Hierarchical Region-Network Sparsity for High-Dimensional Inference in Brain Imaging

Abstract : Structured sparsity penalization has recently improved statistical models applied to high-dimensional data in various domains. As an extension to medical imaging, the present work incorporates priors on network hierarchies of brain regions into logistic-regression to distinguish neural activity effects. These priors bridge two separately studied levels of brain architecture: functional segregation into regions and functional integration by networks. Hierarchical region-network priors are shown to better classify and recover 18 psychological tasks than other sparse esti-mators. Varying the relative importance of region and network structure within the hierarchical tree penalty captured complementary aspects of the neural activity patterns. Local and global priors of neurobiological knowledge are thus demonstrated to offer advantages in generalization performance, sample complexity, and domain interpretability.
Type de document :
Communication dans un congrès
International conference on Information Processing in Medical Imaging (IPMI) 2017, Jun 2017, Boone, North Carolina, United States. 2017
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01480885
Contributeur : Danilo Bzdok <>
Soumis le : mercredi 1 mars 2017 - 19:38:59
Dernière modification le : jeudi 7 février 2019 - 16:51:22
Document(s) archivé(s) le : mardi 30 mai 2017 - 18:30:38

Fichier

IPMI_2017_bzdok_camera.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01480885, version 1

Citation

Danilo Bzdok, Michael Eickenberg, Gaël Varoquaux, Bertrand Thirion. Hierarchical Region-Network Sparsity for High-Dimensional Inference in Brain Imaging. International conference on Information Processing in Medical Imaging (IPMI) 2017, Jun 2017, Boone, North Carolina, United States. 2017. 〈hal-01480885〉

Partager

Métriques

Consultations de la notice

765

Téléchargements de fichiers

288