A ”dual”, feed-forward + feed-back frequency control for efficient and convenient diode laser line narrowing
Michel Lintz, Duy-Hà Phung, Jean-Pierre Coulon, Benoit Faure, Thomas Leveque

To cite this version:

HAL Id: hal-01476870
https://hal.archives-ouvertes.fr/hal-01476870
Submitted on 26 Feb 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
DFB diode lasers have linewidths in the MHz range. Narrowing the linewidth can be obtained by locking the diode to a frequency discriminator (Michelson interferometer, ...). But the lock bandwidth has to reach 10 MHz or higher.

The current-to-frequency transfer function of DFB lasers is complex: thermal effects at low frequency, carrier physics at high frequency, and a [1MHz-20MHz] transition zone in which the phase and amplitude show variations that prevent from locking in the MHz range.

Adding a phase modulator in feed-forward (FF) configuration allows convenient control of the laser frequency, in excess of 15MHz, and convenient-efficient line narrowing with commercial, off-the-shelf components of the telecom industry.

Pros and cons

<table>
<thead>
<tr>
<th>Feed-back</th>
<th>Feed-forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer function design</td>
<td>Not difficult, integrator around 0kHz^{*}</td>
</tr>
<tr>
<td>Transfer function implementation</td>
<td>Some</td>
</tr>
<tr>
<td>Low noise reduction factor</td>
<td>Large low frequency signal (kHz)</td>
</tr>
<tr>
<td>Overshoot at unity gain</td>
<td>If ph. with gain or phase margin</td>
</tr>
<tr>
<td>"loop" delay</td>
<td>Usually compensated by same delay on the loss path</td>
</tr>
<tr>
<td>Non-linearity of the error function</td>
<td>Generally not a problem</td>
</tr>
<tr>
<td>Lock loop stability</td>
<td>Possibly critical</td>
</tr>
<tr>
<td>Efficiency measurement</td>
<td>Requires extra error measurement</td>
</tr>
</tbody>
</table>

{^*} Unit gain frequency

Implementation

1. **1.54 μm diode laser + driver**
2. **Electrooptic phase modulator**
3. **Thermal control**
4. **Current feedback correction signal**
5. **Phase feedback correction signal**
6. **Optical frequency discriminator**
7. **Feed-forward correction**
8. **Spectral narrowing @ 125mA**

Characterization

1. **Spectral narrowing vs laser diode current**
2. **Occupied bandwidth** of the free-running laser

Conclusions

Feed-forward is the ideal frequency control when using large bandwidth electrooptic phase modulator. Control bandwidth >1MHz if delays are compensated by a fiber roll (impossible with a nested loop).

Achieves narrowing of DFB diodes, with 4kHz FWHM.

More than 99% opt. power in the ±150kHz central peak.

Implementation using off-the-shelf telecom components @ 1.5μm and commercial servos.

Settings (gain, ...) are stable. If current change needed, gain has to be re-adjusted => a "monitor" interferometer helps in finding new optimum settings.

@ λ ≤ 1.0μm Faraday mirrors may be available => replace FM with PM fiber and gold-coated mirrors.