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Stochastic EM-like Algorithms for Fitting Finite Mixture of Lifetime
Regression Models Under Right Censoring

Laurent Bordes∗ Didier Chauveau†

Abstract
Finite mixture of models based on the proportional hazards or the accelerated failure time assump-
tion lead to a large variety of lifetime regression models. We present several iterative methods based
on EM and Stochastic EM methodologies, that allow fitting parametric or semiparametric mixture
of lifetime regression models for randomly right censored lifetime data including covariates. Their
identifiability is briefly discussed and in the semiparametric case we show that simulating the miss-
ing data coming from the mixture allows to use the ordinary partial likelihood inference method in
an EM algorithm’s M-step. The effectiveness of the new proposed algorithms is illustrated through
simulation studies.

Key Words: Right censoring, EM algorithm, proportional hazards model, semiparametric mixture
models

1. Introduction

In survival analysis it is frequent that the duration of interest is observed with covariates
influencing its probability distribution. The semiparametric proportional hazards model
(PHM) is probably the most famous lifetime regression model since Cox (1972) intro-
duced the partial likelihood function that allows estimating the Euclidean regression pa-
rameter, considering that the baseline hazard rate function is a nuisance parameter. When
the duration of interest depends on several explanatory variables and that quantitative or-
dinal explanatory variables are missing, then the associated survival function is simply a
finite mixture of survival functions potentially dependent of the observed covariates. In the
parametric case there is a huge number of papers dealing with inference methods for finite
mixture models taking into account the fact that often the lifetime is incompletely observed
due to censoring or truncation. See e.g. Chauveau (1995), Beutner and Bordes (2011), Bal-
akrishnan and Mitra (2011, 2014), Bordes and Chauveau (2014) for contributions. However
very few papers deal with semiparametric finite mixture of lifetime models. Recently, Bor-
des and Chauveau (2016) proposed to fit a semiparametric two-component mixture model
under right censoring using a stochastic EM-like algorithm. Nevertheless it is worth noting
that there are very special kinds of two-component semiparametric mixture models that are
common in lifetime data analysis, that is the mixture of a nonparametric lifetime model and
a mass at 0 (zero-inflated model) or at infinity (cure model). The later model has motivated
important developments with and without explanatory variables (see for instance Yin and
Ibrahim, 2005).

During several decades, mixture models have considerably expanded from both theo-
retical and applied point of view

(see for example McLachlan and Peel, 2000) as well as specific estimation methods,
especially those based on EM algorithm (see McLachlan and Krishnan, 2008) or their
stochastic versions (see e.g., Celeux and Diebolt, 1986; Celeux et al., 1996) for which there
are few theoretical results (see Nielsen, 2000). Some of the estimation methods which have
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been developed to fit the proportional hazards model with missing covariates are also close
to estimation methods required to fit mixture models (see for instance Chen and Little,
1999).

In this paper first we briefly introduce the general framework on finite mixture of life-
time regression models, right censored data and the semiparametric estimation method for
the PHM. Then, in Section 2, we introduce several classes of parametric and semipara-
metric finite mixture models based on the PHM. Section 3 is devoted to a genuine EM
algorithm in the parametric setup while Section 4 deals with an adaptation of the stochastic
EM-like algorithm for semiparametric models. Several numerical illustrations are given in
Section 5 and a discussion ends the paper in Section 6.

1.1 Data and Cox regression under right censoring

Let {(X1, Z1), . . . , (Xn, Zn)} be n i.i.d. copies of (X,Z) ∈ [0,+∞) × Rp where the
conditional pdf of the lifetime X given Z = z is g(x|z, θ). We assume that these lifetimes
data come from a finite mixture of m components

g(x|z, θ) =
m∑
j=1

αjfj(x|z), (1)

where θ = (α,f) with α = (α1, . . . , αm) ∈ [0, 1]m and
∑m

j=1 αj = 1 are the component
weights and f = (f1, . . . , fm) are the component conditional pdf. Considering the cdf we
can write

G(x|z, θ) =

m∑
j=1

αjFj(x|z), (2)

or

Ḡ(x|z, θ) =

m∑
j=1

αjF̄j(x|z), (3)

where Ḡ = 1 − G and F̄j = 1 − Fj are conditional survival functions. In addition we
assume that lifetimesXi are possibly right censored by censoring timesCi such that instead
of observing Xi we observe

Ti = Xi ∧ Ci and Di = I(Xi ≤ Ci)

for i ∈ {1, . . . , n}. We assume that {(X1, C1, Z1), . . . , (Xn, Cn, Zn)} are i.i.d. copies of
(X,C,Z), that conditionally on Z = z, X and C are independent, the conditional pdf of
C is written h(c|z). H(c|z) and H̄(c|z) are the corresponding conditional cdf and survival
functions. We write v(z) the pdf of Z on Rp.

Finally we observe {t,d, z} = {(t1, d1, z1), . . . , (tn, dn, zn)} where ti = xi ∧ ci and
di = I(xi ≤ ci) for 1 ≤ i ≤ n. The observed covariates are not time-dependent here but
considering time-dependent covariates should be possible.

We assume that for all z, G(·|z) and H(·|z) are absolutely continuous with respect
to the Lebesgue measure, thus with probability one we have Ti 6= Tj for all i 6= j. Let
(i1, . . . , in) be the permutation of (1, . . . , n) such that ti1 < ti2 < · · · < tin . For simplicity,
from now on we rewrite (tk, dk, zk) ≡ ((tik , dik , zik)) for 1 ≤ k ≤ n.

Let us recall that a durationX follows a proportional hazards rate model if conditionally
on Z = z its hazard rate function (or risk function) is defined by

λX|Z(x|z) = eβ
T zλ0(x),



where β ∈ Rp is an unknown regression parameter and λ0 is an unknown baseline hazard
rate function. By the Cox partial likelihood principle β can be estimated by

β̂ = arg max
β∈Rp

Ln(β)

where

Ln(β) =
n∏
i=1

(
eβ

T zi∑
j≥i e

βT zj

)di
.

The cumulative hazard rate function Λ0(x) =
∫ x
0 λ0(s)ds is estimated by

Λ̂0(x) =
∑
i:ti≤x

di∑
j≥i e

β̂T zj
,

the conditional survival function SX|Z(x|z) is estimated by

ŜX|Z(x|z) = exp
(
−eβ̂T zΛ̂0(x)

)
.

In addition, if K is a kernel function and b = bn a bandwidth such that (bn)n≥1 ↘ 0 and
(nbn)n≥1 ↗ +∞, then λ0(x) is estimated by

λ̂0(x) =
1

b

n∑
i=1

K

(
x− ti
b

)
di∑

j≥i e
β̂T zj

.

Note that:

1. MaximizingLn(β) with respect to β is generally done using differential optimization
method since β 7→ Ln(β) belongs to C∞(Rp) and is convex.

2. SX|Z(x|z) can also be estimated using a product-limit type estimator.

3. The package survival (Therneau and Lumley, 2009) for the R statistical software (R
Core Team, 2013) gives all the previous quantities except λ̂0.

2. Some finite mixtures of the proportional hazards model

We describe in this section four possible models, denoted M1–M4, for which each compo-
nent in (3) follows a semiparametric Proportional Hazards Model (PHM).

M1: Common covariate effect with dependent baseline risk functions.
For 1 ≤ j ≤ mwe have F̄j(x|z, θ) = {S0(x)}exp(βT z+γj), then θ = (S0(·),α, β,γ)
where γ = (γ2, . . . , γm) (γ1 = 0 for identifibility reasons), hence θ ∈ S ×R2m+p−2

where S denotes the set of survival functions.

M2: Common baseline risk function with independent covariate effects.
For 1 ≤ j ≤ mwe have F̄j(x|z, θ) = {S0(x)}exp(β

T
j z) then θ = (S0(·),α,β) where

β = (β1, . . . , βm), hence θ ∈ S × Rm(p+1)−1.

M3: Common covariate effect with independent baselines (NP).
For 1 ≤ j ≤ m, F̄j(x|z, θ) = {S0j(x)}exp(βT z), then θ = (S01(·), . . . , S0m(·),α, β),
hence θ ∈ Sm × Rm+p−1.

M4: Independent covariate effects and baselines.
For 1 ≤ j ≤ m, F̄j(x|z, θ) = {S0j(x)}exp(β

T
j z), then θ = (S01(·), . . . , S0m(·),α,β)

where β = (β1, . . . , βm), hence θ ∈ Sm × Rm(p+1)−1.

Note that we have some hierarchy for these models: Model 1 ⊂ Model 3 ⊂ Model 4, and
Model 2 ⊂Model 4.



3. Genuine EM–algorithm in the parametric set-up

In the parametric situation the complete data pdf f c is defined by

f cT,D,Z,J(t, d, z, j|θ) = αj
[
f(t|γj , β, z)H̄(t|z)

]d [
F̄ (t|γj , β, z)h(t|z)

]1−d
v(z)

where v does not depend on θ = (α,γ, β) and J ∼ Mult(1,α) is the missing data,
independent of (T,D,Z). In the sequel we write f c for f cT,D,Z,J . The complete data
likelihood function `c is defined by

`t,d,z,j(θ) = log

(
n∏
i=1

f c(ti, di, zi, ji|θ)

)

=
n∑
i=1

log
(

(H̄(ti|zi))di(h(ti|zi))1−div(zi)
)

+
n∑
i=1

log
(
αji(f(ti|γji , β, zi)di(F̄ (ti|γji , β, zi)1−di

)
where in the right hand side of the last equality the first term does not depend on θ and
j = (j1, . . . , jn) is the unobserved realization of (J1, . . . , Jn).

The EM genuine algorithm consists in providing iterates (θk)k≥0 by iteratively maxi-
mizing Q(θ|θk) where

Q(θ|θk) =
n∑
i=1

E
[
log(f c(Ti, Di, Zi, Ji|θ))|ti, di, zi, θk

]
.

Calculating the above conditional expectation requires to calculate the posterior probabili-
ties

αkij = Pr
(
Ji = j|ti, di, zi, θk

)
=
f c(ti, di, zi, ji|θk)
f c(ti, di, zi|θk)

=
αkj

(
f(ti|γkj , βk, zi)

)di
F̄ (ti|γkj , βk, zi)∑m

l=1 α
k
l

(
f(ti|γkl , βk, zi)

)di F̄ (ti|γkl , βk, zi)
. (4)

The important point here is that the posterior probabilities in (4) neither depend on the
censoring distribution nor on the covariate distribution. Thus we obtain

Q(θ|θk) =

n∑
i=1

m∑
j=1

αkij
[
logαj + di log f(ti|γj , β, zi) + (1− di) log F̄ (ti|γj , β, zi)

]
+R(t,d, z, h, v, θk),

where R does not depend on θ. Thus we delete R in the definition of Q(θ|θk).

Example 1 We consider a finite mixture model where the j-th component survival function
is defined by F̄ (t|γj , z) = exp(−γjteβ

T z), corresponding to a parametric proportional
hazard rate model with exponential (thus constant) baseline hazard rate function. Setting
γj = eξj−ξ1 we remark that this model belongs to the M1 family of lifetime regression
models with S0(t) = exp(−eξ1t). The identifiability of this model parameters can be
proved using Teicher (1967) and assuming that the covariates vectors z generate Rp. The
j-th component pdf is therefore defined by

f(t|γj , β, z) = γj exp(βT z − γjteβ
T z),



leading to

Q(θ|θk) ∝
n∑
i=1

m∑
j=1

αkij

[
logαj + di

{
log γj + βT zi − γjtieβ

T zi
}
− (1− di)γjtieβ

T zi
]

∝
n∑
i=1

m∑
j=1

αkij

[
logαj + di

{
log γj + βT zi

}
− γjtieβ

T zi
]
,

where ∝ means ”equal to, up to a term that does not depend of the parameter of interest”.
By solving normal equations with respect to αj for j = 1, . . . ,m we obtain

αk+1
j =

∑n
i=1 α

k
ij∑n

i=1

∑m
l=1 α

k
il

.

Then we write the normal equations for γj:

∂Q(θ|θk)
∂γj

=

n∑
i=1

αkij

[
di
γj
− tieβ

T zi

]
= 0

for 1 ≤ j ≤ m. Considering β as known we solve the above equations by setting

γk+1
j (β) =

∑n
i=1 α

k
ijdi∑n

i=1 α
k
ijtie

βT zi
,

for 1 ≤ j ≤ m. Thus profiling the remaining part of Q(·|θk) as a function of β we estimate
β by

βk+1 = arg max
β∈Rp

Q(β)(β|θk)

where

Q(β)(β|θk) ∝
n∑
i=1

m∑
j=1

αkij

{
diβ

T zi − di log

(
n∑
i=1

αkijtie
βT zi

)}
.

Finally γk+1 = (γk+1
1 (βk+1), . . . , γk+1

m (βk+1)).

4. Stochastic EM–like algorithms for semiparametric models

Hereafter we consider semiparametric models 1–4. If parameter identifiability is generally
well studied for parametric finite mixture models (see e.g. Teicher, 1967), the identifiability
of semi- or non-parametric finite mixture model’s parameters is generally a difficult task
for which there are few general tools at the exception of Allman et al. (2009). Even if
this point is not discussed in details here we can say briefly that we obtained a partial

identifiability results for θ in the model {(x, z) 7→ Ḡ(x|z; θ) = α(F̄ (x))e
βT Z

+ (1 −
α)(F̄ (x))γ+e

βT Z
; θ = (α, γ, β, F̄ (·)) ∈ Θ = [0, 1] × (1,+∞) × Rp × S} where S is the

class of continuous survival functions.

4.1 Stochastic EM-like principle

The missing data are the component numbers J1, . . . , Jn the common distribution of which
is defined by Mult(1,α). Conditionally on Z = z, the survival function of X is defined by

S(x|z) =

m∑
j=1

αjF̄j(t|z, θ)



where survival functions F̄j(t|z, θ) are defined by one of the formula for the models M1–
M4. In the parametric set-up the general principle of the Stochastic EM (St–EM) algorithm
is to produce a sequence of iterates θk (a Markov chain) such that its ergodic mean con-
verges to the unknown value of the Euclidean parameter θ (see Nielsen, 2000). In the
semiparametric set-up there is only empirical evidence that the St–EM algorithm performs
well (see, e.g. Bordes and Chauveau, 2016). Given the value of the parameter θk at the kth
iteration, the general St–EM algorithm follows the following steps.

Step 1. For each item i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} calculate

αkij =
αkj

(
λkj (ti|zi)

)di
F̄ kj (ti|zi)∑m

l=1 α
k
l

(
λkl (ti|zi)

)di F̄ kl (ti|zi)
.

Step 2. For each item i ∈ {1, . . . , n} simulate a realization jki of Mult(1, (αki1, . . . , α
k
im))

and for 1 ≤ j ≤ m define the m sets

X kl = {i ∈ {1, . . . , n}; jki = l} for 1 ≤ l ≤ m.

We have ∪ml=1X kl = {1, . . . , n}.

Step 3. Update the Euclidean parameters:
For j ∈ {1, . . . ,m} αk+1

j = Card(X kl )/n.
The update of the regression parameter depends on the model under consideration.
We just detail here the situation for the first two models M1 and M2, but other models
can be derived similarly:

(3.1) for Model 1: Calculate

(βk+1,γk+1) = arg max
β∈Rp,γ∈Rm−1

L(1,k)(β,γ),

where

L(1,k)(β,γ) =

n∏
i=1

(
exp(βT zi + γjki

)∑n
j=i exp(βT zl + γjkl

)

)di
.

(3.2) for Model 2:
First method, for j ∈ {1, . . . ,m}

βk+1
j = arg max

β∈Rp
L
(2,k)
j (β)

where

L
(2,k)
j (β) =

∏
i∈Xkj

(
exp(βT zi)∑

l≥i:l∈Xkj
exp(βT zl)

)di
.

Second method

(βk+1
1 , . . . , βk+1

m ) = arg max
(β1,...,βm)∈Rpm

L(2,k)(β1, . . . , βm),

where

L(2,k)(β1, . . . , βm) =

n∏
i=1

 exp(βT
jki
zi)∑n

l=i exp(βT
jkl
zl)

di

.

This second approach is based on a profile likelihood approach.



Step 4. Update the functional parameters: here as well we just detail the situation for M1
and M2.

(4.1) for Model 1:

Λk+1
0 (t) =

∑
i:ti≤t

di∑n
l=i exp(zTl β

k+1 + γjkl
)
.

(4.2) for Model 2:

Λk+1
0 (t) =

∑
i:ti≤t

di∑n
l=i exp(zTl β

k+1
jkl

)
.

Step 5. Kernel estimators: for j ∈ {0, 1, . . . ,m}

λk+1
j (t) =

n∑
i=1

1

b
K

(
t− ti
b

)
∆Λk+1

j (ti),

where the bandwidth has to be tuned following, e.g., rules proposed in Bordes and
Chauveau (2016) and ∆Λk+1

j (ti) = Λk+1
j (ti)− Λk+1

j (ti−).

Remark. It is easy to check that for models 1 and 2, since the baseline hazard rate is shared
by all components, in αkij the baseline hazard rate can be factorized in the numerator and
in the numerator and then it disappears. The consequence is that for these two models the
above step 5 can be skipped.

5. Numerical study and real data analysis

5.1 M1 in a parametric case, genuine EM algorithm

We propose here an experiment in the situation of Example 1, i.e. when the j-th component
survival function is defined by F̄ (t|γj , z) = exp(−γjteβ

T z), corresponding to a paramet-
ric proportional hazard rate model with exponential (thus constant) baseline hazard rate
function. In other words, the j-th component given the covariate z comes from the expo-
nential distribution E(γje

βT z). We choose here p = 2 independent and binary covariates
Z = (Z1, Z2), each of which being Bernoulli B(0.5) distributed. We simulate a m = 2-
component mixture with parameters α1 =30%, γ = (0.5, 0.1), β = (0.5,−0.5). The
corresponding conditional survival functions are displayed in Fig. 1.

The EM algorithm requires, as always, initialization values for the parameter, θ(0).
For this m = 2 rather simple case, we defined a data-driven initialization: From Fig. 1
we can notice that the two component are somehow separated, whatever the values of the
covariates. It is possible from an histogram of the data or prior expert opinion, to define a
cutpoint τ and two sub-samples t1 and t2 defined by the non censored tk’s that are below
or above τ . Then we set α(0)

1 as the proportion of non-censored observations belonging to
t1, γ(0)j = 1/mean{tj}, and a non informative initialization β(0) = (1, 1). For m > 2, we
suggest the common procedure consisting in exploring the parameter space, running EM
algorithms from several (random) initializations, and optimizing in the maximum of the
log-likelihood.

Fig. 2 shows a typical result in terms of the empirical distribution of the estimates, for
300 Monte-Carlo replications of samples of size n = 500, with a censoring distribution
achieving an average censoring rate of 27%. The stopping criterion here is based on the
numerical stabilization of the log-likelihood, as for any genuine EM. In the present case the
EM’s required an average of 330 iterations.
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Figure 1: Example 1, true survival functions F̄ (t|γj , z) = exp(−γjteβ
T z) for each covari-

ate possible value and each component.

5.2 Model M1 with nonparametric baseline, stochastic EM-like algorithm

This semiparametric example involves a fully unknown baseline survival function F̄0(·)
and conditional survival for component j from M1, F̄j(x|z, θ) =

[
F̄0(x)

]exp(βT z+γj).
The simulated model uses for F̄0(x) a Weibull distribution with shape a0 and scale b0,
F̄0(x) := exp [− (x/b0)

a0 ]. It involves m = 2 components with weight α1 = 30%,
and p = 2 independent covariates uniformly distributed on the interval [0, 2]. The regres-
sion parameters are β = (0.5,−0.5) and γ2 = 3 (γ1 = 0 for identifiability). Hence
the model parameters are (α, γ2,β, F0(·)). Fig. 3 shows the corresponding conditional
densities over the range of the possible values for the covariates, together with a typi-
cal sample distribution of non-censored data from this model. The simulation of sample
data is done by simulating the covariates, computing the conditional scales given each
i and component j as sj(i) = b0 exp

[
−(βTzi + γj)/a0

]
and simulating each duration

(xi|J = j,Z = zi) ∼ W(a0, sj(i)), a Weibull distribution with shape a0 and the condi-
tional scale. Then a censoring is applied, for an average 10% of censored observations.

As in Example 1 Section 5.1, the algorithm requires an initialization and this case
is more tricky than the previous one; in particular a “non informative” initialization for
the parameters β as in Example 1 does not work well for this more complex model. We
experiment here a new data-driven initialization procedure. First, from Fig. 3 we can notice
that the two components are somehow separated, whatever the values of the covariates, so
that we start by defining a cutpoint τ and two sub-samples t1 and t2 from an histogram of
the data or prior expert opinion as in Section 5.1. A cutpoint τ = 2 has been chosen here.
Then the procedure involves the following steps:

1. Fit a single weibull distribution on the sample (t,d) to get initial values for step 2.
This fit can be done by calling standard MLE packages for right censored data from
standard distributions. We use the survreg() function for the survival package
(Therneau and Lumley, 2009) for the R statistical software (R Core Team, 2013).
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Figure 2: Example 1, empirical distribution of EM estimates based on 300 replications of
sample of size n = 500. Green dotted lines are true values, red lines are estimates averaged
over replications.

2. Fit separately two Weibull distributions to each subsample (t1,d1) and (t2,d2),
where d` are the censoring indicators corresponding to the lifetimes t` for the `th
subsample. This is done by applying again survreg() but with initial values pro-
vided by step 1.

3. Fit a two-component mixture of Weibull distributions with censored data to the whole
sample (t,d) using the specific St-EM algorithm from Bordes and Chauveau (2016).
This St-EM itself requires initial parameters for weight, shape and scale per compo-
nents. The initial weight α0

1 is defined as the proportion of observations belonging to
t1, and shape and scale per components are the estimates obtained in step 2.

4. Using the posterior probabilities obtained by the St-EM algorithm in step 3, simulate
a starting vector J0 of component origin for each individual. This is similar to Step 2
of the Stochastic EM-like algorithm described in 4.1.

5. Fit a Cox PHM applying the function coxph() for a model with covariates (z,J0),
i.e. (t,d) ∼ z1 + z2 + J0. This gives initial values β0, γ02 and F̄0(·).

We applied the above procedure to Monte-Carlo replications and several sample sizes
from n = 500 to n = 5000, with good results suggesting “empirical convergence”. An
example is displayed in Fig. 4, which shows the empirical distribution of the estimates for
the scalar parameters, and the estimates of the baseline F̄0 over replications, in the case of
a sample of size n = 1000. Table 1 below gives numerical results for two sample sizes.
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Figure 3: Semiparametric example: empirical distribution of a sample of size n = 1000
of non-censored data and the true density functions for each component over the range of
covariates z.

sample size stat. α1 γ2 β1 β2
true 0.3 3 0.5 -0.5

mean 0.29 3.15 0.51 -0.50
n = 1000 std 0.018 0.220 0.077 0.078

mse 0.0004 0.0700 0.0060 0.0061
mean 0.30 3.10 0.50 -0.48

n = 2000 std 0.014 0.166 0.058 0.051
mse 0.00023 0.03828 0.00332 0.00290

Table 1: Estimated means, standard deviations and MSE’s from 100 replications of the
semiparametric St-EM algorithm.

6. Discussion

We have proposed several iterative methods based on EM and Stochastic EM methodolo-
gies, for parametric and semiparametric PHM’s designed for randomly right censored life-
time data. In particular, we have illustrated the behavior of these algorithms for a parametric
model allowing for a genuine EM, and a more complex semiparametric model requiring a
St-EM algorithm.

For both strategies, we defined data-driven automated initialization procedures that per-
form in a satisfactory manner. This question of initialization can indeed be delicate, as
illustrated by the semiparametric model and St-EM algorithm, for which a multiple stage
procedure involving itself several simpler models and algorithms has been designed.

Asymptotic variance of the St-EM estimates is only available for parametric models
(Nielsen, 2000), but in the situations experimented through Monte-Carlo simulations, our
algorithms provide good estimates and decreasing MSE’s when the sample size increases,
suggesting numerical evidence of convergence of these algorithms.
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Figure 4: Exemple 2 semiparametric model: empirical distributions of St-EM estimates
based on 100 replications of a sample of size n = 1000. Green (dotted) lines or curves are
true values, red lines are estimates averaged over replications.

All the algorithms shown here are implemented — and will be publicly available — in
an upcoming version of the mixtools package (Benaglia et al., 2009) for the R statistical
software (R Core Team, 2013).
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