An Exact Exponential Branch-and-Merge Algorithm for the Single Machine Total Tardiness Problem

Abstract : This paper proposes an exact exponential algorithm for the single machine total tardiness problem. It exploits the structure of a basic branch-and-reduce framework based on the well known Lawler's decomposition property that solves the problem with worst-case complexity O * (3^n) in time and polynomial space. The proposed algorithm, called branch-and-merge, is an improvement of the branch-and-reduce technique with the embedding of a node merging operation. Its time complexity converges to O * (2^n) keeping the space complexity polynomial. This improves upon the best-known complexity result for this problem provided by dynamic programming across the subsets with O * (2^n) worst-case time and space complexity. The branch-and-merge technique is likely to be generalized to other sequencing problems with similar decomposition properties.
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01477835
Contributeur : Lei Shang <>
Soumis le : lundi 27 février 2017 - 16:51:51
Dernière modification le : mardi 9 octobre 2018 - 11:46:07
Document(s) archivé(s) le : dimanche 28 mai 2017 - 14:17:08

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01477835, version 1

Collections

Citation

Michele Garraffa, Lei Shang, Federico Della Croce, Vincent T'Kindt. An Exact Exponential Branch-and-Merge Algorithm for the Single Machine Total Tardiness Problem. 2017. 〈hal-01477835〉

Partager

Métriques

Consultations de la notice

184

Téléchargements de fichiers

62