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1 Introduction

Interfaces play a fundamental role in the mechanical strength of a masonry structure.

They represent a zone of weakness in which the localisation of high stresses may activate

microcracks nucleation and they are the principal planes of microcracks propagation in

many loading cases. Generally, two classical approaches in interfaces modelling can be

distinguished. The first one, called phenomenological method, is based on experimental

evidences and the second one, defined as deductive method, is founded on micromechanical

concepts. Within the general framework of the deductive method, basically, two main

approaches can be identified: the so-called simplified micromodelling approach and the

detailed micromodelling approach.

The simplified micromodelling approach consists in modelling mortar and brick/mortar

interfaces as a whole discontinuous element, usually referred to as joint. In the last

few decades, after the first attempt due to Page (1978), several authors have focused

on this kind of micromodelling approach and a number of models can be found in

the specialised literature (Lotfi and Shing, 1994; Gambarotta and Lagomarsino, 1997);

(de Buhan and de Felice, 1997; Lourenço, and Rots, 1997; Drosopoulosa, Stavroulakis

and Massalasa, 2006; Milani, Lourenço and Tralli, 2006; Giambanco and Di Gati, 1997;

Raous, Cangemi and Cocu, 1999; Calderini and Lagomarsino, 2008; Spada, Giambanco

and Rizzo, 2009). Lotfi and Shing (1994), Lourenço, and Rots (1997), Gambarotta and

Lagomarsino (1997), Giambanco and Di Gati (1997), among others, have proposed
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interface models, which include concepts developed in the theory of plasticity for non-

standard materials and in fracture mechanics. All these models adopt a Mohr-Coulomb

failure criteria and use an internal variable to describe a post-peak softening behavior.

These interface constitutive models are usually expressed in terms of contact tractions and

conjugate generalised joint strains, derived from the discontinuities of the displacements at

the joint. In particular, Lotfi and Shing (1994) presented a constitutive model for dilatant

interfaces that was able to simulate initiation and propagation of fracture under combined

normal and tangential stresses. Gambarotta and Lagomarsino (1997) proposed a simplified

micromodelling method, based on continuum damage mechanics, aimed at taking into

account both the mortar damage and the brick/mortar decohesion caused by opening

and frictional sliding. Moreover, Raous, Cangemi and Cocu (1999) have developed a

model, improved by Monerie and Raous (2000), which predicts the damage evolution at

the interface among two initially bonded deformable bodies. They proposed a consistent

model that accounts for adhesion, Coulomb friction and unilateral contact. According to

Raous, Cangemi and Cocu (1999), adhesion and friction are strictly coupled with damage,

which has been modelled in agreement with Fremond (1987). This kind of interface model

was adopted by Fouchal, Lebon and Titeux (2009), to model mortar joints in masonry

assemblies.

In the detailed micromodelling approach, the masonry joints are represented by mortar

continuous elements and by discontinuous brick/mortar interface elements. This approach

is less common in literature than the simplified one, probably due to its significant

computational cost in numerical analysis of masonry structures. Nevertheless, it has been

proven to be a powerful tool in simulating, in an accurate way, the behavior of small masonry

assemblies (Alfano and Sacco, 2006; Gabor et al., 2006; Pelissou and Lebon, 2009; Rekik

and Lebon, 2010, 2012; Scimemi, Giambanco and Spada, 2014). Alfano and Sacco (2006)

proposed an interesting interface model, combining arguments from elastoplasticity and

continuum damage mechanics, introducing, within an interface representative elementary

volume, the distinction between a linear-elastic-undamaged zone and a damaged zone

and considering an unilateral Coulomb friction law. Pelissou and Lebon (2009) applied

the model by Gambarotta and Lagomarsino for characterizing the local behavior of the

brick/mortar interface through the matched asymptotic expansion method (Lebon, Rizzoni

and Ronel-Idrissi, 2014; Lebon and Rizzoni, 2010; Lebon and Zaittouni, 2010; Lebon and

Rizzoni, 2011).

Within the framework of the study of behavior of brittle materials, with particular

reference to masonry, the Saint Venant-Kirchhoff material has been employed by

Briseghella, Pavan and Secchi (2011). In particular, they investigated the softening

behavior and the crack propagation in brittle materials through a formulation in finite

strains and finite displacements.

In this paper, a nonlinear-imperfect interface model is proposed. Therefore, the

formulated interface law is employed to model brick/mortar interfaces in masonry

structures, within the framework of the detailed micromechanical approach. The proposed

model is obtained from a consolidated approach (Rekik and Lebon, 2010, 2012; Fouchal

et al., 2014), also defined as Imperfect Interface Approach (IIA), coupling arguments of

asymptotic analysis (Abdelmoula, Coutris and Marigo, 2011; Benveniste, 2006; Lebon

and Rizzoni, 2008, 2010, 2011; Rizzoni and Lebon, 2013; Rizzoni et al., 2014) extended

to the finite strain theory (Dumont, Lebon and Rizzoni, 2014; Rizzoni, Dumont and

Lebon, 2015), with a homogenisation method for microcracked media under the non-

interacting approximation (NIA) (Kachanov, 1994; Mauge and Kachanov, 1994; Tsukrov

and Kachanov, 2000; Kachanov and Sevostianov, 2005; Sevostianov and Kachanov,
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2013). In particular, the asymptotic expansion technique has been treated by many authors,

cf. Klarbring (1991) for general applications, Cecchi and Sab (2002) as far as it concerns

the application to masonry and Avila-Pozos, Klarbring and Movchan (1999) for the

application to an orthotropic highly inhomogeneous layered structure.

The proposed approach aims to take into account at the macroscale, some microscale

effects as microcracking and locally large deformations, to reproduce the overall pre-peak

response of small masonry structures. The principal peculiarities of the proposed model

are the analysis of a St. Venant-Kirchhoff material (Dumont, Lebon and Rizzoni, 2014;

Rizzoni, Dumont and Lebon, 2015), the introduction of microcracks at the interface level

(Rekik and Lebon, 2010, 2012; Fouchal et al., 2014) and the introduction of a smooth

interfacial roughness (Fouchal et al., 2014). The model proposed in this paper is expected to

be useful in all those mechanical problems where solid interfaces together with geometrical

and material nonlinearities have to be taken into account in a simple and reliable way

at the macroscale. Potential applications could range from the bonding characterisation

of cold-welded metallic joints (Zhang and Bay, 1997; Lu et al., 2010) to the collapse

of FRP adhesive joints (Ascione, 2009b,a) and the simulation of masonry-FRP bond

(Basilio et al., 2014; Ceroni et al., 2014), with special attention to the modelling of

GFRP beams obtained by bonding simple panels (Ascione et al., 2015). In particular, its

applicability in modelling brick/mortar interfaces is illustrated in Section 4.

The paper is organised as follows. In Section 2, the general theoretical background

is traced, by introducing the reference problem, and the interface model is developed

within the context of nonlinear elasticity by extending the asymptotic strategy proposed

in Rizzoni, Dumont and Lebon (2015) to St. Venant-Kirchhoff anisotropic materials. Due

to the assumption of anisotropy, additional terms have to be taken into account within

the analysis (cf. coefficients Â33α3, Âβ3α3, ... in Eqs. (23) and (24)). Remarkably, our

calculations show that only the elastic coefficient Â3333 enters the final contact law. This

law is specialised to the case of orthotropic material in Section 3, where two model

enhancements are introduced to take into account the microcracking phenomenon and to

model geometrical imperfection of the interface through a smooth roughness. Finally, in

Section 4, numerical results based on the proposed approach are presented and discussed.

A numerical benchmark, developed in the finite element method framework, is employed

to establish the model soundness and consistency. Numerical comparisons with the case of

linear elasticity are also performed. In the paper, the Einstein summation rule is used, Latin

indexes take the values 1, 2, 3 and Greek indexes get the values 1 and 2.

2 A St. Venant-Kirchhoff interface model

2.1 General framework

Let an orthonormal Cartesian frame (O; e1, e2, e3) be introduced, with x1, x2 and x3 be

the corresponding coordinates of a particle belonging to the system Ωε. Accordingly, let

define the composite system Ωε = Ωε
± ∪ Bε comprising two bodies Ωε

± = {(x1, x2, x3) ∈
Ωε : ±x3 > ε

2} denoted as adherents and the thin layer Bε = {(x1, x2, x3) ∈ Ωε : |x3| <
ε
2} denoted in what follows as interphase (or adhesive), and let assume these constituents

to be perfectly bonded through the surfaces Sε
± = {(x1, x2, x3) ∈ Ωε : x3 = ± ε

2}. The

origin of the reference system belongs to the midplane of the interphase and the

x3-axis runs perpendicular to the open bounded set S = {(x1, x2, x3) ∈ Ωε : x3 = 0}, in

the following referred as interface. The materials of the adhesive and the adherents are
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both nonlinear and modelled as St. Venant-Kirchhoff materials. On a part Γ1 of the external

boundary ∂Ωε, a surface load p is applied, and on a part Γ0 of ∂Ωε such that Γ0 ∩ Γ1 =
∅ the following boundary condition is imposed u = 0. Moreover, it is assumed that the

boundary conditions are imposed far from the interphase domain: Γ0 ∩ Bε = ∅, Γ1 ∩ Bε =
∅. Finally, a body force f is considered acting on the adherents Ωε

±.

Accordingly, the equations governing the equilibrium problem of the composite system

are expressed as follows (Krasucki, Münch, and Ousset, 2001):


















































(sεij + sεkju
ε
i,k),j + fi = 0 in Ωε

±

(sεij + sεkju
ε
i,k)nj = pi on Γ1

(sεij + sεkju
ε
i,k),j = 0 in Bε

[[

sεi3 + sεk3u
ε
i,k

]]

= 0 on Sε
±

[[uε
i ]] = 0 on Sε

±

uε
i = 0 on Γ0

sεij = A±

ijhkEhk(u
ε) in Ωε

±

sεij = Aε
ijhkEhk(u

ε) in Bε

(1)

where sε is the second Piola-Kirchhoff stress tensor, E(uε) is the Green-Lagrange

strain tensor (Eij(u
ε) = 1

2 (ui,j + uj,i + uk,iuk,j) with i, j = 1, 2, 3) and A
±, Aε are the

elasticity tensors of the deformable adherents and of the adhesive, respectively. Such an

interphase material is assumed to be anisotropic. Moreover, the soft-interphase assumption

holds, i.e. elasticity coefficients linearly rescaling with ε, according to the following

relation (Geymonat, Krasucki and Lenci, 1999):

Aε
ijkl = εÂijkl (2)

where Â is an anisotropic elastic tensor of the same order of magnitude of the elastic tensors

A
± of the adherents (Geymonat, Krasucki and Lenci, 1999).

2.2 Interface law: asymptotic expansion method

Since the interphase is assumed to behave as a thin layer of thickness ε, it is natural to
seek the solution of the equilibrium problem, expressed by Eqs. (1), by using asymptotic
expansions with respect to the small parameter ε (Lebon, Rizzoni and Ronel-Idrissi, 2014).
In particular, the following asymptotic series with fractional powers are exploited:

{

u
ε(x1, x2, x3) = u

0 + ε1/3u1 + ε2/3u2 + ε u
3 + ε4/3u4 + ε5/3u5 + ε2u6 + o(ε2)

s
ε(x1, x2, x3) = s

0 + ε1/3s1 + ε2/3s2 + ε s
3 + ε4/3s4 + ε5/3s5 + ε2s6 + o(ε2)

(3)

It is worth remarking that such a choice of a fractional expansion is due to energy-based

evidences (Rizzoni, Dumont and Lebon, 2015). In particular, from a quite simple mono-

dimensional example, proposed in Rizzoni, Dumont and Lebon (2015), it has been put in

evidence that the solution in terms of displacement jump is proportional to ε
2
3 .

In agreement with Ciarlet (1997), let the change of variable ĝ : (x1, x2, x3) →
(z1, z2, z3) be introduced in Bε, with z1 = x1, z2 = x2, z3 = x3/ε. Moreover, let the

change of variable ḡ : (x1, x2, x3) → (z1, z2, z3) be introduced in Ωε
±, with z1 = x1,

z2 = x2, z3 = x3 ± (1− ε)/2. As a result, the interphase Bε and the adherents Ωε
±

are scaled in domains of unitary thickness B and Ω±, respectively. In what follows,

symbols ·̄ and ·̂ refer to rescaled quantities for B and Ω±, respectively. More precisely,

ûε = uε ◦ ĝ−1 and ŝε = sε ◦ ĝ−1 denote displacement and stress fields for B, and ūε =
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uε ◦ ḡ−1 and s̄ε = sε ◦ ḡ−1 are displacement vector and stress tensor for Ω±, uε and

sε being the corresponding fields on the system Ωε. The internal and external forces,

f and p, respectively, are assumed to be independent of ε. As a consequence, it is

set f̄(z1, z2, z3) = f(x1, x2, x3) and p̄(z1, z2, z3) = p(x1, x2, x3). Moreover, under the

change of variables, the domains Γ0 and Γ1 are transformed into the domains denoted by

Γ̄0 and Γ̄1, respectively. As a result, the governing equations of the equilibrium problem,

in the rescaled composite system, are expressed as follows:















































(s̄ij + s̄kj ūi,k),j + f̄i = 0 in Ω±

(s̄ij + s̄kj ūi,k)nj = p̄i on Γ̄1

(ŝiα + ŝkαûi,k),α + 1
ε (ŝi3 + ŝk3ûi,k),3 = 0 in B

s̄i3 + s̄k3ūi,k = ŝi3 + ŝα3ûi,α + 1
ε ŝ33ûi,3 on S±

ūi = ûi on S±

ūi = 0 on Γ̄0

s̄ij = A±

ijhkĒhk(ū) in Ω±

ŝij = Aε
ijhkÊhk(û) in B

(4)

where Ē, Ê denote the rescaled Green-Lagrange strain tensors in the adherents and in the

adhesive.
Based on Eqs. (3) the relevant fields, in the rescaled adhesive and adherents, can be

expressed as asymptotic expansions in the following way:















ŝ
ε(z1, z2, z3) = ŝ

0 + ε1/3ŝ1 + ε2/3ŝ2 + ε ŝ
3 + ε4/3ŝ4 + ε5/3ŝ5 + ε2ŝ6 + o(ε2)

s̄
ε(z1, z2, z3) = s̄

0 + ε1/3s̄1 + ε2/3s̄2 + ε s̄
3 + ε4/3s̄4 + ε5/3s̄5 + ε2s̄6 + o(ε2)

û
ε(z1, z2, z3) = û

0 + ε1/3û1 + ε2/3û2 + ε û
3 + ε4/3û4 + ε5/3û5 + ε2û6 + o(ε2)

ū
ε(z1, z2, z3) = ū

0 + ε1/3ū1 + ε2/3ū2 + ε ū
3 + ε4/3ū4 + ε5/3ū5 + ε2ū6 + o(ε2)

(5)

In the following, the conditions holding in the rescaled interphase B are detailed. These

latter are obtained by substituting the first of Eqs. (5) into the equilibrium equation holding

in the interphase (i.e., third equation of the system (4)) and by identifying similar terms

with respect to the power of the parameter ε:

• Power of ε : −2

(û0
i,3ŝ

0
33),3 = 0, (6)

• Power of ε : −5/3

(û0
i,3ŝ

1
33 + û1

i,3ŝ
0
33),3 = 0, (7)

• Power of ε : −4/3

(û0
i,3ŝ

2
33 + û1

i,3ŝ
1
33 + û2

i,3ŝ
0
33),3 = 0, (8)

• Power of ε : −1

(û0
i,3ŝ

0
3α),α + (ŝ0i3 + û0

i,αŝ
0
3α),3

+(û0
i,3ŝ

3
33 + û1

i,3ŝ
2
33 + û2

i,3ŝ
1
33 + û3

i,3ŝ
0
33),3 = 0, (9)
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• Power of ε : −2/3

(û0
i,3ŝ

1
3α + û1

i,3ŝ
0
3α),α + (ŝ1i3 + û0

i,αŝ
1
3α + û1

i,αŝ
0
3α),3

+(û0
i,3ŝ

4
33 + û1

i,3ŝ
3
33 + û2

i,3ŝ
2
33 + û3

i,3ŝ
1
33 + û4

i,3ŝ
0
33),3 = 0, (10)

• Power of ε : −1/3

(û0
i,3ŝ

2
3α + û1

i,3ŝ
1
3α + û2

i,3ŝ
0
3α),α

+(ŝ2i3 + û0
i,αŝ

2
3α + û1

i,αŝ
1
3α + û2

i,αŝ
0
3α),3

+(û0
i,3ŝ

5
33 + û1

i,3ŝ
4
33 + û2

i,3ŝ
3
33 + û3

i,3ŝ
2
33 + û4

i,3ŝ
1
33 + û5

i,3ŝ
0
33),3 = 0, (11)

• Power of ε : 0

(û0
i,3ŝ

3
3α + û1

i,3ŝ
2
3α + û2

i,3ŝ
1
3α + û3

i,3ŝ
0
3α),α + (ŝ0iα + ŝ0αβ û

0
i,β)α

+(ŝ3i3 + û0
i,αŝ

3
3α + û1

i,αŝ
2
3α + û2

i,αŝ
1
3α + û3

i,αŝ
0
3α),3

+(û0
i,3ŝ

6
33 + û1

i,3ŝ
5
33 + û2

i,3ŝ
4
33 + û3

i,3ŝ
3
33 + û4

i,3ŝ
2
33 + û5

i,3ŝ
1
33 + û6

i,3ŝ
0
33),3 = 0,

(12)

• . . .

By substituting the first two equations of (5) into the continuity condition of the traction

vector holding through the rescaled interfaces S± (i.e., fourth equation of system (4)), and

by applying the usual identification procedure, the following relationships are obtained:

• Power of ε : −1

0 = (û0
i,3ŝ

0
33) (13)

• Power of ε : −2/3

0 = (û0
i,3ŝ

1
33 + û1

i,3ŝ
0
33) (14)

• Power of ε : −1/3

0 = (û0
i,3ŝ

2
33 + û1

i,3ŝ
1
33 + û2

i,3ŝ
0
33) (15)

• Power of ε : 0

(s̄0i3 + ū0
iks̄

0
k3) = (ŝ0i3 + û0

i,αŝ
0
α3 + û0

i,3ŝ
3
33 + û1

i,3ŝ
2
33 + û2

i,3ŝ
1
33 + û3

i,3ŝ
0
33) (16)

• Power of ε : 1/3

(s̄1i3 + ū0
i,ks̄

1
k3 + ū1

i,ks̄
0
k3) = (ŝ1i3 + û0

i,αŝ
1
α3 + û1

i,αŝ
0
α3)

+(û0
i,3ŝ

4
33 + û1

i,3ŝ
3
33 + û2

i,3ŝ
2
33 + û3

i,3ŝ
1
33 + û4

i,3ŝ
0
33) (17)
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• Power of ε : 2/3

(s̄2i3 + ū0
i,ks̄

2
k3 + ū1

i,ks̄
1
k3 + ū2

i,ks̄
0
k3) = (ŝ233 + û0

i,αŝ
2
α3 + û1

i,αŝ
1
α3 + û0

i,αŝ
2
α3)

+(û0
i,3ŝ

5
33 + û1

i,3ŝ
4
33 + û2

i,3ŝ
3
33 + û3

i,3ŝ
2
33 + û4

i,3ŝ
1
33 + û5

i,3ŝ
0
33) (18)

• Power of ε : 1

(s̄3i3 + ū0
i,ks̄

3
k3 + ū1

i,ks̄
2
k3 + ū2

i,ks̄
1
k3 + ū3

i,ks̄
0
k3)

= (ŝ3i3 + û0
i,αŝ

3
α3 + û1

i,αŝ
2
α3 + û2

i,αŝ
1
α3 + û3

i,αŝ
0
α3)

+(û0
i,3ŝ

6
33 + û1

i,3ŝ
5
33 + û2

i,3ŝ
4
33 + û3

i,3ŝ
3
33 + û4

i,3ŝ
2
33 + û5

i,3ŝ
1
33 + û6

i,3ŝ
0
33)

(19)

• . . .

It is worth noting that the above equations hold both in S+ and in S−. For the sake of

brevity, they have been detailed only in one case. Moreover, by remarking that the left-

hand sides in Eqs. (16-19) can be identified as the expansions of the e3 components of

the first Piola-Kirchhoff stress tensor P̄i3 = (s̄i3 + ūiks̄k3) in the adherents, a significant

simplification of these equations it is possible.

According to the soft-material-interphase assumption, by substituting Eq. (2) in the

constitutive law holding in the interphase B of the rescaled domain (i.e., last equation of

the problem (4)), written for j = 3, the following conditions are deduced:

• Power of ε : −1

0 = (û0
k,3û

0
k,3) (20)

• Power of ε : −2/3

0 = (û0
k,3û

1
k,3 + û1

k,3û
0
k,3) (21)

• Power of ε : −1/3

0 = (û0
k,3û

2
k,3 + û1

k,3û
1
k,3 + û2

k,3û
0
k,3) (22)

• Power of ε : 0

ŝ0α3 = Â33α3

[

û0
3,3 + (û0

s,3û
3
s,3 + û1

s,3û
2
s,3)

]

+
1

2
Âβ3α3(û

0
β,3 + û0

s,βû
0
s,3)

ŝ033 = Â3333

[

û0
3,3 + (û0

s,3û
3
s,3 + û1

s,3û
2
s,3)

]

+
1

2
Â33β3(û

0
β,3 + û0

s,β û
0
s,3) (23)

• Power of ε : 1/3

ŝ1α3 = Â33α3

[

û1
3,3 + (û0

s,3û
4
s,3 + û1

s,3û
3
s,3 +

1

2
û2
s,3û

2
s,3)

]

+
1

2
Âβ3α3(û

1
β,3 + û0

s,β û
1
s,3 + û1

s,βû
0
s,3)

ŝ133 = Â3333

[

û1
3,3 + (û0

s,3û
4
s,3 + û1

s,3û
3
s,3 +

1

2
û2
s,3û

2
s,3)

]

+
1

2
Â33β3(û

1
β,3 + û0

s,βû
1
s,3 + û1

s,β û
0
s,3)

(24)
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• . . .

From Eqs. (20–23) it follows that:

û0
,3 = 0 in B ⇒ [û0] = 0 (25)

û1
,3 = 0 in B ⇒ [û1] = 0 (26)

ŝ0α3 = 0 = ŝ033 in B (27)

where it is set [g](z1, z2) = g(z1, z2, 1/2)− g(z1, z2,−1/2) for g : B 7→ R
3. By

combining Eqs. (25-27) into Eqs. (6-9), the following relationship is obtained:

(û2
i,3ŝ

1
33)3 = 0 in B (28)

which integrated with respect to z3 gives

û2
i,3ŝ

1
33 = const. = P̄ 0

i3|S±
in B (29)

where P̄ 0
i3|S±

is the common value taken at the interfaces S± (cfr. Eq. (16)). Moreover, by

substituting Eq. (24) and Eqs. (25-27) into Eq. (29) the following relationship is obtained:

1

2
Â3333(| û2

i,3 |2 û2
i,3) = P̄ 0

i3 in B (30)

By solving with respect to û2
,3 and by integrating with respect to z3 one has:

[û2] =
1

( 12 Â3333)1/3
1

| P̄0e3 |2/3 P̄
0e3 (31)

Thereby, by substituting Eqs. (20-23) into Eqs. (16-18) it is obtained that:

[P̄0e3] = 0 (32)

[P̄1e3] = 0 (33)

[P̄2e3] = 0 (34)

with

P̄ 0
i3 =

(

s̄0i3 + ū0
i,ks̄

0
k3

)

(35)

P̄ 1
i3 =

(

s̄1i3 + ū0
i,ks̄

1
k3 + ū1

i,ks̄
0
k3

)

(36)

P̄ 2
i3 =

(

s̄2i3 + ū0
i,ks̄

2
k3 + ū1

i,ks̄
1
k3 + ū2

i,ks̄
0
k3

)

(37)

The final step of the asymptotic expansion method consists in applying some matching

conditions to find the proper interface law for the limit equilibrium problem, in which the

interphase is replaced by the limit interface S and the adherents by the domains Ω0
± =

{(x1, x2, x3) ∈ Ω : ±x3 > 0}. By taking into account the asymptotic expansion of the
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displacement field (3) and assuming that uε in the adherent can be expanded in a Taylor

series representation along the x3−direction, it results:

uε
(

x̄,±ε

2

)

= uε
(

x̄, 0±
)

± ε

2
uε
,3(x̄, 0

±) + · · ·

= u0(x̄, 0±) + ε1/3u1(x̄, 0±) + ε2/3u2(x̄, 0±)

+ε

(

u3(x̄, 0±)± 1

2
u0
,3(x̄, 0

±)

)

+ · · · (38)

In view of the continuity of the displacements at the interfaces Sε
± and S± one has

u0(x̄, 0±) + ε1/3u1(x̄, 0±) + ε2/3u2(x̄, 0±) + · · ·

= û0(z̄,±1

2
) + ε1/3û1

(

z̄,±1

2

)

+ · · ·

= ū0

(

z̄,±1

2

)

+ ε1/3ū1

(

z̄,±1

2

)

+ · · · (39)

and, identifying the terms in the same powers of ε, it is deduced that:

u0(x̄, 0±) = û0

(

z̄,±1

2

)

= ū0

(

z̄,±1

2

)

u1(x̄, 0±) = û1

(

z̄,±1

2

)

= ū1

(

z̄,±1

2

)

u2(x̄, 0±) = û2

(

z̄,±1

2

)

= ū2

(

z̄,±1

2

)

(40)

Analogous results can be obtained for the tractions vector, herein expressed in terms of the

first Piola-Kirchhoff tensor:

P0(x̄, 0±)e3 = P̂0

(

z̄,±1

2

)

e3 = P̄0

(

z̄,±1

2

)

e3

P1(x̄, 0±)e3 = P̂1

(

z̄,±1

2

)

e3 = P̄1

(

z̄,±1

2

)

e3

P2(x̄, 0±)e3 = P̂2

(

z̄,±1

2

)

e3 = P̄2

(

z̄,±1

2

)

e3 (41)

Let the following notation be adopted: [[g]] := g(x, 0+)− g(x, 0−) with g : Ω0
+ ∪ Ω0

− 7→
R

3; accordingly, the proper contact conditions for the limit equilibrium problem, i.e.

expressed in terms of the relevant fields defined on Ω0
+ ∪ Ω0

−, can be obtained by using

this relation into the interphase laws (Eqs. (25), (26), (31) and Eqs. (32)–(34)):

[ūl] =
[[

ul
]]

l = 0, 1, 2

[P̄le3] =
[[

Ple3
]]

l = 0, 1, 2
(42)
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By applying the matching relations (42), the transmission conditions for the soft interphase

can be rewritten in the limit configuration Ω0
+ ∪ Ω0

− ∪ S in a form involving only the fields

in the adherents:

[[

u0
]]

= 0
[[

P0e3
]]

= 0 (43)
[[

u1
]]

= 0
[[

P1e3
]]

= 0 (44)

[[

u2
]]

=
1

( 12 Â3333)1/3
1

|P0e3|2/3
P0e3

[[

P2e3
]]

= 0 (45)

which are the final expressions of the interface conditions for the proposed St. Venant-

Kirchhoff anisotropic model. It is worth remarking that the imperfect interface condition,

prescribing a jump of the displacement, appears at the second order (Eq. (45)). By recalling

Eq. (2), and by taking into account the expansions (3) and the relations (35)-(37), one finds:

Pεe3 = P0e3 +O(ε1/3) (46)

[[Pεe3]] = ε2/3
[[

P2e3
]]

+O(ε) (47)

[[uε]] = ε2/3
[[

u2
]]

+O(ε) (48)

which, substituted into (43)–(45), give

[[Pεe3]] = 0 + o(ε) (49)

Pεe3 =
Aε

3333

2 ε3
| [[uε]] |2 [[uε]] + o(ε1/3) (50)

Eqns. (49, 50) are the relevant interface law, crucial from a computational point of view,

and in the following adopted within the numerical validation.

3 Model enhancements

In this section, two model enhancements are proposed and detailed. The first concerns the

introduction of the damage, particularly microcracking, in the constitutive properties of the

orthotropic interphase. The second one consists in adding an interphase roughness, i.e. a

smooth irregularity of the interphase boundaries Sε
±.

3.1 Constitutive aspects: microcracks

Many applications, in several engineering fields, request the modelling of quasi-brittle

solid–solid interfaces. The brick/mortar interface in masonry structures can be considered

a valid example, and additionally its modelling has a great scientific interest. A

possible strategy to model brick/mortar interfaces is based on taking into account for

a microcracking phenomenon in the constitutive equations of the material interphase,

assumed to be a third material sandwiched between bricks and mortar joints (Rekik and

Lebon, 2010, 2012). The interphase is assumed to be orthotropic and weakened by one

family of parallel rectilinear microcracks with length 2l and orientation φ = (e1, t) = 0◦

(see Figure 1). The adopted strategy is to recover the interphase effective elastic properties

through an homogenisation approach. The formulation which follows is derived within the

assumption of plane stress condition, with principal plane (e1, e3).
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Figure 1 Sketch of the ε-thick representative elementary area (REA) taken into account in the
homogenisation process, according the brick/mortar interface model by Rekik and
Lebon (2010, 2012) (see online version for colours)

Former papers (Kachanov, 1994; Tsukrov and Kachanov, 2000; Kachanov and

Sevostianov, 2005; Sevostianov and Kachanov, 2013) proposed a micromechanical

homogenisation method for microcracked media under the non-interacting approximation

(NIA). This homogenisation approach, defined also NIA in stress-based approach, is

applied to obtain the elastic coefficient Aε
3333, on which the soft interface law Eq. (50)

depends. Particularly, reference is herein made to the brick/mortar interface model by

Rekik and Lebon (2010, 2012) in a revisited version (refer to Fouchal et al. (2014) for

further details).

The adopted homogenisation technique is a potential-based formulation in terms of the

complementary elastic potential. Within the NIA framework, the problem of quantitative

characterisation of microstructures is reduced to find the proper microstructural parameter

of inhomogeneities entering the effective compliance tensor of the homogenised

material (Kachanov and Sevostianov, 2005). Generally, the concentration parameters of

microcracks in the context of the elastic properties are identified through the structure of a

perturbative term in the elastic potential: ∆f . In what follows, the adopted homogenisation

method is briefly recalled, for further details one can refer to Kachanov (1994); Mauge

and Kachanov (1994); Tsukrov and Kachanov (2000); Kachanov and Sevostianov (2005);

Sevostianov and Kachanov (2013).

Let Γ ⊂ S be the crack middle surface with Γ⊥e3, and let u+ and u− be the

displacements at the parallel-to-S crack boundaries (recall that S has been taken to

denote the interface among the adherents). Denote also as ucod = 〈u+ − u−〉 = [
∫

Γ
(u+ −

u−)dΓ]/|Γ| the average measure of the displacement jump across the crack, in the

following referred to as crack opening displacement (COD) vector. By considering a plane-

stress assumption under a frictionless condition along crack faces, ucod can be expressed

in terms of the stress vector T3 = σ · e3 as (Kachanov, 1994):

ucod = B ·T3 (51)

where B is called COD tensor. By denoting with indexes N and T the normal and the

tangential directions to the interface, respectively, the tensor B can be expressed as: B =
BN (e3 ⊗ e3) +BT (e1 ⊗ e1). It is worth remarking that this tensor has to be specialised

with respect to the bulk material properties. Following the Eshelby approach (Eshelby,
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1961), the complementary elastic potential f(σ) of the effective microcracked material

results in:

f(σ) = f0(σ) + ∆f =
1

2
σ : S0 : σ +

|Γ|
2A

σ : (e3 ⊗ ucod) (52)

where f0(σ) is the complementary potential expressed in terms of the compliance tensor S0
of the undamaged interphase, ∆f is a perturbative term depending on the microstructural

features of microcracks, A(ε) is the interphase area, and |Γ| ⋍ l2 is the characteristic

microcrack area (or volume in 3D case). From Eq. (52) the scalar microcracks density is

defined (Bristow, 1960):

ρ =
l2

A(ε)
=

l2

εL
(53)

where l is the half-length of the flat crack and L a characteristic length of the interphase.

It is worth recalling that in 3D problems this scalar quantity it is assumed to be equal to

ρ = l3

V (ε) , where V (ε) is the interphase volume.

Due to Eq. (52), specialised for an orthotropic undamaged interphase (Mauge and

Kachanov, 1994), the effective compliance tensor S of the microcracked interphase can be

componentwise derived as:

(S)ijkl = (S0)ijkl + (∆S)ijkl =
∂2f

∂σij∂σkl
(54)

where ∆S is the contribution compliance tensor associated to ∆f and accounting for the

crack features. As a result, the elasticity tensor Aε can be easily derived as: Aε = S
−1.

The tensor Aε depends on the interphase thickness ε through the area A in the microcracks

density expression (Eq. (53)). Finally, the component Aε
3333 reads as:

Aε
3333 =

E1E3

E1 + 2BNρE1E3 − E3ν213
(55)

with

BN =
π

2
√
E3

√

2√
E1E3

+
1

G13
− 2ν13

E1
(56)

where E1, E3, G13 and ν13 are the elastic constants of the undamaged interphase. It

is worth pointing out that these latter can be obtained in terms of the elastic properties

of the two materials in contact, as the result of a homogenisation step performed on

the undamaged ε-thick representative elementary volume (Rekik and Lebon, 2010, 2012;

Fouchal et al., 2014).

By introducing Eq. (53) in Eq. (55), after some algebra, is easily to highlight that

the elastic property Aε
3333 derived from NIA homogenisation technique, respects the soft-

interphase assumption, in details, it can be rewritten as follows:

Aε
3333 = ε Â3333 ⋍

(

L

2BN l2

)

ε (57)

By substituting expression (55) into the interphase law (50), the damage parameter (i.e.,

microcracking) at the interface level, represented by the length l, can be taken into account.

Moreover, note that it is possible to introduce an evolution law of the microcracks length l
with respect to the external force (pressure, shear stress, etc..) as it has been done in Rekik

and Lebon (2010, 2012); Fouchal et al. (2014); Raffa, Lebon and Vairo (2015).
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3.2 Geometrical imperfection: roughness

In this section, a general methodology is proposed to take into account a smooth

roughness of the interphase boundaries. Two given positive-valued roughness functions

η± ∈ C0(S,R2), describing the surfaces between the adherents and the interphase Sε
±, are

introduced (Fouchal et al., 2014). According to the smooth–roughness assumption, these

two functions are independent on ε. Therefore, the domains Bε, Ωε
± and the interfaces

among adherents and adhesive Sε
± are re-defined as follows:

Bε =
{

(x1, x2, x3) ∈ Ω : −ε

2
η−(x1, x2) < x3 <

ε

2
η+(x1, x2)

}

(58)

Ωε
± =

{

(x1, x2, x3) ∈ Ω : ±x3 >
ε

2
η± (x1, x2)

}

(59)

Sε
± =

{

(x1, x2, x3) ∈ Ω : x3 = ±ε

2
η± (x1, x2)

}

(60)

As already done previously, let the following changes of variables be introduced in

the domains Bε and Ωε
± (the rescaled quantities are, as usual, indicated with ·̂ and ·̄,

respectively):

p̂η : (x1, x2, x3) 7→ (z1, z2, z3) =

(

x1, x2,
x3

η+ε

)

, x3 ≥ 0 (61)

p̂η : (x1, x2, x3) 7→ (z1, z2, z3) =

(

x1, x2,
x3

η−ε

)

, x3 ≤ 0 (62)

p̄η : (x1, x2, x3) 7→ (z1, z2, z3) =

(

x1, x2, x3 +
1

2

(

1− η+ε
)

)

, (63)

x3 ≥ η+ε

2

p̄η : (x1, x2, x3) 7→ (z1, z2, z3) =

(

x1, x2, x3 −
1

2

(

1− η−ε
)

)

, (64)

x3 ≤ −η−ε

2

Accordingly, in the adhesive one has dx3 = η±dz3.

The asymptotic expansion procedure, explained in the previous section, is not

substantially modified. Accordingly, the relevant fields are expanded following Eqs. (5).

Thereby, after the introduction of the interphase roughness, a perfect contact condition on

the surfaces Sε
± is assumed. The formulation until Eq. (29) is quite unchanged and, starting

from Eq. (29), let the obtained relationship be recalled:

1

2
Â3333

(

| û2
i,3 |2 û2

i,3

)

= P̄ 0
i3 = in B (65)

By solving with respect to û2
,3 and by integrating with respect to z3, in a domain which,

herein, depends on the roughness functions η±, one has:

[û2] =
η

(

1
2 Â3333

)1/3

1

| P̄0e3 |2/3 P̄
0e3 (66)

where η = η++η−

2 is the average roughness function. By applying a Taylor expansion to

uε (Eqs. (3)) and using the matching relations (Eqs. (42)) with the interface conditions
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(Eqs. (43)-(45)), by using Eq. (66) instead of the first equation of Eqs. (45), the final soft

interface law in the case of rough interphase is finally obtained:

Pεe3 =
Aε

3333

2 η3ε3
| [[uε]] |2 [[uε]] + o(ε1/3) (67)

4 A simple numerical benchmark

A numerical benchmark is proposed to show the applicability of the imperfect-nonlinear-

interface model detailed above and to make some comparisons with the linear interface

model by Fouchal et al. (2014). A quite simple three-dimensional geometry is treated,

in particular an unit brick (210mm × 100mm × 50mm) joined with a mortar joint

(210mm × 100mm × 10mm). The composite system is assumed to be fixed on a flat rigid

plane. The geometry and the boundary conditions are outlined in Figure 2. This simple

model has been chosen to focus, in a more accurate way, on the behavior of the brick/mortar

interface in the linear and in nonlinear cases.

Figure 2 Sketch of the three-dimensional model (on the left). The surface loaded with the
incremental displacement is represented in blue and the red surface is fixed. On the right
side, a detail of the free tetrahedral mesh is represented (see online version for colours)

Within the hypothesis on the constitutive behavior of the principal constituents, i.e. brick

and mortar, a linear and a nonlinear isotropic cases are considered. In the first case,

the materials are assumed to be linearly elastic with parameters: Young modulus Eb =
13× 103 MPa and Poisson ratio νb = 0.25 for the brick, and Young modulus Em =
4× 103 MPa and Poisson ratio νm = 0.25 for the mortar, respectively. Moreover, in

the nonlinear case, both brick and mortar behave as hyperelastic materials of the St.

Venant-Kirchhoff type with Lamé constants: λb = 3.6× 103 MPa and µb = 5.4× 103

MPa for the brick, and λm = 1.1× 103 MPa and µm = 1.6× 103 MPa for the mortar,

respectively.

The interphase is assumed to be a stratified layer comprising the material characteristics

of both brick and mortar, i.e. it is a third material supposed to be transversely isotropic,

whose elastic constants E1, E3, G13 and ν13 are derived starting from the mechanical

properties of the constituents (Eb, Em, νb, νm). To obtain the interphase elastic constants, a

preliminary standard homogenisation for stratified is performed on the undamaged ε-thick

representative elementary volume (for further details, see Appendix A in Rekik and Lebon

(2012)). As a result, the following effective elastic constants are obtained: E1 = 8.5× 103

MPa, E3 = 6.4× 103 MPa, G13 = 4.9× 103 MPa and ν13 = 0.25.

In addition, the implemented brick/mortar interface is assumed to derive from a

microcracked interphase. To this aim, the microcracks density ρ is derived according to
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Eq. (53), where the interphase area A = ε× L is calculated assuming a thickness value of

ε = 0.2mm, a half-length value of the microcrack of l = 2mm, and L = 210mm is the

interphase length. As a result, a microcracks density of value ρ = 0.10 is obtained.

Two typologies of imperfect interface are taken into account, the nonlinear interface

proposed in this paper and a linear interface proposed by authors in former papers (Rekik

and Lebon, 2010, 2012; Fouchal et al., 2014) to make some comparisons. The nonlinear

imperfect interface is modelled according Eq. (50) in which the interphase stiffness Aε
3333

is obtained by substituting in Eqs. (55) and (56) the values of the mechanical parameters of

the undamaged interphase and the microcrack density ρ. As a consequence, the resulting

stiffness is: Aε
3333 = 4.3× 103 MPa.

For the linear-interface case, let consider the imperfect interface law correlating the

Cauchy-stress vector in the normal-to-the-interface direction σe3 and the displacement-

jump vector [[u]] (see Klarbring (1991) and a generalisation for smooth roughness in

Fouchal et al. (2014)):

σe3 =
1

η
K[[u]] (68)

where η is the average roughness function added to the standard asymptotic formulation

by Fouchal et al. (2014), and the stiffness matrix K, whose components depend on the

microcracks features and on the mechanical characteristics of the undamaged material, is

expressed as follows (Fouchal et al., 2014):

K = diag [KT ; KN ] = diag

[

L

BT l2
;

L

2BN l2

]

(69)

where the parameter BN given by Eq. (56), and parameter BT is given by a similar

expression (Kachanov, 1994) which reads as:

BT =
π

2
√
E1

√

2√
E1E3

+
1

G13
− 2ν13

E1
(70)

The obtained values of the stiffnesses in normal and in tangential-to-the-interface

directions are: KN = 5.9× 104 N/mm3 and KT = 1.4× 105 N/mm3.

For the sake of simplicity, the roughness η appearing in both linear and nonlinear

interface laws (Eq. (68) and Eq. (67), respectively) is not taken into account in this

numerical simulation and for further details on the effects of the roughness functions on

the overall response of small masonries, one can refer to Fouchal et al. (2014).

Several numerical simulations are performed, aimed at validating the proposed

interface model; in particular, in the model with the linearly elastic constituents, in

what follows denoted as linear model, both the linear and the nonlinear interface laws,

are implemented. In the nonlinear model, i.e. the one with the hyperelastic St. Venant-

Kirchhoff type constituents, only the nonlinear interface law is considered. In addition, a

linear and a nonlinear material behavior of the brick and the mortar are implemented with

perfect interface condition (i.e. [[u]] = 0, [[σe3]] = 0, [[Pe3]] = 0), in order to have some

reference models.

All the analyses are performed with the COMSOL Multiphysicsr 4.3 software on a

processor Intel(R) Core(TM) i3-2350M 2.3 GHz CPU. A free tetrahedral mesh of fine size

is chosen in all the analyses cases, as represented in Figure 2. It is worth remarking that
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the brick/mortar interface is modelled through interface finite elements of zero thickness.

The implemented numerical models aim to reproduce a push-out test on a single brick in

a quasi-static loading process. The tests are performed in displacement-controlled mode

with an imposed displacement of a maximum value equal to 5mm. The degrees of freedom

and the solution times expressed in seconds are summarised in Table 1, for all the analysis

cases.

Table 1 Values of degrees of freedom (dof) and solution times (in seconds) for all the analysed
numerical model divided into sub-cases according the interface condition

brick and mortar interface dof CPU (s)

perfect 213621 309

linear linear 219822 326

nonlinear 219822 9716

nonlinear perfect 213621 8831

nonlinear 219822 10317

It is worth noting that it could be possible to reduce the degrees of freedom

and, consequently, the solution times, by applying some symmetry considerations.

Nevertheless, the remarkable aspect is the large difference in terms of solution time among

linear and nonlinear calculations, independently if the nonlinearity is localised at the

interface level (nonlinear interface condition) or in the constituents (nonlinear model).

Moreover, both in the linear and in the nonlinear model, the introduction of the linear

and nonlinear-imperfect-interface condition, respectively, does not produce a significant

increment of the solution times with respect the perfect-interface cases.

The numerical simulations stop when the imposed displacement reaches its maximum

value (5mm). In Figure 3 a deformed shape at the final configuration is shown and the

distribution of displacement field is mapped.

Figure 3 Final deformed shape relative to the linear model with the nonlinear interface condition
(on the right). The x1-component of the displacement field is mapped in colors. Final
deformed shape of the interface in the same model (on the left) with color map of the
x3-component of the displacement-jump vector (a factor scale of 5 is applied) (see
online version for colours)

The curves shown in Figure 4 represent the x1-component of the reaction force (i.e., in the

direction of the imposed displacement) resulting from the loaded boundary, plotted with

respect to the x1-component of the displacement jump averaged over the interface surface,

for all the analysed cases. Interestingly, both the linear model with the nonlinear interface
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and the nonlinear model with the nonlinear interface, allow to take into account for larger

deformations (about one order of magnitude) at the interface level, than the linear model

with the linear interface.

Figure 4 Reaction force in the x1-direction averaged over the loaded boundary surface vs. the
x1-component of the average displacement-jump vector. Comparison among: the linear
model with the linear interface (- -△ - -); the linear model with the nonlinear interface
(–⋆–); and the nonlinear model with the nonlinear interface (- -� - -). A zoom of the
curve relative to the linear model with linear interface is represented

A comparison of Figures 5 and 6 put in evidence this aspect. The two figures represent the

distribution, at the final configuration, of the x1-component and of the x3-component of

the displacement-jump vector, respectively, along a cut line obtained from the intersection

of the interface plane with the plane of symmetry.

Figure 5 Final distribution of the x1-component of the average displacement-jump vector along
the interface in the x1-direction (recall that the maximum value of the imposed
displacement is 5mm). Comparison among: the linear model with linear interface
(- -△ - -); the linear model with nonlinear interface (–⋆–); and the nonlinear model with
nonlinear interface (- -� - -). A zoom of the curve relative to the linear model with the
linear interface is represented
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Figure 6 Final distribution of the x3-component of the average displacement-jump vector along
the interface in the x1-direction (recall that the maximum value of the imposed
displacement is 5mm). Comparison among: the linear model with the linear interface
(- -△ - -); the linear model with the nonlinear interface (–⋆–); and the nonlinear model
with the nonlinear interface (- -� - -). A zoom of the curve relative to the linear model
with the linear interface is represented

Furthermore, Figures 4–6 highlight that is not strictly necessary to model the adherents

as hyperelastic materials in order to take into account the geometrical nonlinearities,

i.e. large deformation, in terms of global response. In fact, the implementation of a

nonlinear imperfect interface, as the proposed St. Venant Kirchhoff model, in a linearly

elastic composite system, is sufficient to catch in an accurate way the nonlinear-interface

behavior as the fully nonlinear model, reaching the same order of magnitude in terms of

displacement jumps.

Figure 7 Von Mises stress (MPa) in the linear model with the nonlinear interface, with a particular
of the stress distribution at the interface level (see online version for colours)

Figures 7–8 represent the distribution of the Von Mises stresses in the linear model with

the nonlinear interface and in the nonlinear model with the nonlinear interface, in both

cases a detail of the interface zone is represented. It is worth noting, from Figures 7–8, the

difference in terms of magnitude of the stresses. In particular, in the nonlinear model with
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the nonlinear interface the Von Mises stresses are significantly smaller than in the linear

model. Moreover, by analyzing the particular of the interfaces in both model, a significant

difference in terms of stress distribution can be appreciated.

Figure 8 Von Mises stress (MPa) in the nonlinear model with the nonlinear interface, with a
particular of the stress distribution at the interface level (see online version for colours)

5 Conclusions

The proposed nonlinear-imperfect-interface model, formulated within the finite-strain

theory, is derived from an interphase comprising a hyperelastic material of the St. Venant-

Kirchhoff type. Two model enhancements have been introduced, aimed at taking into

account both for damage and for smooth geometrical imperfections of the interface surface.

The obtained soft interface law has been used to implement the imperfect interface in a

simple numerical three-dimensional benchmark.

The proposed imperfect interface model has been formulated to catch the pre-peak

behavior of quasi-brittle interfaces. Accordingly, an application in modelling brick/mortar

interface is considered. For the numerical validation, three cases have been compared. The

first two models, defined as linear, have been modelled with linearly elastic adherents

(brick and mortar), and with two different interface conditions. In the first case, the

interface has been modelled with a linear interface law available in literature (Rekik and

Lebon, 2010, 2012; Fouchal et al., 2014), and in the second case, the proposed nonlinear

interface law has been implemented. The third model, defined as nonlinear, is a fully

nonlinear one, in which the adherents have been modelled with a St. Venant - Kirchhoff

hyperelastic material and the interface has been modelled with the nonlinear-imperfect-

interface law. Some comparisons have been carried out in terms of displacement jumps and

of stresses distribution.

The soundness and the consistency of the proposed model are highlighted, both from a

theoretical and a numerical points of view. Moreover, it has been established that the linear

model with the nonlinear interface is able to catch the large displacements occurring at the

interface level as much as the fully nonlinear model, additionally, the computational cost

is smaller in the first case (see Table 1). It is worth remarking that the proposed interface

law is able to describe a nonlinear pre-peak behavior of the imperfect interfaces (one refers
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to Figure 4). In this study, such a method can be able to describe the constitutive interface

behavior of other types of quasi-brittle materials. Finally, the proposed model is believed

to be an useful tool in studying large displacements effects in small masonry assemblies.

Nevertheless, several numerical simulations are outgoing to investigate the influence of

such an imperfect interface on masonry panels. Evidently, it will be taken into account

that the introduction of a nonlinear interface laws, causes a significant increment of the

computational costs with respect to the linear interface case. These numerical simulations

will be the subject of the second part of this work.
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