Families of elliptic curves with non-zero average root number

Abstract : We consider the problem of finding $1$-parameter families of elliptic curves whose root number does not average to zero as the parameter varies in $\mathbb{Z}$. We classify all such families when the degree of the coefficients (in the parameter $t$) is less than or equal to $2$ and we compute the rank over $\mathbb{Q}(t)$ of all these families. Also, we compute explicitly the average of the root numbers for some of these families highlighting some special cases. Finally, we prove some results on the possible values average root numbers can take, showing for example that all rational number in $[-1,1]$ are average root numbers for some $1$-parameter family.
Type de document :
Pré-publication, Document de travail
59 pages. 2016
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01478267
Contributeur : Christophe Delaunay <>
Soumis le : mardi 28 février 2017 - 08:50:14
Dernière modification le : mercredi 8 mars 2017 - 01:07:04

Fichier

biased_families-_C2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01478267, version 1
  • ARXIV : 1612.03095

Collections

Citation

Sandro Bettin, Chantal David, Christophe Delaunay. Families of elliptic curves with non-zero average root number. 59 pages. 2016. <hal-01478267>

Partager

Métriques

Consultations de
la notice

22

Téléchargements du document

11