Désambiguïsation lexicale à base de connaissances par sélection distributionnelle et traits sémantiques

Abstract : Word sense disambiguation improves many Natural Language Processing (NLP) applications such as Information Retrieval, Information Extraction, Machine Translation, or Lexical Simplification. Roughly speaking, the aim is to choose for each word in a text its best sense. One of the most popular method estimates local semantic similarity relatedness between two word senses and then extends it to all words from text. The most direct method computes a rough score for every pair of word senses and chooses the lexical chain that has the best score (we can imagine the exponential complexity that returns this comprehensive approach). In this paper, we propose to use a combinatorial optimization metaheuristic for choosing the nearest neighbors obtained by distributional selection around the word to disambiguate. The test and the evaluation of our method concern a corpus written in French by means of the semantic network BabelNet. The obtained accuracy rate is 78 % on all names and verbs chosen for the evaluation.
Complete list of metadatas

Cited literature [28 references]  Display  Hide  Download

Contributor : Mokhtar Boumedyen Billami <>
Submitted on : Monday, February 27, 2017 - 2:33:52 PM
Last modification on : Monday, March 4, 2019 - 2:04:14 PM
Long-term archiving on : Sunday, May 28, 2017 - 1:13:23 PM


Files produced by the author(s)


  • HAL Id : hal-01477463, version 1
  • ARXIV : 1702.08450



Mokhtar Boumedyen Billami. Désambiguïsation lexicale à base de connaissances par sélection distributionnelle et traits sémantiques. 22ème Conférence sur le Traitement Automatique des Langues Naturelles et 17ème Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues, Jun 2015, Caen, France. pp.13--24. ⟨hal-01477463⟩



Record views


Files downloads