J. Chen, R. M. Mckay, and L. F. Parada, Malignant glioma: lessons from genomics, mouse models, and stem cells, Cell, vol.149, pp.36-47, 2012.

K. Funato, T. Major, P. W. Lewis, C. D. Allis, and V. Tabar, Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation, Science, vol.346, pp.1529-1533, 2014.

M. L. Suva, Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells, Cell, vol.157, pp.580-594, 2014.

J. P. Medema, Cancer stem cells: the challenges ahead, Nat. Cell Biol, vol.15, pp.338-344, 2013.

S. M. Pollard, Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens, Cell Stem Cell, vol.4, pp.568-580, 2009.

W. A. Flavahan, Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake, Nat. Neurosci, vol.16, pp.1373-1382, 2013.

J. A. Magee, E. Piskounova, and S. J. Morrison, Cancer stem cells: impact, heterogeneity, and uncertainty, Cancer Cell, vol.21, pp.283-296, 2012.

J. E. Visvader and G. J. Lindeman, Cancer stem cells in solid tumours: accumulating evidence and unresolved questions, Nat. Rev. Cancer, vol.8, pp.755-768, 2008.

J. E. Visvader and G. J. Lindeman, Cancer stem cells: current status and evolving complexities, Cell Stem Cell, vol.10, pp.717-728, 2012.

H. Koso, Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells, Proc. Natl Acad. Sci. USA, vol.109, pp.2998-3007, 2012.

Y. Sonoda, Formation of intracranial tumors by genetically modified human astrocytes defines four pathways critical in the development of human anaplastic astrocytoma, Cancer. Res, vol.61, pp.4956-4960, 2001.

Y. Sonoda, Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma, Cancer. Res, vol.61, pp.6674-6678, 2001.

T. Marumoto, Development of a novel mouse glioma model using lentiviral vectors, Nat. Med, vol.15, pp.110-116, 2009.

D. Friedmann-morvinski, Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice, Science, vol.338, pp.1080-1084, 2012.

X. G. Mao, LIN28A facilitates the transformation of human neural stem cells and promotes glioblastoma tumorigenesis through a pro-invasive genetic program, Oncotarget, vol.4, pp.1050-1064, 2013.

M. F. Lang, Genome-wide profiling identified a set of miRNAs that are differentially expressed in glioblastoma stem cells and normal neural stem cells, PLoS ONE, vol.7, p.36248, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00698900

K. Takahashi and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, vol.126, pp.663-676, 2006.

D. A. Robinton and G. Q. Daley, The promise of induced pluripotent stem cells in research and therapy, Nature, vol.481, pp.295-305, 2012.

J. Miller and L. Studer, Aging in iPS cells, Aging (Albany NY), vol.6, pp.246-247, 2014.

J. D. Miller, Human iPSC-based modeling of late-onset disease via progerin-induced aging, Cell Stem Cell, vol.13, pp.691-705, 2013.

C. W. Brennan, The somatic genomic landscape of glioblastoma, Cell, vol.155, pp.462-477, 2013.

M. S. Ahluwalia, J. De-groot, W. M. Liu, and C. L. Gladson, Targeting SRC in glioblastoma tumors and brain metastases: rationale and preclinical studies, Cancer. Lett, vol.298, pp.139-149, 2010.

X. Han, The role of Src family kinases in growth and migration of glioma stem cells, Int. J. Oncol, vol.45, pp.302-310, 2014.

D. Huveldt, Targeting Src family kinases inhibits bevacizumab-induced glioma cell invasion, PLoS ONE, vol.8, p.56505, 2013.

S. Kleber, Yes and PI3K bind CD95 to signal invasion of glioblastoma, Cancer Cell, vol.13, pp.235-248, 2008.

S. K. Singh, Identification of human brain tumour initiating cells, Nature, vol.432, pp.396-401, 2004.

J. Wang, CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells, Int. J. Cancer, vol.122, pp.761-768, 2008.

K. Nishide, Y. Nakatani, H. Kiyonari, and T. Kondo, Glioblastoma formation from cell population depleted of Prominin1-expressing cells, PLoS ONE, vol.4, p.6869, 2009.

L. Zhu, Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation, Nature, vol.457, pp.603-607, 2009.

C. A. Gilbert and A. H. Ross, Cancer stem cells: cell culture, markers, and targets for new therapies, J. Cell. Biochem, vol.108, pp.1031-1038, 2009.

M. G. Vander-heiden, L. C. Cantley, and C. B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science, vol.324, pp.1029-1033, 2009.

D. A. Mustafa, S. M. Swagemakers, L. Buise, P. J. Van-der-spek, and J. M. Kros, Metabolic alterations due to IDH1 mutation in glioma: opening for therapeutic opportunities?, Acta Neuropathol. Commun, vol.2, p.6, 2014.

L. Ricci-vitiani, Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells, Nature, vol.468, pp.824-828, 2010.

C. Zhou, Proteomic analysis of tumor necrosis factor-alpha resistant human breast cancer cells reveals a MEK5/Erk5-mediated epithelial-mesenchymal transition phenotype, Breast Cancer Res, vol.10, p.105, 2008.

J. E. Visvader and G. J. Lindeman, Stem cells and cancer-the promise and puzzles, Mol. Oncol, vol.4, pp.369-372, 2010.

E. Sachlos, Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells, Cell, vol.149, pp.1284-1297, 2012.

P. Scaffidi and T. Misteli, In vitro generation of human cells with cancer stem cell properties, Nat. Cell. Biol, vol.13, pp.1051-1061, 2011.

K. Arai, N. Nishiyama, N. Matsuki, and Y. Ikegaya, Neuroprotective effects of lipoxygenase inhibitors against ischemic injury in rat hippocampal slice cultures, Brain. Res, vol.904, pp.167-172, 2001.

S. Cho, A. Wood, and M. R. Bowlby, Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics, Curr. Neuropharmacol, vol.5, pp.19-33, 2007.

N. J. Krogan, S. Lippman, D. A. Agard, A. Ashworth, and T. Ideker, The cancer cell map initiative: defining the hallmark networks of cancer, Mol. Cell, vol.58, pp.690-698, 2015.

R. J. Hartmaier, N. Priedigkeit, and A. V. Lee, Who's driving anyway? Herculean efforts to identify the drivers of breast cancer, Breast. Cancer. Res, vol.14, p.323, 2012.

B. J. Raphael, J. R. Dobson, L. Oesper, and F. Vandin, Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine, Genome Med, vol.6, p.5, 2014.

L. Ding, M. C. Wendl, J. F. Mcmichael, and B. J. Raphael, Expanding the computational toolbox for mining cancer genomes, Nat. Rev. Genet, vol.15, pp.556-570, 2014.

A. Gonzalez-perez, Computational approaches to identify functional genetic variants in cancer genomes, Nat. Methods, vol.10, pp.723-729, 2013.

D. Tamborero, Comprehensive identification of mutational cancer driver genes across 12 tumor types, Sci. Rep, vol.3, p.2650, 2013.

E. L. Curry, M. Moad, C. N. Robson, and R. Heer, Using induced pluripotent stem cells as a tool for modelling carcinogenesis, World J. Stem Cells, vol.7, pp.461-469, 2015.

M. Nishi, Induced cancer stem-like cells as a model for biological screening and discovery of agents targeting phenotypic traits of cancer stem cell, Oncotarget, vol.5, pp.8665-8680, 2014.

G. Tiscornia, E. L. Vivas, and J. C. Izpisua-belmonte, Diseases in a dish: modeling human genetic disorders using induced pluripotent cells, Nat. Med, vol.17, pp.1570-1576, 2011.

T. Kawamura, Linking the p53 tumour suppressor pathway to somatic cell reprogramming, Nature, vol.460, pp.1140-1144, 2009.

W. Li, Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors, Proc. Natl Acad. Sci. USA, vol.108, pp.8299-8304, 2011.

B. T. Spike, A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer, Cell Stem Cell, vol.10, pp.183-197, 2012.

L. Kurian, Conversion of human fibroblasts to angioblast-like progenitor cells, Nat. Methods, vol.10, pp.77-83, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01736199

D. A. Scott, Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect, J. Biol. Chem, vol.286, pp.42626-42634, 2011.

L. Ma, Control of nutrient stress-induced metabolic reprogramming by PKCzeta in tumorigenesis, Cell, vol.152, pp.599-611, 2013.

L. Stoppini, P. A. Buchs, and D. Muller, A simple method for organotypic cultures of nervous tissue, J. Neurosci. Methods, vol.37, pp.173-182, 1991.

R. Filipovic, S. S. Kumar, B. A. Bahr, and J. Loturco, Slice culture method for studying migration of neuronal progenitor cells derived from human embryonic stem cells (hESC), Curr. Protoc. Stem Cell Biol, vol.29, pp.1-1, 2014.

I. S. , E. X. , I. S. , .. , E. N. et al., performed and analysed all experiments. E.N. performed all animals experiments and in vitro experiments

I. S. , Y. N. , I. D. , C. R. , and E. , performed metabolic studies. A.A. performed immunofluorescence studies. R.M. and L.C.L. generated and analysed all bioinformatic data