A New Algorithm for Multimodal Soft Coupling

Abstract : In this paper, the problem of multimodal soft coupling under the Bayesian framework when the variance of the probabilistic model is unknown is investigated. Similarity of shared factors resulted from Non-negative Matrix Factorization (NMF) of multimodal data sets is imposed in a soft manner by using a probabilistic model. In previous works, it is supposed that this probabilistic model is exactly known. However, this assumption does not always hold. In this paper it is supposed that the probabilistic model is already known but its variance is unknown. So the proposed algorithm estimates the variance of the probabilistic model along with other parameters during the factorization procedure. Simulation results with synthetic data confirm the effectiveness of the proposed algorithm.
Type de document :
Communication dans un congrès
Petr Tichavsky; Massoud Babaie-Zadeh; Olivier Michel; Nadège Thirion-Moreau. 13th International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA 2017), Feb 2017, Grenoble, France. Springer, Latent Variable Analysis and Signal Separation, 10169 (10169), pp.162 - 171, 2017, Theoretical Computer Science and General Issues. 〈10.1007/978-3-319-53547-0_16〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01479306
Contributeur : Christian Jutten <>
Soumis le : mardi 28 février 2017 - 17:23:56
Dernière modification le : samedi 28 juillet 2018 - 01:14:48
Document(s) archivé(s) le : lundi 29 mai 2017 - 16:07:25

Fichier

Farnaz-lva-ica17.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Farnaz Sedighin, Massoud Zadeh, Bertrand Rivet, Christian Jutten. A New Algorithm for Multimodal Soft Coupling. Petr Tichavsky; Massoud Babaie-Zadeh; Olivier Michel; Nadège Thirion-Moreau. 13th International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA 2017), Feb 2017, Grenoble, France. Springer, Latent Variable Analysis and Signal Separation, 10169 (10169), pp.162 - 171, 2017, Theoretical Computer Science and General Issues. 〈10.1007/978-3-319-53547-0_16〉. 〈hal-01479306〉

Partager

Métriques

Consultations de la notice

246

Téléchargements de fichiers

60