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SHORT COMMUNICATION

The use of genomic information 
increases the accuracy of breeding value 
predictions for sea louse (Caligus rogercresseyi) 
resistance in Atlantic salmon (Salmo salar)
Katharina Correa1,2, Rama Bangera2, René Figueroa2, Jean P. Lhorente2 and José M. Yáñez1,2* 

Abstract 

Sea lice infestations caused by Caligus rogercresseyi are a main concern to the salmon farming industry due to 
associated economic losses. Resistance to this parasite was shown to have low to moderate genetic variation and 
its genetic architecture was suggested to be polygenic. The aim of this study was to compare accuracies of breed-
ing value predictions obtained with pedigree-based best linear unbiased prediction (P-BLUP) methodology against 
different genomic prediction approaches: genomic BLUP (G-BLUP), Bayesian Lasso, and Bayes C. To achieve this, 2404 
individuals from 118 families were measured for C. rogercresseyi count after a challenge and genotyped using 37 K 
single nucleotide polymorphisms. Accuracies were assessed using fivefold cross-validation and SNP densities of 0.5, 
1, 5, 10, 25 and 37 K. Accuracy of genomic predictions increased with increasing SNP density and was higher than 
pedigree-based BLUP predictions by up to 22%. Both Bayesian and G-BLUP methods can predict breeding values with 
higher accuracies than pedigree-based BLUP, however, G-BLUP may be the preferred method because of reduced 
computation time and ease of implementation. A relatively low marker density (i.e. 10 K) is sufficient for maximal 
increase in accuracy when using G-BLUP or Bayesian methods for genomic prediction of C. rogercresseyi resistance in 
Atlantic salmon.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Sea lice are common marine external parasites that 
belong to the order of Copepoda. Caligus rogercresseyi is 
the major sea lice species of interest in the southern hem-
isphere, while Lepeophtheirus salmonis is the major spe-
cies of interest in the northern hemisphere. Both species 
affect Atlantic salmon (Salmo salar) and rainbow trout 
(Oncorhynchus mykiss) [1]. C. rogercresseyi parasitize 
farmed salmonids and wild fish in Chile and constitute 
one of the main threats for salmon aquaculture in one of 
the major salmon producing countries [2, 3].

Sea lice can cause skin lesions, osmotic imbalance, and 
increased susceptibility to bacterial and viral infections 

through suppression of host immune responses and dam-
age to the host skin [4, 5]. Sea lice may also play a role in 
the transmission of different fish pathogens [1, 6]. Large 
economic losses occur as a result of reduced feed conver-
sion and growth, indirect mortality, loss of product value, 
and treatment costs [1]. The worldwide cost of the con-
trol of this parasite in the salmon farming industry was 
estimated in 2009 to be US$480M [7].

Different chemicals are used to control sea lice, but 
increasing resistance to antiparasitic drugs has been 
reported [8]. An alternative method to control sea lice is 
selective breeding, which has been proposed as a feasible 
option to improve disease resistance in several livestock 
and aquaculture species [9–13]. To be selected efficiently, 
a trait must exhibit significant genetic variation. Genetic 
parameters have been estimated for C. rogercresseyi 
resistance in Atlantic salmon. Lhorente et  al. [14] esti-
mated a heritability (h2) of 0.32 for sessile C. rogercresseyi 
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count on fins in Atlantic salmon, while Yáñez et al. [15] 
and Correa et al. [16] estimated a h2 of 0.12 for the same 
trait using pedigree and molecular information, respec-
tively. These low to moderate heritabilities indicate that it 
is feasible to include these traits in the breeding program 
for Atlantic salmon.

Using a 50  K genotyping array, a recent study con-
ducted by Correa et  al. [16] provided evidence for a 
polygenic architecture of resistance to C. rogercres-
seyi. Similarly, Houston et al. [17, 18] used a 200 K sin-
gle nucleotide polymorphism (SNP) genotyping array to 
assess the genetic architecture of resistance to L. salmonis 
and observed polygenic inheritance for this trait also. The 
polygenic nature of these traits suggests that major quan-
titative trait loci (QTL) contributing to the genetic vari-
ance are unlikely and thus, that marker-assisted selection 
(MAS) may not be the most appropriate way to include 
molecular information for selection [19]. In such cases, it 
is possible to use a dense SNP genotyping panel to obtain 
genomic estimated breeding values (GEBV) of animals 
that lack own phenotypic records, an approach known 
as genomic selection (GS) [20]. The difference between 
MAS and GS is that MAS uses only single nucleotide 
polymorphisms (SNPs) that are significant in an asso-
ciation analysis, whereas GS uses all SNPs without hav-
ing to set a significance threshold [19]. Genetic gain can 
be increased in salmon breeding programs through the 
use of molecular markers to calculate GEBV, which are 
more accurate than EBV calculated using pedigree-based 
methods [21–23].

Several GS methodologies to predict GEBV have been 
proposed, which differ in prior assumptions on the dis-
tribution of the effects of the SNPs [19]. For example, 
in genomic best linear unbiased prediction (G-BLUP), 
marker effects are assumed to be normally distributed, 
which implies that there is a large number of QTL 
underlying the trait, each with a small effect [20]. In 
Bayesian Lasso, marker effects are assumed to follow a 
double exponential distribution [24], which implies that 
a large proportion of the markers have an effect close 
to zero and a small proportion have moderate to large 
effects [19]. In Bayes C, only a fraction of the markers is 
assumed to have an effect and, all these are assumed to 
have a common variance, instead of locus-specific vari-
ances [25].

Genomic selection has been tested with real data in 
salmonid species in a few studies [26–29] that have 
evaluated growth, fillet color and disease resistance 
traits. In this study, we compared accuracies of pedi-
gree-based BLUP EBV with those obtained with Bayes-
ian and G-BLUP methods for C. rogercresseyi resistance, 
using data from 2404 individuals and a 50 K genotyping 
array.

Methods
Phenotypic records
Phenotype data were available for 2404 Atlantic salmon 
smolts from 118 families (i.e. progeny of 118 dams and 40 
sires) from the breeding population of Salmones Chaicas, 
Xth Region, Chile. These individuals were experimentally 
challenged with C. rogercresseyi. The average number of fish 
per family was 22 and ranged from 9 to 24, and the aver-
age weight of fish was 274.9 g (SD = 90.6 g). The fish were 
tagged with passive integrated transponders, acclimated, 
and then distributed to three replicate tanks. The chal-
lenge test was carried out as described previously [14–16]. 
Briefly, infestation with the parasite was carried out by using 
13 to 24 copepodids per fish and stopping the water flow for 
6 h after infestation. The challenge lasted 6 days; then, fish 
were euthanized and fins from each fish were collected and 
fixed for processing and lice counting. The resistance trait 
was defined as the count of sessile lice per fish on all fins 
after the infestation period, since that is highly representa-
tive of the total lice count on the fish [14]. Experimental 
tank and final body weight were recorded for each fish.

Genotypes
Genotype data were available from a previous study [16]. 
Briefly, genomic DNA was extracted from fin clips using 
a commercial kit (DNeasy Blood and Tissue, Qiagen), 
quality controlled and quantified. All phenotyped fish 
were genotyped using a 50 K SNP Affymetrix® Axiom® 
myDesign™ Genotyping Array designed by Aquainnovo 
and the University of Chile. More details about the SNPs 
included in the 50  K array are in Correa et  al. [30] and 
Yáñez et al. [31, 32].

The genotypes were quality controlled using the Affym-
etrix Genotyping Console and the SNPolisher R package 
following the Axiom® Genotyping Solution Data Analy-
sis Guide [33]. Additional quality control steps were con-
ducted by filtering out SNPs with a Hardy–Weinberg 
equilibrium test p value less than 0.00001, an SNP call 
rate lower than 0.95 and a minor allele frequency lower 
than 0.01.

Estimation of breeding values
The conventional pedigree-based approach, P-BLUP, was 
used as the control for genomic evaluations, and EBV for 
each individual were obtained using a linear mixed model 
implemented in BLUPF90 [34]. The model used was as 
follows:

where y is a vector of phenotypes (lice count on fins),  
β is a vector of fixed effects (mean, tank and body weight 
effects), g is a vector of random additive polygenic genetic 
effects that follows a normal distribution ~N (0,Aσ 2

g ),  

y = Xβ+ Tg + e,
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X and T are incidence matrices, A is the pedigree addi-
tive relationship matrix, and e is the residual [35].

The genomic EBV (GEBV) for each individual were 
estimated using three different GS models: G-BLUP, 
Bayesian Lasso and Bayes C. G-BLUP was as imple-
mented in the BLUPF90 software [34]. G-BLUP is a 
modification of the BLUP method, where the numerator 
relationship matrix A is replaced by a genomic relation-
ship matrix G, as described by VanRaden [36].

For Bayesian methods, marker and additive polygenic 
effects were estimated jointly using the following model 
implemented in the GS3 software [37]:

where α is a vector of random marker allele substitution 
effects and Z is the corresponding incidence matrix. The 
Gibbs sampler was run using 100,000 iterations with a 
burn-in of 20,000 iterations. Priors were drawn from dou-
ble—exponential and scaled—inverse χ2 distributions, for 
Bayesian Lasso and Bayes C, respectively. Bayesian GEBV 
were estimated as the sum of the polygenic and marker 
effects.

Pedigree (P-BLUP) and genomic (G-BLUP) heritabili-
ties were calculated using the AIREMLF90 software [34] 
as follows: h2 = σ 2

g /(σ
2
g + σ 2

e ), where σ 2
g  is the estimate 

of the additive genetic variance and σ 2
e  is the estimate of 

the residual variance.

Comparison of models
The different models were compared using a fivefold 
cross validation scheme. Briefly, all genotyped and phe-
notyped animals were randomly separated into five 
validations sets, which were predicted one at a time by 
masking their phenotypes and using the remaining ani-
mals as training set to estimate the marker effects. Thus, 
for each validation run, the dataset was split into a train-
ing set (80%) and a validation set (20%). To reduce the 
stochastic effects, this cross-validation analysis was rep-
licated 10 times. Accuracy was used to assess the perfor-
mance of each model and was estimated as:

where REBV ,y is the correlation between the EBV of a 
given model (predicted for the validation set using infor-
mation from the training set) and the actual phenotype, 
while h is the square root of the pedigree-based esti-
mate of heritability [26, 38]. To test prediction accura-
cies obtained by using various SNP densities, 0.5, 1, 5, 10 
and 25 K SNPs were selected from the full set as follows. 
First, 500 SNPs that had a level of linkage disequilibrium 
(LD, measured as r2) less than 0.2 and were homogene-
ously distributed across the genome were selected among 

y = Xβ+ Zα+ Tg + e,

REBV ,BV =
REBV ,y

h
,

the SNPs that passed quality control. Then, SNPs with 
a homogeneous distribution across the genome were 
added to the first 500 SNPs to create the 1 K panel. The 
same procedure was reiterated to create the 5, 10 and 
25  K panels. Accuracies were then calculated for each 
model and SNP density, compared to those obtained with 
the P-BLUP model, and the relative increase in accuracy 
was assessed.

Results and discussion
A total of 36,616 SNPs passed the genotyping quality 
control. An average lice count on fins of 5.1 (SD =  4.4) 
and an average final body weight of 281  g (SD =  92.8) 
were obtained. The average lice number per family 
ranged from 2.3 to 11.3. The pedigree-based estimate of 
heritability of lice count on fins was equal to 0.10, which 
is consistent with a previous study on the same popula-
tion [15], while the marker-based estimate of heritability 
using the 37 K full set was equal to 0.11.

In all cases, prediction accuracies obtained with the 
GS models were higher than those obtained with the 
pedigree-based model, which had an accuracy of 0.41 
(Table 1). It is interesting to note that as few as 500 SNPs 
were sufficient to increase the accuracy of breeding value 
predictions. Further tests using even lower marker densi-
ties may be interesting to assess at which marker density 
accuracy of genomic prediction drops below that based 
on pedigree information. The relative increases in accu-
racy of the different methods for each SNP density are 
shown on Fig. 1. Comparing the results for all SNP densi-
ties shows that the different GS models behaved similarly, 
with accuracies ranging from 0.45 to 0.5. In general, accu-
racies increased moderately with increasing SNP density 
and achieved asymptotic values when 10 K or more SNPs 
were used. Bayesian Lasso performed slightly better than 
the other methods at lower SNP densities, but at higher 
densities, prediction accuracy was similar for all three 
GS methods. We observed a slight decrease in accuracy 
with Bayes C when using the full SNP dataset, which was 
not observed with G-BLUP or Bayesian Lasso. G-BLUP 
mostly captures genetic relationships between animals, 
whereas Bayes C uses the LD between SNPs and QTL to 
calculate predictions. In Bayes C, only a fraction of the 
SNPs is assumed to have an effect on the trait, and thus 
when adding more SNPs for calculating predictions, the 
use of redundant information (SNPs in high LD with each 
other) [39] might lead to incorrect selection of the subset 
of SNPs with an effect from the whole set. The accura-
cies obtained in our study on Atlantic salmon were not as 
high as those reported for other livestock species, which 
can be even higher than 0.85 in some cases. Nevertheless, 
accuracies were similar to those determined in previous 
studies on Atlantic salmon for L. salmonis resistance, for 
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example, Tsai et al. [29] reported accuracies ranging from 
0.4 to 0.6. To further increase the accuracy of GEBV pre-
dictions in Atlantic salmon breeding programs, it may be 
necessary to increase the number of individuals and gen-
erations in the training population [40].

We found that the three GS methods had similar GEBV 
prediction accuracies, in spite of the different priors used 
in each model. This is the first study that aims at evaluat-
ing the performance of GS methods for C. rogercresseyi 
resistance in Atlantic salmon. Moreover, it is the first 
study that evaluates Bayesian method performance for 
sea lice resistance using a high-density SNP array and dif-
ferent SNP densities in this species. We demonstrate that 
it is possible to increase the accuracy of breeding value 
predictions for C. rogercresseyi resistance using SNP 
information.

Prediction accuracies obtained by using genome-
wide marker information were higher than those 
obtained by using only pedigree information to account 
for the relationship between individuals. These results 
are in line with other studies that evaluated the per-
formance of GS for different traits in Atlantic salmon 

[26, 27]. For example, using only pedigree informa-
tion, Ødegård et  al. [26] estimated an EBV reliability 
(defined as R2

EBV ,y/h
2) of 0.34 and 0.36, which increased 

by up to 50 and 20% for L. salmonis resistance and fillet 
color when using 22 K SNPs in an admixed population. 
For growth traits, Tsai et  al. [27] achieved an increase 
in accuracy by up to 20% when using 5 K SNPs. Simi-
larly, Tsai et al. [29] achieved an increase in accuracy of 
27% when using 5 K SNPs for L. salmonis resistance. A 
recent study in rainbow trout [28] reported similar pre-
diction accuracies between P-BLUP and GS methods 
using a 57 K genotyping array for bacterial cold water 
disease resistance.

Our results show that SNP density had a moderate 
impact on prediction accuracy for all GS methods tested 
in this study, and that as few as 500 SNPs were sufficient 
to increase EBV accuracy over P-BLUP. Moreover, 10 K 
may suffice to obtain maximum increases in accuracy for 
this trait and this population.

This study used real data from a breeding popula-
tion and the results suggest that GS may be effective in 
improving resistance to this sea lice species. Further 
studies aimed at evaluating the use of low-density panels 
and imputation strategies are necessary to determine the 
minimum required SNP density for GS and thus reduce 
genotyping costs.

Conclusions
It is possible to improve prediction accuracy for C. rog-
ercresseyi resistance in Atlantic salmon by using different 
densities of SNPs selected from a 37 K panel. By applying 
different genomic prediction approaches, we showed that 
as few as 500 SNPs were sufficient to increase the accu-
racy of EBV to a higher value than that obtained from 
pedigree-based methods. We found that the maximum 
increase in accuracy was obtained with 10 K SNPs when 
using G-BLUP and Bayesian methods.
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Table 1  Accuracies for  sea lice (Caligus rogercresseyi) 
resistance obtained using different models and  different 
marker densities

P-BLUP accuracy only applies to 0 markers as it does not use marker information

Marker density P-BLUP G-BLUP Bayesian Lasso Bayes C

0 0.41 – – –

500 – 0.45 0.47 0.45

1000 – 0.48 0.49 0.48

10,000 – 0.50 0.50 0.50

25,000 – 0.50 0.50 0.50

50,000 – 0.50 0.50 0.49

Fig. 1  Relative increase in EBV prediction accuracy of genomic 
selection models for Caligus rogercresseyi resistance compared to a 
pedigree-based BLUP model
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