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Weighted Sobolev Inequalities in CD(0,N) spaces

David Tewodrose∗

February 24, 2018

Abstract
In this note, we prove global weighted Sobolev inequalities on non-compact CD(0, N)

spaces satisfying a suitable growth condition, extending to possibly non-smooth struc-
tures a previous result of Minerbe, stated on Riemannian manifolds with non-negative
Ricci curvature and an adequate reverse doubling condition. We use then this result
in the context of Ahlfors regular RCD(0, N) spaces to get a uniform bound of the
corresponding weighted heat kernel via a weighted Nash inequality.
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1 Introduction
Riemannian manifolds with non-negative Ricci curvature enjoy strong analytic properties,
like local Sobolev inequalities and parabolic Harnack inequalities (see [SC02] for a nice
account on this topic) or estimates for heat kernels and Green functions [LY86]. It has
been well-known for quite a long time that to establish this properties, the non-negativity
of the Ricci curvature could be replaced by two of its consequences, namely the doubling
(2.2) and Poincaré (2.3) properties. This observation allows to forget about the smooth
structure of the space under consideration. Following this path, Sturm provided Gaussian
estimates for the fundamental solution of parabolic operators [St95], and parabolic Harnack
inequalities [St96], in the setting of PI doubling spaces endowed with a local, regular and
strongly regular Dirichlet form. Here and in the whole article by PI doubling space we
mean a metric measure space with doubling and Poincaré properties. Afterwards, general
doubling spaces with Poincaré type inequalities were studied at length by Hajlasz and
Koskela [HK00]: in this context, they proved local Sobolev type inequalities, a Trudinger
inequality, a Rellich-Kondrachov theorem, and discussed many related results.
∗Scuola Normale Superiore of Pisa, david.tewodrose@sns.it
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Contrary to Riemannian manifolds with non-negative Ricci curvature, PI doubling
spaces are stable with respect to measured Gromov-Hausdorff convergence. But the doubling
and Poincaré properties do not retain enough curvature features to be regarded as an
appropriate extension of non-negativity of the Ricci curvature to non-smooth spaces. For
instance, the Heisenberg group Hn is a PI doubling space which can be approximated
with Riemannian manifolds, however it follows from [Ju09] that any such approximating
sequence cannot satisfy a uniform bound of the Ricci curvature.

Approximately a decade ago, Sturm [St06] and Lott and Villani [LV09] independently
proposed the curvature-dimension condition CD(0, N), for N ∈ [1,+∞), as an extension of
non-negativity of the Ricci curvature and bound above by N of the dimension for possibly
non-smooth metric measure spaces. Together with the infinitesimal Hilbertiannity property
introduced later on by Ambrosio, Gigli and Savaré [AGS14b], the CD(0, N) condition
becomes RCD(0, N) condition. The class of RCD(0, N) spaces has been extensively studied
over the past years, and it is by now well-known that it contains the measured Gromov-
Hausdorff closure of Riemannian manifolds with non-negative Ricci curvature and dimension
lower than N , as well as CAT(0) spaces (also called Alexandrov spaces) with n-dimensional
Hausdorff measure, n being lower that N . Moreover, RCD(0, N) spaces are PI doubling
spaces endowed with a suitable Dirichlet form: the works of Sturm [St95, St96] imply the
parabolic Harnack inequality and Gaussian estimates for the heat kernel. In the broader
context of RCD(K,N) spaces, K ∈ R standing for a bound by below of the Ricci curvature
in the sense of Lott-Sturm-Villani, the Li-Yau estimates with sharp constants have been
proved recently by Jiang, Li and Zhang [JLZ16], building on the Harnack inequalities
previously established by Garofalo and Mondino [GM14] (see also [Ji15]). Note that most
previous works on RCD spaces made use of the RCD∗(K,N) condition, which has been a
posteriori proved equivalent to the RCD(K,N) condition.

The aim of this note is to provide another analytic result, namely a global weighted
Sobolev inequality, for a particular class of non-compact CD(0, N) spaces.

In [LV07], global Sobolev type inequalities were obtained for CD(K,N) spaces with
K > 0. Nonetheless, a generalized Bonnet-Myers theorem holds in the CD context [St06,
Cor. 2.6], implying that the support of the measure of a CD(K,N) space with K > 0 is
compact. A L1-Sobolev inequality is also known for essentially non-branching CD(K,N)
spaces with K < 0 [Vi09, Th. 30.23]. Here we replace this essentially non-branching
assumption by a growth condition, and get a Sobolev inequality of different nature, by very
different means. The sharp global Sobolev inequality has been established by Profeta [P15]
on RCD(K,N) spaces with K > 0 and N > 2. Finally, Cavaletti and Mondino proved in
their critical work [CM17, Th. 1.11] a global Sobolev inequality with sharp constant for
bounded essentially non-branching CD∗(K,N) spaces, taking into account a bound on the
diameter.

We recall the definition of upper gradient in Section 2. Here is our main result.

Theorem 1 (Weighted Sobolev inequalities). Let (X, d,m) be a CD(0, N) space with
N > 2. Assume that there exists 1 < η < N such that

0 < Θinf := lim inf
r→+∞

V (o, r)
rη

≤ Θsup := lim sup
r→+∞

V (o, r)
rη

< +∞ (1.1)

for some o ∈ X. Then for any 1 ≤ p < η, there exists a constant C = C(N, η,Θinf ,Θsup, p) >
0, depending only on N , η, Θinf , Θsup and p, such that for any function u : X → R
admitting an upper gradient g ∈ Lp(X,m),(ˆ

X
|u|p∗dµ

) 1
p∗

≤ C
(ˆ

X
gpdm

) 1
p
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where p∗ = Np/(N − p) and µ is the measure absolutely continuous with respect to m with
density wo = V (o, d(o, ·))p/(N−p)d(o, ·)−Np/(N−p).

Note that the growth condition (1.1) impose a dimensional restriction at infinity. For
instance if (X, d,m) is a RCD(0, N) space, the Mondino-Naber decomposition [MN14]
forces η to be an integer. This dimensional issue will be discussed in a larger context in [T].

Our proof relies on an abstract procedure (Theorem 2) which permits to patch local
inequalities into a global one by means of a discrete Poincaré inequality. This technique,
based upon ideas of Grigor’yan and Saloff-Coste [GS05], was successfully applied by
Minerbe [Min09] to get a weighted L2-Sobolev inequality on smooth Riemannian manifolds
with non-negative Ricci curvature satisfying a suitable reverse doubling condition. Hein
subsequently extended Minerbe’s result [He11] to smooth Riemannian manifolds with an
appropriate polynomial growth condition and whose Ricci curvature satisfies a lower bound
Ric ≥ −Cr−2, where r is the distance function to a reference point of the manifold.

We exploit a remark from Minerbe, which says that on Riemannian manifolds, besides
the assumed reverse doubling condition, the weighted L2-Sobolev inequality he established
follows only from the doubling and Poincaré properties. We simply show that this goes
also for non-smooth structures, and that the proof works for any exponent p ∈ (1, N ].

The paper is organized as follows. In Section 2, we introduce the tools of non-smooth
analysis that we shall use throughout the article. We also define the CD(0, N) and
RCD(0, N) conditions, and present the aforementioned patching procedure. In Section 3
we explain how to prove Theorem 1. We conclude with an application in Section 4, namely
a control of the weighted heat kernel (Theorem 5) via a weighted Nash inequality (Theorem
4), in the context of Ahlfors regular RCD(0, N) spaces. Note that some weighted Nash
inequalities were also considered in [BBGL12], but to the best understanding of the author,
they are fundamentally different from ours.

Several constants will appear in this work. For better readability, if a constant C
depends only on parameters a1, a2, · · · we will always write C = C(a1, a2, · · · ) for its first
occurrence, and then write more simply C if there is no ambiguity.

Acknowledgments
I warmly thank T. Coulhon for his suggestion of applying the patching procedure to more
general settings. I am also greatly indebted towards L. Ambrosio for numerous relevant
remarks at different stages of the work. Finally, I would like to thank V. Minerbe for useful
comments, and G. Carron and N. Gigli for helpful final conversations.

2 Preliminaries
Unless otherwise mentioned, in the whole article (X, d,m) will denote a triple such that
(X, d) is a complete and separable metric space and m is a Borel measure, positive and
finite on bounded sets, and without any loss of generality, we assume supp(m) = X. We
will use standard notations for functional spaces: Lip(X, d) for the space of d-Lipschitz
functions and Lp(X,m) for the space of p-integrable functions, for any 1 ≤ p ≤ +∞. We
will write Br(x) for the ball centered at x ∈ X with radius r > 0, and V (x, r) for the
quantity m(Br(x)). For any λ > 0, if B denotes a ball of radius r > 0, we write λB for the
ball with same center than B and radius λr. For any Borel set A ⊂ X and any function
u : X → R, we denote by uA or

ffl
A udm the mean value 1

m(A)
´
A udm, and by 〈u〉A the
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mean value 1
µ(A)

´
A udµ, where µ is as in Theorem 1.

Non-smooth analysis.
Let us recall that a continuous function γ : [0, L]→ X is called rectifiable curve if its length
L(γ), defined as

L(γ) :=
{

n∑
i=1

d(γ(xi), γ(xi−1)) : n ∈ N\{0}, 0 = x0 < · · · < xn = 1
}
,

is finite. For any rectifiable curve γ : [0, L] → X, there exists a continuous function
γ̄ : [0, L(γ)]→ X, called arc-length parametrization of γ, such that d(γ̄(s), γ̄(t)) = |t− s|
for all 0 ≤ t ≤ s ≤ L(γ), and a non-decreasing continuous map ϕ : [0, L]→ [0, L(γ)], such
that γ = γ̄ ◦ ϕ (see e.g. [BBI01, Prop. 2.5.9]). When L = L(γ) and ϕ ≡ Id, we say that
γ is parametrized by arc-length. This allows to introduce upper gradients, which can be
regarded as extensions of the norm of the gradient for measurable functions defined on X.

Definition 1. Let u : X → [−∞,+∞] be an extended real-valued function. A measurable
function g : X → [0,+∞] is called upper gradient of u if for any rectifiable curve γ :
[0, L]→ X parametrized by arc-length,

|u(γ(L))− u(γ(0))| ≤
ˆ L

0
g(γ(s)) ds.

The classical gradient of a Lipschitz function vanishes on the sets on which the function
is constant. The following truncation property is an extension of this fact.

Definition 2. Let u : X → [−∞,+∞] and g : X → [0,+∞] be two measurable functions.
For any 0 < t1 < t2 and any function v : X → R, we denote by vt2t1 the truncated function
min(max(0, u− t1), t2 − t1). We say that (u, g) satisfies the truncation property if for any
0 < t1 < t2, any b ∈ R and any ε ∈ {−1, 1}, gχt1<u<t2 is an upper gradient of (ε(u− b))t2t1 .

It can be easily checked that the couple (u, g) made of a measurable function u and
any of its upper gradients g satisfy the truncation property.

Let us recall now the notion of Sobolev spaces for general metric measure spaces
introduced by Cheeger [Ch99].

Definition 3. Let 1 ≤ p < +∞. The Sobolev (1, p) norm of a function u ∈ Lp(X,m) is
by definition

‖u‖W 1,p :=
(
‖u‖pLp + inf lim inf

i→∞
‖gi‖pLp

)1/p

where the infimum is taken over all the sequences of functions (ui)i∈N, (gi)i∈N such that
gi is an upper gradient of ui for every i ∈ N and ‖ui − u‖Lp → 0. The Sobolev space
W 1,p(X, d,m) is then defined as the closure of Lip(X, d)∩Lp(X,m) with respect to ‖ · ‖W 1,p .

The above relaxation process can be achieved by using slopes of bounded Lipschitz
functions instead of upper gradients of Lp functions (Lemma 4). Recall that the slope of a
Lipschitz function f is defined by:

|Df |(x) = lim sup
y→x

|f(x)− f(y)|
d(x, y) , ∀x ∈ X.

We will use the next notion to turn weak inequalities into strong inequalities.
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Definition 4. Let Ω be a bounded open set of X. Ω is called a John domain if there exists
x0 ∈ Ω and C > 0 such that for every x ∈ Ω, there exists a Lipschitz curve γ : [0, L]→ Ω
parametrized by arc-length such that γ(0) = x, γ(L) = x0 and for any t ∈ [0, L],

C ≤ d(γ(t), X\Ω)
t

. (2.1)

Let us point out that condition (2.1) prevents John domains to have cusps on their
boundary, as one can easily understand from a simple example. Take Ω = {(x, y) ∈ R2 : 0 <
x < π/2, |y| < e− tanx}. Then (2.1) fails at the cuspidal point (1, 0): define xε = (π/2−ε, 0)
for any 0 < ε < π/4, then for any Lipschitz curve γ starting from xε parametrized by
arc-length and with length larger than ε,

d(γ(ε),R2\Ω)
ε

≤ d(x2ε,R2\Ω)
ε

= e− tan(π/2−2ε)

ε
ε→0−−−→ 0.

Finally, let us recall that the space (X, d,m) is called doubling if the following condition
holds:

∃CD ≥ 1 : V (x, 2r) ≤ CDV (x, r), ∀x ∈ X, ∀r > 0, (2.2)

and we say that it satisfies a weak local (p, p) Poincaré inequality if there exists λ > 1 such
that:

∃CP > 0 :
ˆ
B
|u− uB|p dm ≤ CP rp

ˆ
λB
gp dm, ∀B = B(x, r), (2.3)

for any locally m-integrable function u and any of its upper gradients g ∈ Lp(X,m). If the
same inequality holds with λ = 1, we say that a strong (p, p) Poincaré inequality holds.

The CD(0, N) and RCD(0, N) conditions.
Let us give the definition of the curvature-dimension conditions CD(0, N) and RCD(0, N).
For the more general condition CD(K,N) with K ∈ R, we refer to [Vi09, Chap. 29, 30].

Recall that a curve γ : [0, 1]→ X is called a geodesic if d(γ(s), γ(t)) = |t−s|d(γ(0), γ(1))
for any 0 ≤ s ≤ t ≤ 1. The space (X, d) is called geodesic if for any couple of points
x0, x1 ∈ X there exists a geodesic γ such that γ(0) = x0 and γ(1) = x1. We denote
by P(X) the set of probability measures on X and by P2(X) the set of probability
measures µ on X with finite second moment, i.e. such that there exists xo ∈ X for which´
X d2(xo, x) dµ(x) < +∞. The Wasserstein distance between two measures µ0, µ1 ∈ P2(X)
is by definition

W2(µ0, µ1) = inf
(ˆ

X×X
d(x0, x1)2 dπ(x0, x1)

)1/2

where the infimum is taken over the set of probability measures π on X ×X with first
marginal equal to µ0 and second marginal equal to µ1. A standard result of optimal
transport theory states that if the space (X, d) is geodesic, then the metric space (P2,W2)
is geodesic too. Let us introduce the Rényi entropy.

Definition 5. Given N ∈ (1,+∞), the N -Rényi entropy SN (·|m) relative to m is defined
as follows:

SN (µ|m) = −
ˆ
X
ρ1− 1

N dm ∀µ ∈ P(X),

where µ = ρm + µsing is the Lebesgue decomposition of µ with respect to m.
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We are now in a position to introduce the CD(0, N) condition, which could be summa-
rized as weak geodesical convexity of N ′-Rényi entropies for any N ′ ≥ N .

Definition 6. Given N ∈ (1,+∞), (X, d,m) satisfies the CD(0, N) condition if for any
N ′ ≥ N , the N ′-Rényi entropy is weakly geodesically convex, meaning that for every couple
of measures µ0, µ1 ∈ P2(X), there exists a W2-geodesic (µt)t∈[0,1] between µ0 and µ1 such
that for any t ∈ [0, 1],

SN (µt|m) ≤ (1− t)SN (µ0|m) + tSN (µ1|m).

Any space satisfying the CD(0, N) condition is called a CD(0, N) space.

The Bishop-Gromov theorem holds on CD(0, N) spaces [Vi09, Th. 30.11], and as a
direct consequence, the doubling condition holds too, with optimal doubling constant
CD = 2N . Moreover, Rajala proved the following uniform weak local (1, 1) Poincaré
inequality [Raj12, Th. 1.1] .

Proposition 1. Assume that (X, d,m) is a CD(0, N) space. Then for any measurable
function u : X → [−∞,+∞] admitting an upper gradient g ∈ L1(X,m), for any ball
B ⊂ X with radius r such that 2B ⊂ X,ˆ

B
|u− uB| dm ≤ 4r

ˆ
2B
g dm.

Unfortunately, the CD(0, N) condition does not distinguish Riemannian and non-
Riemannian structures. Indeed, Rn equipped with the distance induced by the infinite
norm and the Lebesgue measure satisfies the CD(0, N) condition [Vi09], however it is not a
Riemannian structure, as the infinite norm is not induced by any scalar product. To focus
on more Riemannian-like structures, Ambrosio, Gigli and Savaré added to the theory the
notion of infinitesimal Hilbertianity, leading to the so-called RCD condition, R standing
for Riemannian [AGS14b].

Definition 7. Define the Cheeger energy of a function f ∈W 1,2(X, d,m) as

Ch(f) := 1
2(‖f‖2W 1,2 − ‖f‖2L2).

(X, d,m) is called infinitesimally Hilbertian if Ch is a quadratic form. If in addition (X, d,m)
is a CD(0, N) space, it is said to satisfy the RCD(0, N) condition, or more simply it is
called a RCD(0, N) space.

Note that (X, d,m) is infinitesimally Hilbertian if and only if W 1,2(X, d,m) is a Hilbert
space, whence the terminology. This condition allows to apply the general theory of
gradient flows on Hilbert spaces and to canonically associate to Ch its L2(X,m) gradient
flow, denoted by (ht)t≥0 and called heat flow of (X, d,m). The infinitesimal Hilbertianity
implies that this heat flow is a linear, continuous, self-adjoint and Markovian contraction
semigroup in L2(X,m). The terminology ‘heat flow’ comes from the characterization
of (ht)t≥0 as the only semi-group of operators such that t 7→ htf is locally absolutely
continuous in (0,+∞) with values in L2(X,m) and

d
dthtf = ∆htf for L1-a.e. t ∈ (0,+∞),

for every f ∈ L2(X,m), the Laplace operator ∆ being defined in this context by:

f ∈ D(∆) ⇐⇒ ∃h := ∆f ∈ L2(X,m) s.t. Ch(f, g) = −
ˆ
X
hg dm ∀g ∈W 1,2(X, d,m).
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Let us close this quick overview by saying that on infinitesimally Hilbertian spaces, Ch
admits an integral representation

2Ch(f) =
ˆ
X

Γ(f, f) dm ∀f ∈W 1,2(X, d,m),

where Γ : W 1,2(X, d,m) × W 1,2(X, d,m) → L1(X,m) is the Carré du champ operator
defined by a classical polarization procedure.

Patching procedure
Let us present now the patching procedure [GS05, Min09] that we shall apply to get
Theorem 1. Recall that µ is the Borel measure absolutely continuous with respect to m
with density wo = V (o, d(o, ·))p/(N−p)d(o, ·)−Np/(N−p). For a given set {·}, we denote by
Card{·} its cardinality.

Definition 8. A countable family (Ui, U∗i , U
#
i )i∈I of Borel subsets of X with finite m-

measure is called a good covering of (X, d) with respect to (µ,m) if:

1. for every i ∈ I, Ui ⊂ U∗i ⊂ U
#
i ;

2. there exists a m-negligible Borel set E ⊂ X such that X\E ⊂
⋃
i Ui;

3. (overlapping condition at level 3)
there exists Q1 > 0 such that for every i0 ∈ I, Card({i ∈ I : U#

i0
∩ U#

i 6= ∅}) ≤ Q1;

4. (embracing condition between level 1 and 2)
for every (i, j) ∈ I2 such that Ui ∩ Uj 6= ∅, there exists k(i, j) ∈ I such that
Ui ∪ Uj ⊂ U∗k(i,j);

5. (measure control of the embracing condition)
there exists Q2 > 0 such that for every i, j ∈ I, if Ui ∩ Uj 6= ∅,

(i) µ(U∗k(i,j)) ≤ Q2 min(µ(Ui), µ(Uj));
(ii) m(U∗k(i,j)) ≤ Q2 min(m(Ui),m(Uj)).

Assume that (Ui, U∗i , U
#
i )i∈I is a good covering of (X, d) with respect to (µ,m). Let us

explain how to define out of (Ui, U∗i , U
#
i )i∈I a canonical weighted graph (V, E , µ), where V

is the set of vertices of the graph, E is the set of edges, and µ is a weight on the graph (i.e.
a function µ : V t E → R). We define V by associating to each Ui a vertex i (informally,
we put a point i on each Ui). Then we define E as

E := {(i, j) ∈ V × V : i 6= j and Ui ∩ Uj 6= ∅}.

We will write i ∼ j whenever (i, j) ∈ E . Note that two vertices are linked if the associated
pieces of the covering intersect. But in practical, we will always consider good coverings
such that Ůi ∩ Ůj = ∅ for every i 6= j, so roughly speaking, we are just linking two vertices
i and j if they correspond to adjacent pieces Ui and Uj . Afterwards we weight the vertices
of the graph setting µ(i) := µ(Ui) for every i ∈ V (the repeated use of the letter “µ” won’t
cause any trouble), and the edges setting µ(i, j) := max(µ(i), µ(j)) for every (i, j) ∈ E .

The patching theorem (Theorem 2) states that if some local inequalities are true on the
pieces of the good covering, and if a discrete inequality holds on the associated canonical
weighted graph, then the local inequalities can be patched into a global one. Let us give
the precise definitions.
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Definition 9. We say that the good covering (Ui, U∗i , U
#
i )i∈I satisfies local continuous Lp

Sobolev-Neumann inequalities if there exists a constant Sc > 0 such that for every i ∈ I,

1. (levels 1-2) for any measurable function u : U∗i → R and any upper gradient
g ∈ Lp(U∗i ,m) of u,

(ˆ
Ui

|u− 〈u〉Ui |p
∗ dµ

) 1
p∗

≤ Sc

(ˆ
U∗i

gp dm
) 1
p

;

2. (levels 2-3) for any measurable function u : U#
i → R and any upper gradient

g ∈ Lp(U#
i ,m) of u,

(ˆ
U∗i

|u− 〈u〉U∗i |
p∗ dµ

) 1
p∗

≤ Sc

(ˆ
U#
i

gp dm
) 1
p

.

Definition 10. We say that the weighted graph (V, E , µ) satisfies a discrete (p, p) Poincaré
inequality if there exists a constant Sd > 0 such that for every f ∈ Lp(V, µ),

(∑
i∈V
|f(i)|pµ(i)

) 1
p

≤ Sd

 ∑
{i,j}∈E

|f(i)− f(j)|pµ(i, j)

 1
p

.

Remark 1. Note that here we differ from Minerbe’s terminology, which call the above
inequality a discrete Lp Sobolev-Dirichlet inequality of order ∞. More generally, we say
that a discrete Lp Sobolev-Dirichlet inequality of order k holds if there exists a constant Sd
such that for every f ∈ Lp(V, µ),

(∑
i∈V
|f(i)|

pk
k−pµ(i)

) k−p
k

≤ Sd
∑
{i,j}∈E

|f(i)− f(j)|pµ(i, j).

As we don’t need this general definition, we choose the appellation “Poincaré” which seems
more natural.

In the following statements, we consider 1 ≤ q < +∞.

Definition 11. A good covering (Ui, U∗i , U
#
i )i∈I is called a (p, q) patchwork if it satisfies

the local continuous Lp Sobolev-Neumann inequalities and if the associated weighted graph
(V, E ,m) satisfies the discrete (q, q) Poincaré inequality.

We are now in a position to state the patching theorem.

Theorem 2. Assume that X admits a (p, q) patchwork. Then there exists a constant
C = C(p, q,Q1, Q2, Sc, Sd) > 0 such that for any measurable function u : X → R admitting
an upper gradient g ∈ Lp(X,m),

(ˆ
X
|u|q dµ

) 1
q

≤ C
(ˆ

X
gp dm

) 1
p

.

The proof of Theorem 2 can be copied verbatim from [Min09, Th. 1.8], replacing norm
of gradients by upper gradients, thus we omit it. Nonetheless, let us stress that this proof
does not require any extra assumption on (X, d,m).
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Note that a similar statement holds if we replace X by a subset A with finite measure
and the discrete (q, q) Poincaré inequality by a discrete (q, q) Poincaré-Neumann inequality:
there exists a constant Sd > 0 such that for every f : V → R with finite support,(∑

i∈V
|f(i)−m(f)|pµ(i)

) 1
p

≤ Sd

 ∑
{i,j}∈E

|f(i)− f(j)|pµ(i, j)

 1
p

,

where m(f) =
(∑

i : f(i)6=0 m(i)
)−1∑

i f(i)m(i). See [Min09, Th. 1.10] for the proof.

Theorem 3. Let A be a subset of X with m(A) < +∞. Assume that A admits a finite good
covering (Ui, U∗i , U

#
i )i∈I satisfying the local continuous Lp Sobolev-Neumann inequalities

and whose associated weighted graph (V, E ,m) satisfies the above discrete (q, q) Poincaré-
Neumann inequality. Then there exists a constant C = C(p, q,Q1, Q2, Sc, Sd) > 0 such that
for any u ∈ L1(A,µ) admitting an upper gradient g ∈ Lp(A,m),(ˆ

A
|u− 〈u〉A|q dµ

) 1
q

≤ C
(ˆ

A
gp dm

) 1
p

.

3 Proof of the main result
In this section, we prove Theorem 1. Let (X, d,m) be a non-compact CD(0, N) space with
N ≥ 3. Take 1 ≤ p < N and p < η < N , and assume that the growth condition (1.1) holds.
Let us recall that p∗ = pN/(N − p) and that µ is the measure absolutely continuous with
respect to m with density wo = V (o, d(o, ·))p/(N−p)d(o, ·)−Np/(N−p).

As pointed out by Minerbe [Min09], on Riemannian manifolds, the local continuous L2

Sobolev-Neumann inequalities can be derived from the doubling condition and a uniform
local (2, 2) strong Poincaré inequality, both implied by the non-negativity of the Ricci
curvature. However, the discrete (2∗, 2∗) Poincaré inequality requires the addition of a
reverse doubling condition (3.1), which is an immediate consequence of the growth condition
(1.1).

Lemma 1. There exists A > 0 and CRD > 0 such that
V (o,R)
V (o, r) ≥ CRD

(
R

r

)η
∀A < r ≤ R. (3.1)

Proof. The growth condition (1.1) implies the existence of A > 0 such that for any r ≥ A,
Θinf/2 ≤ r−ηV (o, r) ≤ 2Θsup. Take R ≥ r. Then R−ηV (o,R) ≥ Θinf/2, whence the result
with CRD = Θinf/(4Θsup).

Remark 2. With no loss of generality, we can (and will) assume that A = 1.

We shall need the following result, namely a local Lp-Sobolev inequality, which is a
well-known consequence of the doubling and Poincaré properties of (X, d,m).

Proposition 2. There exists a constant C = C(N, p) > 0 such that for any function
u ∈ L1

loc(X,m), any upper gradient g of u, and any ball B = BR(x) ⊂ X,( 
B
|u− uB|p

∗ dm
)1/p∗

≤ CR
( 

B
gp dm

)1/p
(3.2)

or, alternatively,(ˆ
B
|u− uB|p

∗ dm
)1/p∗

≤ C R

V (x,R)1/N

(ˆ
B
gp dm

)1/p
. (3.3)

9



Proof. Assume that u : X → R is a locally m-measurable function admitting an upper
gradient g ∈ Lp(X,m). Assume that B is a ball of X with radius R. Using Hölder’s
inequality, Proposition 1 gives

 
B
|u− uB|dm ≤ 2N+2r

( 
2B
gp dµ

)1/p
.

As η > p we are in a position to apply 1. of [HK00, Th. 5.1], which implies( 
B
|u− uB|p

∗ dm
)1/p∗

≤ Cr
( 

10B
gp dm

)1/p
.

To turn this weak inequality into a strong one, let us apply [HK00, Th. 9.7] to the ball B.
As (X, d,m) is a CD(0, N) space, the metric structure (X, d) is proper and geodesic, then
all the balls of X are John domain with a common constant [HK00, Cor. 9.5]. The fact
that there exists a constant C > 0 such that for every ball B(x, ρ) ⊂ B with ρ < 2r,

m(B(x, r)) ≥ C
(
ρ

2r

)η
m(B),

is easily verified using the doubling condition. Then [HK00, Th. 9.7] applies and gives the
result.

Remark 3. Theorem 9.7 of [HK00] is stated for weak John domains, a generalization
of the notion of John domain to structures without enough rectifiable curves (especially
fractals, see [HK00, p.39] for details). However being a John domain implies being a
weak John domain, and CD(0, N) spaces are geodesics and therefore they contain enough
rectifiable curves.

Finally, let us state a result whose proof can be taken from [Min09, Prop. 2.8], replacing
smooth functions by measurable ones, norm of gradients by upper gradients, and the strong
local (2, 2) Poincaré inequality used there by Proposition 1. Notice that even if Proposition
1 provides only a weak inequality, one can harmlessly substitute it to the strong one used
in the smooth case, because it is applied to a function f which is Lipschitz on a ball B
and extended by 0 outside of B.

Proposition 3. There exists κ0 = κ0(N, η, p) > 1 such that for every R > 0, for any
couple of points x, y in the geodesic sphere S(o,R), there exists a rectifiable curve from x
to y that remains inside B(o,R)\B(o, κ−1

0 R).

Remark 4. It is worth pointing out that the conclusion of Proposition 3 can be understood
as a connectedness property, as it implies that any annulus B(o, κi+2

o )\B(o, κi−1
o ) must be

connected. Moreover, the proof can be carried out with only the doubling and Poincaré
properties, thus the conclusion holds for any PI doubling space.

Let us prove now Theorem 1.

STEP 1: The good covering.

Let us give explain in a few words on how to construct a good covering on (X, d,m).
We refer to [Min09, Section 2.3.1] for the details. Define κ as the square-root of the
constant κ0 given by Proposition 3. Then for any R > 0, two connected components of
B(o, κR)\B(o,R) are always contained in one component of B(o, κR)\B(o, κ−1R). Let us
write Ai = B(o, κi)\B(o, κi−1) for any i ∈ N.

10



Let γ be a line starting at o, i.e. a continuous function γ : [0,+∞) → X such that
γ(o) = 0 and d(γ(t), γ(s)) = |t− s| for any s, t ≥ 0. Such a line can be obtained as follows.
For x1 ∈ S(o, 1), let γ1 : [0, 1]→ X be a geodesic between o and x1. Define then recursively
xn := argmin{d(xn−1, x) : x ∈ S(o, n)} and γn geodesic between xn−1 and xn for any
n ≥ 1. The concatenation of all the γn provides the desired γ.

Then for any integer i, denote by (U ′i,a)0≤a≤h′i the connected components of Ai, U ′i,0
being the one which intersects γ. Let us prove that the number h′i is uniformly bounded.
This was stated without proof in [Min09].

Lemma 2. There exists a constant h = h(N,κ) <∞ such that supi h′i ≤ h.

Proof. Take i ∈ N. For every 0 ≤ a ≤ h′i, pick xa in Ui,a ∩ S(o, (κi + κi−1)/2). As the balls
V (xa, (κi − κi−1)/4), 0 ≤ a ≤ h′i, are disjoints and all included in V (o, κi),

h′i min
0≤a≤h′i

V (xa, (κi − κi−1)/4) ≤
∑

0≤a≤h′i

V (xa, (κi − κi−1)/4) ≤ V (o, κi).

Assume for simplicity that min
0≤a≤h′i

V (xa, (κi − κi−1)/4) = V (x0, (κi − κi−1)/4). Notice that

d(o, x0) ≤ κi. Then

h′i ≤
V (o, κi)

V (x0, (κi − κi−1)/4) ≤
V (x0, κ

i + d(o, x0))
V (x0, (κi − κi−1)/4) ≤

(
8κi

κi − κi−1

)N

by the doubling condition. Whence the result with h =
(

8κ
κ−1

)N
.

Define then the covering (U ′i,a, U ′∗i,a, U
′#
i,a )i∈N,0≤a≤h′i where U

′∗
i,a is by definition the union

of the sets U ′j,b such that U ′j,b ∩U ′i,a 6= ∅, and U
′#
i,a is by definition the union of the sets U ′∗j,b

such that U ′∗j,b ∩ U ′∗i,a 6= ∅. Note that (U ′i,a, U ′∗i,a, U
′#
i,a )i∈N,0≤a≤h′i is not necessarily a good

covering, as there is no reason a priori that it satisfies the measure control of the overlapping
condition: pieces U ′i,a may be arbitrary small compared to their neighbors. Thus whenever
U ′i,a

´
S(o, κi) = ∅, we define Ui−1,a = U ′i,a ∪U ′i−1,a′ where a′ is such that U ′i,a ∩Ui−1,a′ 6= ∅;

otherwise we define Ui,a = U ′i,a. In other words, we incorporate small pieces U ′i,a into
the adjacent piece U ′i−1,a′ . Then we define U∗i,a and U#

i,a in a similar way than U ′∗i,a and
U ′#i,a . Using the doubling condition, one can show that (Ui,a, U∗i,a, U

#
i,a)i∈N,0≤a≤hi is a good

covering on (X, d) with respect to (µ,m), with constants Q1 and Q2 depending only on N .

STEP 2: The discrete (p∗, p∗) Poincaré inequality.

Let us denote by (V, E , µ) the weighted graph obtained from the good covering
(Ui,a, U∗i,a, U

#
i,a)i∈N,0≤a≤hi . Define the degree deg(i) of a vertex i as the number of ver-

tices j such that i ∼ j. As a consequence of Lemma 2, sup deg(i) : i ∈ V ≤ 2h. Moreover,
the doubling condition implies easily the existence of a number C ≥ 1 such that for every
i, j ∈ E, C−1m(i) ≤ m(j) ≤ Cm(j). Thus by [Min09, Prop. 1.12], the discrete (1, 1)
Poincaré inequality implies the (q, q) one for every q ≥ 1. But the discrete (1, 1) Poincaré
inequality is equivalent to the isoperimetric inequality ([Min09, Prop. 1.14]): there exists a
constant I > 0 such that for any Ω ⊂ V with finite measure,

µ(Ω)
µ(∂Ω) ≤ I

11



where ∂Ω := {(i, j) ∈ E : i ∈ Ω, j /∈ Ω}. The only ingredients to prove this isoperimetric
inequality are the doubling and reverse doubling conditions, see Section 2.3.3 in [Min09].
Then the discrete (q, q) Poincaré inequality holds for any q ≥ 1, with a constant Sd de-
pending only on q, η, Θinf , Θsup and on the doubling and Poincaré constants of (X, d,m),
i.e. on N .

STEP 3: The local continuous Lp Sobolev-Neumann inequalities.

Let us explain how to get the local continuous Lp Sobolev-Neumann inequalities. We
start by deriving from the local Lp-Sobolev inequality (3.2) a crucial technical result,
namely a Lp-Sobolev-type inequality on connected Borel subsets of annuli.

Lemma 3. Let R > 0 and α > 1. Let A be a connected Borel subset of B(o, αR)\B(o,R).
For 0 < δ < 1, denote by (A)δ the δ-neighborhood of A, i.e. (A)δ =

⋃
x∈ABδ(x). Then

there exists a constant C = C(N, δ, α, p) > 0 such that for any measurable function
u : (A)δ → [−∞,+∞] and any upper gradient g ∈ Lp((A)δ,m),

(ˆ
A
|u− uA|p

∗ dm
)1/p∗

≤ C Rp

V (o,R)p/N

(ˆ
(A)δ

gp dm
)1/p

.

Proof. Define s = δR and choose (xj)j∈J an s-lattice of A (a maximal set of points whose
distance between two of them is at least s). Set Vi = B(xi, s) and V ∗i = V #

i = B(xi, 3s).
Using the doubling condition, there is no difficulty in proving that (Vi, V ∗i , V

#
i ) is a good

covering of (X, d) with respect to (m,m). A discrete (p∗, p∗) Poincaré-Neumann inequality
holds on the associated weighted graph, as one can easily checked following the lines of
[Min09, Lem. 2.10]. The local continuous Lp Sobolev-Neumann inequalities stem from the
proof of [Min09, Lem. 2.11], where we replace (14) there by Proposition 2. Then Theorem
3 gives the result.

Let us prove that Lemma 3 implies the local continuous Lp Sobolev-Neumann in-
equalities with a constant Sc depending only on N , η and p. Take a piece of the good
covering Ui,a. Choose δ = (1− κ−1)/2 so that (Ui,a)δ ⊂ U∗i,a. Take a measurable function
u : U∗i,a → [−∞,+∞] and an upper gradient g of u. By the triangle inequality and the
elementary fact |x+ y|p∗ ≤ 2p∗−1(|x|+ |y|) holding for any x, y ∈ R,

ˆ
Ui,a

|u− 〈u〉Ui,a |p
∗ dµ ≤ 2p∗ inf

c∈R

ˆ
Ui,a

|u− c|p∗ dµ ≤ 2p∗
ˆ
Ui,a

|u− uUi,a |p
∗
wo dm.

As wo is a radial function, let us define w̄o(r) = wo(x) for r = d(o, x). Note that by
Bishop-Gromov theorem, w̄o is a decreasing function, so

ˆ
Ui,a

|u− 〈u〉Ui,a |p
∗ dµ ≤ 2p∗w̄o(κi−1)

ˆ
Ui,a

|u− uUi,a |p
∗ dm.

Applying Lemma 3 with A = Ui,a, R = κi−1 and α = κ2, we get

ˆ
Ui,a

|u− 〈u〉Ui,a |p
∗ dµ ≤Cp∗2p∗ κp

∗(i−1)

V (o, κi−1)p∗/N
w̄o(κi−1)

(ˆ
U∗i,a

gp dm
)p∗/p

≤ C
(ˆ

U∗i,a

gp dm
)p∗/p
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where we used the same letter C to denote different constants depending only on N , p,
and κ. As κ depends only on N , η and p, we get the result.

An analogous argument implies the inequalities between levels 2 and 3.

STEP 4: Conclusion.

Apply Theorem 2 to get the result.

4 Weighted Nash inequality and bound of the correspond-
ing heat kernel

In this section, we apply Theorem 1 in the setting of RCD(0, N) spaces to derive a
corresponding weighted Nash inequality, from which we deduce a uniform bound on a
weighted heat kernel when the spaces are k-Ahlfors regular for some integer k between 1
and N . Recall that (X, d,m) is called k-Ahlfors regular if there exists a constant C > 0
such that

C−1 ≤ V (x, r)
rk

≤ C, ∀x ∈ X, ∀r > 0.

Note that if (X, d,m) is k-Ahlfors regular and satisfies the growth condition (1.1) for
some η, then η = k.

Theorem 4 (Weighted Nash inequality). Assume that (X, d,m) is a RCD(0, N) space, with
N > 2, satisfying (1.1) with η > 2. Then there exists a constant C = C(N,Θinf ,Θsup) > 0
such that for any u ∈ L1(X,µ) ∩W 1,2(X, d,m),

‖u‖2+ 4
N

L2(X,µ) ≤ C‖u‖
4
N

L1(X,µ)Ch(u).

To prove this theorem, we need a standard lemma, consequence of [ACDM15, Section
3], which states that the relaxation procedure defining Ch can be achieved with slopes of
bounded Lipschitz functions instead of upper gradients. We give a proof for the reader’s
convenience.

Lemma 4. Let u ∈W 1,2(X, d,m). Then

Ch(u) = inf
{

lim inf
n→∞

ˆ
X
|Dun|2 dm : (un)n ⊂ Lipb(X) ∩ L2(X,m), ‖un − u‖L2(X,µ) → 0

}
.

Proof. Choose a point o ∈ X and for every n ∈ N∗, let χn be a Lipschitz function
constant equal to 1 on B(o, n), to 0 on X\B(o, n + 1) and such that |Dχn| ≤ 2. Take
f ∈ Lip(X) ∩ L2(X,m) and define, for every n ∈ N, fn = fχn. Using the chain rule and
Young’s inequality for some ε > 0, denoting by Lip(χn)(≤ 2) the Lipschitz constant of χn,
we get

|Dfn|2 ≤
(
χn|Df |+ f Lip(χn)1B(0,n+1)\B(0,n)

)2

≤ (1 + ε)|Df |2 + 4(1 + 1/ε)f21B(0,n+1)\B(0,n).

Integrating over X and taking the limit superior, it implies

lim sup
n→∞

ˆ
X
|Dfn|2 dm ≤ (1 + ε)

ˆ
X
|Df |2 dm,
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and letting ε go to 0 leads to

lim sup
n→∞

ˆ
X
|Dfn|2 dm ≤

ˆ
X
|Df |2 dm.

Then for u ∈ W 1,2(X, d,m), for any sequence (uk)k ⊂ Lip(X) ∩ L2(X,m) L2(X,m)-
converging to u, considering for any k ∈ N a sequence (vk,n)n ⊂ Lipb(X) built as above, a
diagonal argument provides a sequence (vk,n(k))k such that

lim inf
k→∞

ˆ
X
|Dvk,n(k)|2 dm ≤ lim inf

k→∞

ˆ
X
|∇uk|2 dm.

Taking the infimum among all sequences (uk)k L2-converging to u leads to the result.

We can now prove Theorem 4. The proof presented here is the standard way to deduce
a Nash inequality from a Sobolev inequality, see for instance [BBGL12].

Proof. By the previous lemma it is sufficient to prove the result for u ∈ Lipb(X). By
Hölder’s inequality,

‖u‖L2(X,µ) ≤ ‖u‖θL1(X,µ)‖u‖
1−θ
L2∗ (X,µ)

where 1
2 = θ

1 + 1−θ
2∗ i.e. θ = 2

N+2 . Then by Theorem 1 applied for p = 2 < η,

‖u‖L2(X,µ) ≤ C‖u‖
2

N+2
L1(X,µ)‖|Df |‖

N
N+2
L2(X,m).

As u ∈ Lipb(X), Ch(f) = ‖|Df |‖2L2(X,m). The result follows from the previous inequality
raised to the power 2(N + 2)/N .

We deduce now from Theorem 4 a bound on the weighted heat kernel of k-Ahlfors
regular RCD(0, N) spaces. Let us explain which weighted heat kernel we are dealing
with. We consider wo = V (o, d(o, ·))2/(N−2)d(o, ·)−2N/(N−2), i.e. the case p = 2. Define the
Dirichlet form Q on L2(X,µ) as the restriction of Ch to D(Q) := W 1,2(X, d,m)∩L2(X,µ).
Denote by (hµt )t>0 the semi-group associated to Q. This semi-group admits a self-adjoint
generator −A defined on a set D(A) dense in D(Q) and characterized by:

Q(f, g) =
ˆ
X

(Af)g dµ ∀f ∈ D(A), ∀g ∈ D(Q).

As for any f ∈ D(∆) and any g ∈W 1,2(X, d,m),

Ch(f, g) =
ˆ
X

(−∆f)g dm =
ˆ
X

(−w−1
o ∆f)g dµ,

D(A) = D(∆) ∩ L2(X,µ) and A = w−1
o ∆. The semi-group (hµt )t>0 is then characterized

by the fact that for any f ∈ L2(X,µ), t→ hµt f is locally absolutely continuous on (0,+∞)
with values in L2(X,µ), and

d
dth

µ
t f = −Ahµt f for L1-a.e. t ∈ (0,+∞).

By the Markov property, each hµt can be uniquely extended from L2(X,µ) ∩ L1(X,µ) to
a contraction from L1(X,µ) to itself. Note that if 1 ≤ p, q ≤ +∞ and L is a bounded
operator from Lp(X,µ) to Lq(X,µ), we denote by ‖L‖Lp(X,µ)→Lq(X,µ) its norm.
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Theorem 5 (Bound of the weighted heat kernel). Assume that N ≥ 3, and let k ∈ (2, N ]∩N.
Assume that (X, d,m) is a k-Ahlfors regular RCD(0, N) space satisfying the growth condition
(1.1). Then there exists C = C(N,Θinf ,Θsup) > 0 such that

‖hµt ‖L1(X,µ)→L∞(X,µ) ≤
C

tN/2 , ∀t > 0,

or equivalently, for any t > 0, hµt admits a kernel pµt with respect to µ such that for every
x, y ∈ X,

pµt (x, y) ≤ C

tN/2 .

To prove this theorem we follow closely the lines of [SC02, Th. 4.1.1.]. The constant C
may differ from line to line, note however that it will always depend only on N , Θinf and
Θsup. For better readability, we will write Lp(µ) instead of Lp(X,µ).

Proof. Take f ∈ L1(µ)∩L2(µ)∩D(A) with ‖f‖L1(µ) = 1. Then by contraction ‖hµt f‖L1(µ) ≤
1 for any t > 0, so by Theorem 4,

‖hµt f‖
2+4/N
L2(µ) ≤ CCh(hµt f). (4.1)

As hµt f ∈ D(A) for any t > 0,

Ch(hµt f) = Q(hµt f, h
µ
t f) =

ˆ
X

(Ahµt f)hµt f dm = −
ˆ
X

( d
dth

µ
t f

)
hµt f dm = −1

2
d
dt‖h

µ
t f‖2L2(µ).

Therefore, (4.1) becomes u(t)1+2/N ≤ −C
2 u
′(t), where u(t) = ‖hµt f‖2L2(µ). Write v(t) =

N
2 u(t)−2/N to get 2

C ≤ −v
′(t) and thus 2

C t ≤ v(t)− v(0). As v(0) = N
2 ‖h

µ
t f‖

−4/N
L2(µ) ≥ 0, one

gets 2
C t ≤ v(t), leading to

‖hµt f‖L2(µ) ≤
C

tN/4 .

Therefore ‖hµt ‖L1(µ)→L2(µ) ≤ C
tN/4 . Using the self-adjointness of htf , one deduces by duality

‖hµt ‖L2(µ)→L∞(µ) ≤ C
tN/4 . Finally the semi-group property

‖hµt ‖L1(µ)→L∞(µ) ≤ ‖h
µ
t/2‖L1(µ)→L2(µ)‖h

µ
t/2‖L2(µ)→L∞(µ)

implies the result.

Remark 5. The author spent quite a long time in trying to extend [Min09, Th. 0.5] to
the RCD(0, N) context, in which the L2-cohomology of a space makes sense [G15b, Sec-
tion 3.5.2]. However, giving a meaning in a non-smooth context to the critical integrability
assumption ˆ

M
|Rm|n/2 dVg < +∞

where Rm denotes the curvature tensor of a Riemannian manifold (M, g), seems presently
hardly feasible.
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