Why estimating relative differences by $\operatorname{Ln}(\mathrm{A} / \mathrm{B})$ in percentage and why naming it geometric difference Christian GRAFF

Introduction

(1) Reference
C. Graff (2014). Expressing relative differences (in percent) by the difference
of natural logarithms. of natural logarithms. Psychology 60, 82-85. thresholds from a standard (Ref) are better defined by a Weber ratio JND/Ref rather than by several Just Noticeable Differences (JND). relative difference between A and B in \%. Naming it the "geometric difference" emphasizes the relationship between logarithmic scale and relative differences.

Arithmetic difference

* The word difference bears numerous meanings, including dissimilarities.
* Its use in mathematics is essentially dedicated to the result of the arithmetic operation called subtraction.
* Thus I will specify the result of the subtraction of A by B as the arithmetic difference: $D=A-B$.

Geometric difference \& other relative differences

A dissimilarity, e.g. between $A=150 \mathrm{~g}$ and $\mathrm{B}=\mathbf{1 2 5 g}$, may be expressed by the arithmetic difference $A-B=25 \mathrm{~g}$. The geometric difference is one estimate of relative difference, as well as $(A-B) / B$ or $(A-B) /[(A+B) / 2]$. It always sits between the two extreme, better-known, estimates:

$$
\begin{aligned}
(A-B) / B= & 0.200 & = & 20.0 \% \\
\operatorname{Ln}(A / B) & = & 0.182= & 18.2 \% \\
(A-B) / A= & 0.167 & = & 16.7 \%
\end{aligned}
$$

Thus $(A-B) / A<\operatorname{Ln}(A / B)<(A-B) / B$. This advantage, specific to $L n$, the natural logarithm (\log to the base e), adds to the following properties: additivity, symmetry and agreement between inverted units (1).

Arithmetic \& geometric means

* The arithmetic mean $\mathrm{M}_{\mathrm{a}}=(\mathrm{A}+\mathrm{B}) / 2$ between two values A and B is such that the arithmetic difference between either of the two values and their arithmetic mean are equal (but opposite):

$$
\left(M_{a}-A\right)=-\left(M_{a}-B\right) .
$$

* The geometric mean $M_{g}=\sqrt{ } A^{*} B$ between two values A and B is such that the geometric difference between either of the two values and their geometric mean are equal (but opposite):

$$
\operatorname{Ln}\left(M_{g} / B\right)=-\operatorname{Ln}\left(M_{g} / A\right)
$$

The sum of geometric differences from a geometric mean is null also when more than two values are averaged, as for arithmetic differences and mean.

Arithmetic \& geometric progression

* An arithmetic progression is a sequence of values $\left(\ldots, A_{i}, A_{i+1}, \ldots\right)$ such that $A_{i+1}=A_{i}+C$, thus

$$
C=A_{i+1}-A_{i}
$$

Two consecutive values A_{i+1} and A_{i-1} are separated by a constant arithmetic difference C .

* A geometric progression is a sequence of values $\left(\ldots, G_{i}, G_{i+1}, \ldots\right)$ such that $G_{i+1}=G_{i}{ }^{*} K, K$ being a constant ratio.
Two consecutive values G_{i+1} and G_{i-1} are separated by a constant geometric difference

$$
\operatorname{Ln}(\mathrm{K})=\operatorname{Ln}\left(\mathrm{G}_{\mathrm{i}+1} / \mathrm{G}_{\mathrm{i}}\right)
$$

Inter-tap interval plots of isochronous finger-tapping at various paces by one participant. Each inter-quartile range is shown as arithmetic difference on a linear scale (left), and as geometric difference in \% on a logarithmic scale (right).

Linear \& logarithmic scales

* On a linear scale, an equal distance represents same dissimilarities as estimated by equal arithmetic differences.
* On a logarithmic scale, an equal distance represents same
dissimilarities as estimated by equal geometric differences (\%).

Conclusion

Relative differences are central to psychophysics. Taking the step to present the geometric difference as a percentage will facilitate comparisons between stimuli and between performances. The expression "geometric difference" for $\operatorname{Ln}(A / B)=\operatorname{Ln}(A)-\operatorname{Ln}(B)$ may contribute to comprehend it among many related mathematical tools.

