H. Li and M. Hu, Compact model of memristors and its application in computing systems, pp.673-678, 2010.

Y. Ho, G. M. Huang, and P. Li, Nonvolatile memristor memory, Proceedings of the 2009 International Conference on Computer-Aided Design, ICCAD '09, pp.485-490, 2009.
DOI : 10.1145/1687399.1687491

M. Di, V. , and Y. V. Pershin, Memcomputing: a computing paradigm to store and process information on the same physical platform, 1211.

T. Sung-hyun-jo, I. Chang, B. B. Ebong, P. Bhadviya, W. Mazumder et al., Nanoscale Memristor Device as Synapse in Neuromorphic Systems, Nano Letters, vol.10, issue.4, pp.1297-1301, 2010.

L. Chua, Memristor-The missing circuit element, IEEE Transactions on Circuit Theory, vol.18, issue.5, pp.507-519, 1971.
DOI : 10.1109/TCT.1971.1083337

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.404.9037

D. B. Strukov, G. S. Snider, D. R. Stewart, and R. Williams, The missing memristor found, Nature, vol.4, issue.7191, pp.80-83, 2008.
DOI : 10.1038/nature06932

T. Berzina, S. Erokhina, P. Camorani, O. Konovalov, V. Erokhin et al., Electrochemical Control of the Conductivity in an Organic Memristor: A Time-Resolved X-ray Fluorescence Study of Ionic Drift as a Function of the Applied Voltage, ACS Applied Materials & Interfaces, vol.1, issue.10, pp.2115-2118, 2009.
DOI : 10.1021/am900464k

V. Yurij, M. D. Pershin, and . Ventra, Spin Memristive systems, Physical Review B, vol.78, p.113309, 2008.

F. Alibart, S. Pleutin, D. Gurin, C. Novembre, S. Lenfant et al., An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse, Advanced Functional Materials, vol.1, issue.2, pp.330-337, 2010.
DOI : 10.1002/adfm.200901335

URL : https://hal.archives-ouvertes.fr/hal-00548959

Z. Biolek, D. Biolek, and V. Biolkov, Spice model of memristor with nonlinear dopant drift, Radioengineering, vol.18, issue.2, pp.210-214, 2009.

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder et al., Nanoscale Memristor Device as Synapse in Neuromorphic Systems, Nano Letters, vol.10, issue.4, pp.1297-1301, 2010.
DOI : 10.1021/nl904092h

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.163.1951

H. Yan, H. S. Choe, S. Nam, Y. Hu, S. Das et al., Programmable nanowire circuits for nanoprocessors, Nature, vol.16, issue.7333, pp.470240-244, 2011.
DOI : 10.1038/nature09749

S. Garrett and . Rose, Overview: Memristive devices, circuits and systems, ISCAS, pp.1955-1958, 2010.

J. Borghetti, Z. Li, J. Straznicky, X. Li, D. A. Ohlberg et al., A hybrid nanomemristor/transistor logic circuit capable of self-programming, Proceedings of the National Academy of Sciences, pp.1699-1703, 2009.
DOI : 10.1073/pnas.0806642106

S. Garrett, J. Rose, H. Rajendran, R. Manem, R. E. Karri et al., Leveraging memristive systems in the construction of digital logic circuits, Proceedings of the IEEE, pp.2033-2049, 2012.

E. Lehtonen, J. Poikonen, and M. Laiho, Implication logic synthesis methods for memristors, 2012 IEEE International Symposium on Circuits and Systems, pp.2441-2444, 2012.
DOI : 10.1109/ISCAS.2012.6271792

I. Vourkas and G. C. Sirakoulis, A Novel Design and Modeling Paradigm for Memristor-Based Crossbar Circuits, IEEE Transactions on Nanotechnology, vol.11, issue.6, pp.1151-1159, 2012.
DOI : 10.1109/TNANO.2012.2217153

G. Indiveri, B. Linares-barranco, R. Legenstein, G. Deligeorgis, and T. Prodromakis, Integration of nanoscale memristor synapses in neuromorphic computing architectures, Nanotechnology, vol.24, issue.38, p.384010, 2013.
DOI : 10.1088/0957-4484/24/38/384010

R. Williams, How We Found The Missing Memristor, IEEE Spectrum, vol.45, issue.12, pp.28-35, 2008.
DOI : 10.1109/MSPEC.2008.4687366

L. O. Chua and S. M. Kang, Memristive devices and systems, Proceedings of the IEEE, vol.64, issue.2, pp.209-223, 1976.
DOI : 10.1109/PROC.1976.10092

W. Gee-kim, M. G. Sung, S. Kim, J. H. Yoo, T. One-youn et al., Dependence of the Switching Characteristics of Resistance Random Access Memory on the Type of Transition Metal Oxide; TiO2, ZrO2, and HfO2, Journal of The Electrochemical Society, vol.158, issue.4, pp.417-422, 2011.
DOI : 10.1149/1.3552701

R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges, Advanced Materials, vol.18, issue.25-26, pp.25-262632, 2009.
DOI : 10.1002/adma.200900375

A. C. Torrezan, J. P. Strachan, G. Medeiros-ribeiro, and R. S. Williams, Sub-nanosecond switching of a tantalum oxide memristor, Nanotechnology, vol.22, issue.48, p.22485203, 2011.
DOI : 10.1088/0957-4484/22/48/485203

S. H. Jo, K. Kim, T. Chang, S. Gaba, and W. Lu, Si Memristive devices applied to memory and neuromorphic circuits, Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp.13-16, 2010.
DOI : 10.1109/ISCAS.2010.5537135

X. Wang, Y. Chen, H. Xi, H. Li, and D. Dimitrov, Spintronic Memristor Through Spin-Torque-Induced Magnetization Motion. Electron Device Letters, IEEE, vol.30, issue.3, pp.294-297, 2009.

X. Wang and Y. Chen, Spintronic memristor devices and application, Proceedings of the Conference on Design, Automation and Test in Europe, DATE '10 European Design and Automation Association, pp.667-672, 2010.

V. Erokhin, T. Berzina, and M. P. Fontana, Hybrid electronic device based on polyaniline-polyethyleneoxide junction, Journal of Applied Physics, vol.97, issue.6, p.64501, 2005.
DOI : 10.1063/1.1861508

F. Pincella, P. Camorani, and V. Erokhin, Electrical properties of an organic memristive system, Applied Physics A, vol.6, issue.1, pp.1039-1046, 2011.
DOI : 10.1007/s00339-011-6399-8

V. Erokhin and M. P. Fontana, Organic memristive device and its application for the information processing, 2010 17th IEEE International Conference on Electronics, Circuits and Systems, pp.926-929, 2010.
DOI : 10.1109/ICECS.2010.5724664

M. Shahsavari, P. Falez, and P. Boulet, Combining a Volatile and Nonvolatile Memristor in Artificial Synapse to Improve Learning in Spiking Neural Networks, 12th ACM/IEEE International Symposium on Nanoscale Architectures, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01368954

L. Wang and S. Gai, The next generation mass storage devices ??? Physical principles and current status, Contemporary Physics, vol.1, issue.2, pp.75-93, 2014.
DOI : 10.1017/CBO9781139171731

Y. Kaneko, H. Tanaka, M. Ueda, Y. Kato, and E. Fujii, A novel ferroelectric memristor enabling NAND-type analog memory characteristics, 68th Device Research Conference, pp.257-258, 2010.
DOI : 10.1109/DRC.2010.5551971

S. Yoon, S. Yang, S. Jung, C. Byun, M. Ryu et al., Polymeric ferroelectric and oxide semiconductor-based fully transparent memristor cell, Applied Physics A: Materials Science and Processing, pp.983-990, 2011.
DOI : 10.1007/s00339-011-6280-9

L. Wang, C. Yang, J. Wen, S. Gai, and Y. Peng, Overview of emerging memristor families from resistive memristor to spintronic memristor, Journal of Materials Science: Materials in Electronics, vol.2014, issue.7, pp.4618-4628, 2015.
DOI : 10.1007/s10854-015-2848-z

X. Hu, G. Feng, S. Duan, and L. Liu, Multilayer RTD-memristor-based cellular neural networks for color image processing, Neurocomputing, vol.162, pp.150-162, 2015.
DOI : 10.1016/j.neucom.2015.03.057

S. Hamdioui, L. Xie, H. A. Du-nguyen, M. Taouil, and K. L. Bertels, Memristor based computation-in-memory architecture for data-intensive applications, Proc. 18th Design, Automation & Test in Europe conference, 2015.

C. Xu, X. Dong, N. P. Jouppi, and Y. Xie, Design implications of memristorbased rram cross-point structures, DATE, pp.734-739, 2011.

T. Driscoll, H. Kim, B. Chae, M. D. Ventra, and D. N. Basov, Phase-transition driven memristive system, Applied Physics Letters, vol.95, issue.4, p.43503, 2009.
DOI : 10.1063/1.3187531

URL : http://arxiv.org/abs/0901.0899

Q. Liu, S. Long, H. Lv, W. Wang, J. Niu et al., Controllable Growth of Nanoscale Conductive Filaments in Solid-Electrolyte-Based ReRAM by Using a Metal Nanocrystal Covered Bottom Electrode, ACS Nano, vol.4, issue.10, pp.6162-6168, 2010.
DOI : 10.1021/nn1017582

H. Li and Y. Chen, An overview of non-volatile memory technology and the implication for tools and architectures, DATE, pp.731-736, 2009.

J. Cong and B. Xiao, mrFPGA: A novel FPGA architecture with memristor-based reconfiguration, 2011 IEEE/ACM International Symposium on Nanoscale Architectures, pp.1-8, 2011.
DOI : 10.1109/NANOARCH.2011.5941476

URL : http://ballade.cs.ucla.edu/%7Econg/papers/nano11.pdf

M. Shahsavari, M. Nadeem, S. A. Ostadzadeh, P. Devienne, and P. Boulet, Unconventional digital computing approach: memristive nanodevice platform, physica status solidi (c), vol.12, issue.1-2, pp.222-228, 2015.
DOI : 10.1002/pssc.201400069

URL : https://hal.archives-ouvertes.fr/hal-01116577

N. Yogesh, S. J. Joglekar, and . Wolf, The elusive memristor: properties of basic electrical circuits

T. A. Wey and W. D. Jemison, Variable gain amplifier circuit using titanium dioxide memristors, IET Circuits, Devices & Systems, vol.5, issue.1, pp.59-65, 2011.
DOI : 10.1049/iet-cds.2010.0210

M. Itoh and L. O. Chua, MEMRISTOR OSCILLATORS, International Journal of Bifurcation and Chaos, vol.18, issue.11, pp.3183-3206, 2008.
DOI : 10.1142/S0218127408022354

S. Shin, K. Kim, and S. Kang, Memristor Applications for Programmable Analog ICs, IEEE Transactions on Nanotechnology, vol.10, issue.2, pp.266-274, 2011.
DOI : 10.1109/TNANO.2009.2038610

B. Muthuswamy, IMPLEMENTING MEMRISTOR BASED CHAOTIC CIRCUITS, International Journal of Bifurcation and Chaos, vol.20, issue.05, pp.1335-1350, 2010.
DOI : 10.1142/S0218127410026514

A. Afifi, A. Ayatollahi, and F. Raissi, Implementation of biologically plausible spiking neural network models on the memristor crossbar-based CMOS/nano circuits, 2009 European Conference on Circuit Theory and Design, pp.563-566, 2009.
DOI : 10.1109/ECCTD.2009.5275035

E. Neftci, S. Das, B. Pedroni, K. Kreutz-delgado, and G. Cauwenberghs, Event-driven contrastive divergence for spiking neuromorphic systems, Frontiers in Neuroscience, vol.7, p.272, 2014.
DOI : 10.3389/fnins.2013.00272

URL : http://doi.org/10.3389/fnins.2013.00272

M. Fatahi, M. Ahmadi, A. Ahmadi, M. Shahsavari, and P. Devienne, Towards an spiking deep belief network for face recognition application, 2016 6th International Conference on Computer and Knowledge Engineering (ICCKE), pp.153-158, 2016.
DOI : 10.1109/ICCKE.2016.7802132

URL : https://hal.archives-ouvertes.fr/hal-01382624

O. Bichler, D. Roclin, C. Gamrat, and D. Querlioz, Design exploration methodology for memristor-based spiking neuromorphic architectures with the Xnet event-driven simulator, 2013 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp.7-12, 2013.
DOI : 10.1109/NanoArch.2013.6623029

M. Shahsavari, P. Devienne, and P. Boulet, N2s3, a Simulator for the Architecture Exploration of Neuromorphic Accelerators, 2nd International Workshop on Neuromorphic and Brain-Based Computing Systems DATE Conference, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01240444

X. Hu, S. Duan, L. Wang, and X. Liao, Memristive crossbar array with applications in image processing, Science China Information Sciences, vol.53, issue.2, pp.461-472, 2012.
DOI : 10.1007/s11432-011-4410-9

Y. V. Pershin and M. D. Ventra, Neuromorphic, Digital, and Quantum Computation With Memory Circuit Elements, Proceedings of the IEEE, vol.100, issue.6, pp.2071-2080, 2012.
DOI : 10.1109/JPROC.2011.2166369

URL : http://arxiv.org/abs/1009.6025

F. Merrikh-bayat and S. Shouraki, Memristor-based circuits for performing basic arithmetic operations, Procedia Computer Science, vol.3, pp.128-132, 2011.
DOI : 10.1016/j.procs.2010.12.022

F. Merrikh-bayat and S. B. Shouraki, Memristive Neuro-Fuzzy System, IEEE Transactions on Cybernetics, vol.43, issue.1, 2012.
DOI : 10.1109/TSMCB.2012.2205676