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Bio-inspired benchmark generator 
for extracellular multi-unit 
recordings
Sirenia Lizbeth Mondragón-González & Eric Burguière

The analysis of multi-unit extracellular recordings of brain activity has led to the development of 
numerous tools, ranging from signal processing algorithms to electronic devices and applications. 
Currently, the evaluation and optimisation of these tools are hampered by the lack of ground-truth 
databases of neural signals. These databases must be parameterisable, easy to generate and bio-
inspired, i.e. containing features encountered in real electrophysiological recording sessions. Towards 
that end, this article introduces an original computational approach to create fully annotated and 
parameterised benchmark datasets, generated from the summation of three components: neural 
signals from compartmental models and recorded extracellular spikes, non-stationary slow oscillations, 
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�‘�•���‡�š�–�”�ƒ�…�‡�Ž�Ž�—�Ž�ƒ�”���”�‡�…�‘�”�†�‹�•�‰�•���ƒ�•�†���–�Š�‡�‹�”���‹�•�ª�—�‡�•�…�‡���‹�•���–�Š�‡���ˆ�”�‡�“�—�‡�•�…�›���†�‘�•�ƒ�‹�•�ä�����‡�›�‘�•�†���–�Š�‡���”�‡�•�—�Ž�–�•���’�”�‡�•�‡�•�–�‡�†��
here, such a benchmark dataset generator has many applications such as calibration, evaluation and 
development of both hardware and software architectures.

Electrical recording of extracellular action potentials is the “gold standard” technique widely used in electro-
physiology1, where the signals are exploited to correlate neural activity with a behavioural output and/or the 
electrophysiological consequences of brain lesions or drug infusion, etc. �e emergence of novel methods for 
neural analysis together with high-throughput data acquisition technologies2 provide new possibilities for the 
exploitation of brain activity at the single unit level, for example, giving instantaneous feedback for closed-loop 
interactions with brain circuits when abnormal neural signals are detected3. �is approach has proven e�ective 
for several pathological conditions such as Epilepsy, Parkinson’s disease, or Essential Tremor4–7. From a more 
fundamental perspective, novel algorithms have been recently proposed to process these large amounts of neu-
ral data, such as semi-automatic and automatic clustering techniques, to distinguish di�erent neural sources 
in multi-unit extracellular recordings8–12. In order to validate the performance and accuracy of these di�erent 
algorithms or devices, reliable datasets, where the majority of the signal content is known, are essential. Ideally, 
this ground-truth reference should be a completely annotated and parameterised dataset, in which three levels 
of information should be modi�able and known in detail: the recording environment (e.g. density of active pop-
ulation of neurons or distance from neurons to recording sites), the population dynamics (e.g. �ring rate, spike 
timing of each neuron and spike waveforms) and the noise content (e.g. background noise level contribution and 
number of artefacts).

�ere are several applications (Fig.�1) where using a parameterised dataset can be advantageous, ranging 
from algorithm design to development and evaluation of electronic devices. Moreover, parameterised datasets 
are needed to evaluate the e�ciency of unsupervised classi�cation algorithms. In recent years, several spike sort-
ing algorithms have been proposed8–12, however, it is di�cult to assess their sorting e�ciency since the datasets 
used to evaluate their performance were heterogeneous. �ese studies either used real recording datasets where 
all the events that constitute the signal were not known, or simulated datasets that did not include all the features 
encountered in real recording, such as slow oscillations and/or disturbance by artefacts. �erefore, one solution 
could be to use a fully annotated and parameterised dataset as a ground-truth reference to objectively assess the 
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performance of these di�erent spike sorting algorithms (Fig.�1a). In the same manner, fully annotated datasets 
could also be used to challenge event detectors or noise reduction algorithms (Fig.�1b and c).

In addition, these benchmarks could be very useful for brain-computer interfaces and neural prosthetic 
devices (Fig.�1d and e). �e common approach to assess the performance of such electronic devices is to use 
a large number of neural signal datasets that include a range of various features (e.g. di�erent noise levels, a 
degree of meaningful information load, signal resolution etc.). For this purpose, parameterised datasets with 
independently modi�able features would allow the generation of a large variety of neural signal pro�les in a con-
trolled manner. �is approach could also enable the simulation of experiments for calibration purposes instead of 
performing labour- and cost-intensive experiments with real subjects.

Several approaches, based either on biological or purely computational models, have been proposed13 to gen-
erate reliable (in terms of biological constraints), fully annotated, and �exible benchmarks. With in-vitro biologi-
cal approaches14,15, investigators have conducted simultaneous recordings to capture intracellular signals emitted 
by some neurons located closely to extracellular electrodes. Although this approach relies on real experimental 
data, the limitation is that only a few neurons could be followed by the intracellular recordings, which represent a 
small part of the complex signal recorded at the contiguous extracellular recording sites.

Computational approaches use either compartmental or biophysically data-driven models13,16–24. �e former 
are parameterisable but computationally too demanding when required to simulate a large number of neurons. 
�e latter, in contrast, are computationally simpler and faster but not parameterisable given the use of signal 
templates.

A more recent solution is a hybrid approach, where compartmental and biophysically data-driven models are 
combined: while the compartmental models serve to generate the neural signal, spike template-based models, on 
the other hand, simulate the physiological background noise25. Models based on this approach are a good com-
promise between complexity and bio-realism. �eir great potential relies on their ability to generate a simulated 
signal similar to that arising from a large population of single neurons, leading to a more realistic approach. �ese 
hybrid models could be improved by adding other features found in experimental recordings such as corrupting 
events that could a�ect signal quality.

In the present study, we propose a computational procedure to generate realistic neural signals based on a 
hybrid model approach, in which both real and simulated signal features are combined with a relatively low 
computational requirement. �e generated datasets are fully parameterisable and include all the original features 
found in real recordings such as a variety of di�erent types of artefact and background noise. �e validation stage 
of our procedure explores the similarity between real recordings and our model-generated signals. We show that 

(e)

(d) (c)

(b)

(a)

Filter

Figure 1. Examples of bio-inspired neural benchmark applications. Such benchmarks are needed in two 
contexts, on the one hand, in applications that involve �ne signal processing usually executed on computers 
such as (a) neural pattern detection, (b) cluster classi�cation algorithms and (c) signal denoising methods, and 
on the other hand in applications with direct exploitation of signals, usually executed on electronic devices, such 
as (d) brain-computer interfaces and (e) on-site decoding neural prosthetics.



3

our model is easily modi�able and generates synthetic signals similar to those obtained in distinct experimental 
conditions. We also illustrate the �exibility of our simulator by modelling di�erent types of recording con�gura-
tion (tetrodes and microelectrode arrays), brain tissue (such as juxtaposed layers) and experimental conditions 
(awake or anaesthetised animals). To validate our approach, we focus on reproducing hippocampal recording 
datasets that have been extensively used in previous studies14,26. With our parameterisable bio-realistic procedure, 
we can also easily simulate di�erent experimental conditions. As an example, we show the incidence of di�erent 
levels of artefact in anaesthetised or awake animals.

Results
Creation of a three module simulator of extracellular multi-unit signals.  Our work proposes a 
computational procedure to generate datasets that will provide neuroscientists with a ground-truth reference for 
algorithm and tool evaluation of single and multi-unit signal processing. In our approach, ground-truth from 
real and simulated signals is obtained by adding spike activity, that is, action potentials from nearby neurons and 
background noise from distant neurons (x (n)), slow oscillations (�​300 Hz) from synaptic current inputs (w (n)) 
and artefacts (a (n)) that can be expressed as:

� � �

� � �
�#

s n x n w n a n

s n x n w n a n

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) (1)e e e e

1 1 1 1

In equation�(1) s1 (n) refers to bio-inspired simulation of electrode number 1, with n as discrete time variable 
and su�x e as the total number of simulated electrodes.

Figure�2 summarises the general approach and highlights the modi�able parameters in each individual com-
puting module. �e �exibility of this approach is re�ected in the creation of di�erent benchmark datasets by 
simply adjusting the simulation parameters.

Comparison of simulated and real extracellular hippocampal recordings.  As a starting point, we 
created the contribution of the local spike activity to the signal. For this, we modi�ed an existing simulation 
platform25 designed for a single multi-electrode (i.e. tetrode) to include multiple spatially distinct recording sites. 
�e existing simulator implements a hybrid model that combines detailed compartment models of pyramidal 
cells and interneurons18,27–31 (available via the NEURON32 project) for the closest neurons to the recording sites, 
coupled with spike templates for the distant neurons, all in a 3D volume of “virtual tissue” (Fig.�3a).

�e initial hybrid model 25 that generated the spiking activity and background noise also gave the user, via a 
graphical interface, the option to modify various parameters to generate the datasets. �ese options allowed the 
user to select: a single electrode or a tetrode, a uniform (between a minimum and maximum �ring rates) or expo-
nential (generalised Pareto) distribution of �ring rates, and a proportion of active cells inside a cubic volume. �is 
hybrid model25 was improved in our approach by including any number of recording sites with speci�c coordi-
nates in a volume of “virtual tissue”. We added the possibility to simulate multiple contiguous tissue volumes (e.g. 
cortical layers) with individual con�gurations and the possibility for the user to add customised �ring rate distri-
butions by using the Distribution Fitting App in Matlab33. �ese modi�cations gave more �exibility to the original 
model and enabled us to simulate di�erent experimental scenarios. As an example, we simulated a recording 
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Figure 2. Con�guration parameters of the benchmark dataset generator. For each computing module 
in the benchmark dataset generator, the user has rapid access to allow its modi�cation through a unique �le 
descriptor (.xml �le) to easily create di�erent datasets. �e parameters are listed inside the text boxes next to 
each computing module.
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