs in the first approach and variable stiffness with
the second one.

https://hal.archives-ouvertes.fr/hal-01363757
https://github.com/stephane-caron/dynamic_walking
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