Temperley-Lieb At Roots of Unity, A Fusion category and the Jones Quotient
Kenji Iohara, Gus Lehrer, Ruibin Zhang

To cite this version:
Kenji Iohara, Gus Lehrer, Ruibin Zhang. Temperley-Lieb At Roots of Unity, A Fusion category and the Jones Quotient. 2017. hal-01476831v2
TEMPERLEY-LIEB AT ROOTS OF UNITY, A FUSION CATEGORY AND THE JONES QUOTIENT.

K. IOHARA, G.I. LEHRER AND R.B. ZHANG

Abstract. When the parameter q is a root of unity, the Temperley-Lieb algebra $\text{TL}_n(q)$ is non-semisimple for almost all n. In this work, using cellular methods, we give explicit generating functions for the dimensions of all the simple $\text{TL}_n(q)$-modules. Jones showed that if the order $|q^2| = \ell$ there is a canonical symmetric bilinear form on $\text{TL}_n(q)$, whose radical $R_n(q)$ is generated by a certain idempotent $E_\ell \in \text{TL}_{\ell-1}(q) \subseteq \text{TL}_n(q)$, which is now referred to as the Jones-Wenzl idempotent, for which an explicit formula was subsequently given by Graham and Lehrer. Although the algebras $Q_n(\ell) := \text{TL}_n(q)/R_n(q)$, which we refer to as the Jones algebras (or quotients), are not the largest semisimple quotients of the $\text{TL}_n(q)$, our results include dimension formulae for all the simple $Q_n(\ell)$-modules. This work could therefore be thought of as generalising that of Jones et al. on the algebras Q_n. We also treat a fusion category \mathcal{C}_red introduced by Reshitikhin, Turaev and Andersen, whose objects are the quantum \mathfrak{sl}_2-tilting modules with non-zero quantum dimension, and which has an associative truncated tensor product (the fusion product). We show $Q_n(\ell)$ is the endomorphism algebra of a certain module in \mathcal{C}_red and use this fact to recover a dimension formula for $Q_n(\ell)$. We also show how a fusion rule for $K(Q_\infty) := \bigoplus_{n \geq 1} K_0(Q_n(\ell))$ is determined from the structure of \mathcal{C}_red.

1. Introduction

The Temperley-Lieb algebras $\text{TL}_n(q)$ (see §4 below) are algebras over a ring R which depend on a parameter $q \in R$. They occur in many areas of mathematics and physics, and may be characterised as the endomorphism algebras of the objects in the Temperley-Lieb category (see [11]). In this work we shall generally take $R = \mathbb{C}$. These algebras are well known to have a cellular structure [10] and their representation theory may be analysed using this structure.

For generic values of q, the algebra $\text{TL}_n(q)$ is semisimple, and its simple modules are the cell modules $W_t(n)$, for $t \in \mathbb{Z}$, $0 \leq t \leq n$ and $t \equiv n \pmod{2}$. However when q is a root of unity, the cell modules are often no longer simple, but have a simple head $L_t(n)$. The modules $L_t(n)$, where t runs over the same values as above, form a complete set of simple modules for $\text{TL}_n(q)$ in this case.

In this work, our first purpose is to give explicit formulae for the dimensions of the modules $L_t(n)$. This will be done by deriving, for each $t \in \mathbb{Z}_{\geq 0}$, an explicit formula for the generating function

2010 Mathematics Subject Classification. 81R15, 46L37, 16W22.

The present work was initiated during an Australian Research Council funded visit of K. I. to the University of Sydney in October-November 2016. He gratefully acknowledges the support and hospitality extended to him.
\[(1.1) \quad L_t(x) := \sum_{k=0}^{\infty} \dim(L_t(t+2k))x^k.\]

The algebra TL\(_n(q)\) has a trace \(\text{tr}_n : TL_n(q) \to \mathbb{C}\), identified by Jones, whose associated bilinear form is generically non-degenerate (see (2.2) below). If \(q\) is a root of unity, and the order \(|q^2| = \ell\), then \(\tau_n\) has a radical of dimension 1 if \(n = \ell - 1\), the generating element being the Jones-Wenzl idempotent \(E_\ell \in TL_{\ell-1}(q)\). An explicit formula for \(E_\ell\) is given in [11]. Jones has shown [16, Thm. 2.1] that in this case, for any \(n \geq \ell - 1\), the radical \(R_n(q)\) of \(\tau_n\) is generated by \(E_\ell \in TL_{\ell-1}(q) \subseteq TL_n(q)\). Moreover, for \(n \geq \ell\), the algebra \(TL_n(q)\) has the canonical semisimple quotient \(Q_n(\ell) := TL_n(q)/R_n(q)\), which we refer to as the Jones algebra.

As a consequence of our analysis, we deduce a complete description of the simple representations of the Jones algebras \(Q_n(\ell)\), as well as a generating function for its dimension, which recovers a result of [9]. Note that \(Q_n(q)\) is far from being the maximal semisimple quotient of \(TL_n(q)\), as our work shows.

In §8 we relate \(Q_n(\ell)\) to the fusion category \(C_{\text{red}}\) introduced by Reshetikhin, Turaev and Andersen [23, I] whose objects are sums of the indecomposable tilting modules of non-zero quantum dimension for the quantum group \(U_q(\mathfrak{sl}_2)\), when \(q^2\) is a primitive \(\ell^\text{th}\) root of unity. The category \(C_{\text{red}}\) has a (truncated) tensor product \(\otimes\), and if \(\Delta_q(1)\) is the indecomposable (in fact simple) tilting module with highest weight 1, we show that \(Q_n(\ell) \cong \text{End}_{U_q(\mathfrak{sl}_2)}(\Delta_q(1)\otimes^n)\). Together with our earlier results, this recovers a formula for the dimension of \(Q_n(\ell)\) due to Jones [9].

2. The Temperley-Lieb algebras.

2.1. Definitions. In this work, all algebras will be over \(\mathbb{C}\). Much of the theory we develop applies over more general domains, but since we will be concerned here with connections to the theory of operator algebras and mathematical physics, we limit our discussion to \(\mathbb{C}\)-algebras. For \(n \in \mathbb{N}\), the Temperley-Lieb algebra \(TL_n(q)\) is defined as follows.

Definition 2.1. Let \(q \in \mathbb{C}\). \(TL_n = TL_n(q)\) is the associative \(\mathbb{C}\)-algebra with generators \(f_1, f_2, \ldots, f_{n-1}\) and relations

\[(2.1) \quad f_i^2 = -(q + q^{-1})f_i \quad \text{for all } i, \quad f_i f_{i\pm 1} f_i = f_i \quad \text{for all } i, \quad f_i f_j = f_j f_i \quad \text{if } |i - j| \geq 2.\]

2.2. The Jones form. In his seminal work [13] on subfactors of a factor, Jones showed that certain projectors \(\{e_1, \ldots, e_{n-1}\}\) \((n = 1, 2, 3, \ldots)\) in a von Neumann algebra satisfy the Temperley-Lieb-like relations, a fact that led to the definition of the “Jones polynomial” of an oriented link. In the notation of [15, p. 104, (I)-(VI)], Jones showed that if \(f_i = (q + q^{-1})e_i\), then the \(f_i\) satisfy the relations (2.1), where Jones’ parameter \(t\) is replaced by \(q^2\). If \(q^2 \neq -1\), Jones’ form on \(TL_n(q)\) is defined as the unique (invariant) trace \(\tau_n = \text{tr} \) on \(TL_n(q)\) which satisfies

\[(2.2) \quad \text{tr}(1) = 1 \text{ and } \text{tr}(xf_i) = -(q + q^{-1})^{-1}\text{tr}(x) \text{ for } x \in TL_{i-1} \subset TL_i \subseteq TL_n \text{ for } 1 \leq i \leq n - 1.\]
This trace on $\text{TL}_n(q)$ is non-degenerate if and only if q^2 is not a root of unity, or, if $|q^2| = \ell$, $n \leq \ell - 2$ ([11, (3.8)]). Thus the discrete set of values of q^2 for which Jones’ sequence (A_n) of algebras is infinite coincides precisely with the set of values of q^2 for which the trace form above on $\text{TL}_n(q)$ is degenerate.

2.3. Cell modules and forms. Let us fix n and consider the representation theory of TL_n. By [10] or [11], TL_n has cell modules $W_t := W_t(n)$ whose basis is the set of monic Temperley-Lieb morphisms from t to n, where $t \in \mathcal{T}(n)$, and $\mathcal{T}(n) = \{ t \in \mathbb{Z} \mid 0 \leq t \leq n \text{ and } t + n \in 2\mathbb{Z} \}$.

Now W_t has an invariant form $(\ , \)$ which may be described as follows. For monic diagrams $D_1, D_2 : t \to n$, we form the diagram $D_1^* D_2 : t \to t$. If $D_1^* D_2$ is monic (i.e. a multiple of id_t), then we write $D_1^* D_2 = (D_1, D_2) \text{id}_t$; otherwise we say $(D_1, D_2) = 0$. Here D^* denotes the diagram obtained from D by reflection in a horizontal, extended to W_t by linearity.

The form $(\ , \)_t$ is evidently equivariant for the $\text{TL}_n(q)$-action; That is, we have for any element $a \in \text{TL}_n(q)$ and elements $v, w \in W_t(n)$, $(av, w)_t = (v, aw)_t$. Hence the radical of the form $(\ , \)_t$ is a submodule of W_t. Let $L_t := W_t/\text{Rad}_t$. The general theory asserts that the L_t are simple, and represent all the distinct isomorphism classes of simple $\text{TL}_n(q)$-modules.

Clearly, if the trace (2.2) is non-degenerate, the algebra TL_n is semisimple. The converse is true except for one single case (see [11, Rem. 3.8, p.204]). It follows from [11, Cor. (3.6)] that if $|q^2| = \ell$, TL_n is non-semisimple if and only if $n \geq \ell$. Moreover we have very precise information concerning the radical of the invariant trace form (which we henceforth call the Jones form).

3.1. Radical of the trace form. The radical of the trace form above is given by the following result (see [11, §3], [14]).

Proposition 3.1. If q is not a root of unity then tr is non-degenerate and TL_n is semisimple for all n.

Suppose the order of q^2 is ℓ. Then there is a unique idempotent $E_{\ell-1} \in \text{TL}_{\ell-1}$ (the Jones-Wenzl idempotent) such that $f_iE_{\ell-1} = E_{\ell-1}f_i = 0$ for $1 \leq i \leq \ell - 2$. Moreover for $n \geq \ell$ the radical of tr_n is generated as ideal of TL_n by $E_{\ell-1}$.

Remark 3.2. cf. [11, Remark (3.8)] It follows from Proposition 3.1 that the trace tr_n is non-degenerate if and only if $n \leq \ell - 2$, where $\ell = |q^2|$. It follows that the case $n = \ell - 1$ is uniquely characterised as the one where the form tr is degenerate, but $\text{TL}_{\ell-1}$ is semisimple.

The following formula for the idempotent $E_{\ell-1}$ was proved in [11, Cor. 3.7]. To prepare for its statement, recall that if F is a finite forest (i.e. a partially ordered set in which $x \leq a, x \leq b \implies a \leq b$ or $b \leq a$), then we define a Laurent polynomial

$$h_F(x) = \frac{[|F|]_x!}{\prod_{a \in F} [F_{\leq a}]_x},$$

where, for $m \in \mathbb{N}$, $[m]_x = \frac{x^m - x^{-m}}{x - x^{-1}}$ and $[m]_x! = [m]_x[m - 1]_x \ldots [2]_x[1]_x$.

Theorem 3.3. For any Temperley-Lieb diagram $a : 0 \to 2n$ we have an associated forest F_a, which is simply the poset of arcs, ordered by their nesting. For any Temperley-Lieb diagram $D : t \to n$, one obtains a unique diagram $\overline{D} : 0 \to t + n$ by rotating the bottom line clockwise by π. With this notation, if $|q^2| = \ell$, we have

$$E_{\ell-1} = \sum_D h_{F_D}(q)D,$$

where the sum is over the diagrams from $\ell - 1$ to $\ell - 1$, i.e. over the diagram basis of $\text{TL}_{\ell-1}$.

Example 3.4. If $\ell = 4$, we may take $q = -\exp \frac{\pi i}{4}$, so that $q^2 = i$ and the element $E_3 \in \text{TL}_3$ is easily shown to be equal to

$$E_3 = 1 + f_1 f_2 + f_2 f_1 - \sqrt{2}(f_1 + f_2).$$

Note that our defining parameter for TL_n in this case is $-(q + q^{-1}) = \sqrt{2}$, and the above element is the familiar one which occurs in the study of the two-dimensional Ising lattice model.

3.2. The Jones quotient. We now wish to consider the quotient of TL_n by the ideal generated by $E_{\ell-1}$.

Definition 3.5. Assume that $|q^2| = \ell$ for a fixed integer $\ell \geq 3$. Let $R_n = R_n(q) = \langle E_{\ell-1} \rangle$ be the ideal of $\text{TL}_n(q)$ generated by the idempotent $E_{\ell-1} \in \text{TL}_{\ell-1}(q)$, where $\text{TL}_{\ell-1}(q)$ is thought of as a subalgebra of $\text{TL}_n(q)$ for $n \geq \ell - 1$ in the obvious way.

The algebra $Q_n = Q_n(\ell)$ ($n = \ell - 1, \ell, \ell + 1, \ldots$) is defined by

$$Q_n(\ell) = \frac{\text{TL}_n}{R_n(q)}.$$

This algebra will be referred to as the “Jones (projection) algebra”.

Since we are taking the quotient by the radical of the trace form tr_n, it follows that Q_n has a non-degenerate invariant trace, and hence that

$$Q_n(\ell)$$

is semisimple.

Remark 3.6. • The algebras $Q_n(\ell)$ are not the maximal semisimple quotients of $\text{TL}_n(q)$, as the results of the next section will show.

• We remark that $E_2 = 1 - f_1$, from which it follows that $Q_n(3) \cong \mathbb{C}$ for all n.

4. Representation theory of $\text{TL}_n(q)$.

We shall apply the basic results of [11] to obtain precise information about the simple modules for $\text{TL}_n(q)$ from the general results in §2.3 about cell modules.

4.1. Review of the representation theory of $\text{TL}_n(q)$ at a root of unity. Let $|q^2| = \ell$. As noted in Remark 3.6 it suffices to consider $\ell \geq 4$; further, since $Q_n(\ell) = \text{TL}_n(q)$ for $n < \ell - 1$, we generally assume that $n \geq \ell - 1$.

The following description of the composition factors of $W_t = W_t(n)$ was given in [11, Thm. 5.3], and in the formulation here in [2, Thm. 6.9].
Theorem 4.1. Let $|q^2| = \ell$, fix $n \geq \ell$ and let $\mathcal{T}(n)$ be as above. Let $\mathbb{N}' = \{i \in \mathbb{N} \mid i \not\equiv -1 \pmod{\ell}\}$. Define $g : \mathbb{N}' \to \mathbb{N}'$ as follows: for $t = a\ell + b \in \mathbb{N}'$, $0 \leq b \leq \ell - 2$, define $g(t) = (a + 1)\ell + \ell - 2 - b$. Notice that $g(t) - t = 2(\ell - b - 1)$, so that $g(t) \geq t + 2$ and $g(t) \equiv t \pmod{2}$.

1. For $t \in \mathcal{T}(n) \cap \mathbb{N}'$ such that $g(t) \in \mathcal{T}(n)$, there is a non-zero homomorphism $\theta_t : W_{g(t)}(n) \to W_t(n)$. These are explicitly described in [11, Thm 5.3], and are the only non-trivial homomorphisms between the cell modules of TL_n.

2. If $t \in \mathcal{T}(n)$ is such that $t \in \mathbb{N}'$ and $g(t) \in \mathcal{T}(n)$, then $W_t(n)$ has composition factors L_t and $L_{g(t)}$, each with multiplicity one. All other cell modules for $\text{TL}_n(q)$ are simple.

3. If $\ell \geq 3$, all the modules L_t, $t \in \mathcal{T}(n)$, are non-zero, and form a complete set of simple $\text{TL}_n(q)$-modules.

It follows from Theorem 4.1 that in general, the composition factors of the cell module $W_t(n)$ (for $n \in \mathbb{N}'$) are $L_t(n)$ and $L_{g(t)}(n)$ where $g : \mathbb{N}' \to \mathbb{N}'$ is the function defined in Theorem 4.1. This has the following consequence for the dimensions of the respective modules.

Definition 4.2. For $t \in \mathbb{Z}_{\geq 0}$ define functions w_t and $l_t : \mathbb{N} \to \mathbb{N}$ by $w_t(n) = \dim(W_t(n))$ and $l_t(n) = \dim(L_t(n))$.

Note that if $t > n$, $w_t(n) = l_t(n) = 0$. Further $w_t(n) = l_t(n) = 0$ if $n \not\equiv t \pmod{2}$.

Proposition 4.3. Let $|q^2| = \ell$. We have, for $t \in \mathbb{N}' = \{s \in \mathbb{Z}_{\geq 0} \mid s \not\equiv -1 \pmod{\ell}\}$:

\[l_t(n) = \sum_{i=0}^{\infty} (-1)^i w_{g^i(t)}(n). \] \hspace{1cm} (4.1)

Proof. Note that since g is a strictly increasing function on \mathbb{N}', for any particular n, the sum on the right side of (4.1) is finite.

It is evident from Theorem 4.1 (2), that for any $t \in \mathbb{N}'$,

\[l_t(n) = w_t(n) - l_{g(t)}(n). \] \hspace{1cm} (4.2)

Applying (4.2) with t replaced by $g(t)$ gives $l_t(n) = w_t(n) - w_{g(t)}(n) + l_{g^2(t)}(n)$. Applying this repeatedly, and noting that there is an integer $t_0 \in \mathbb{N}'$ such that $t_0 \leq n$ and $g(t_0) > n$, we obtain the relation (4.1). \hfill \Box

This may be made a little more explicit by the following observation. Fix $\ell = |q^2|$ and $t \geq 0$, write $b(t) = b$, where $t = a\ell + b$, with $0 \leq b \leq \ell - 1$. Then for $t \in \mathbb{N}'$ we have

\[g(t) = t + 2\overline{b(t)} \] \hspace{1cm} (4.3)
\[g^2(t) = t + 2\ell, \]

where $\overline{b(t)} := \ell - 1 - b(t)$.

The equation (4.1) may therefore be written as follows.
Corollary 4.4. We have the following equality of functions on \(\mathbb{N} \):

\[
\ell_t = \sum_{i=0}^{\infty} w_{t+2i} - \sum_{i=0}^{\infty} w_{t+2(\ell t)+2i} \\
= \sum_{i=0}^{\infty} (w_{t+2i} - w_{t+2(\ell t)+2i}.
\]

5. Generating functions for the cell modules.

In this section we recall explicit generating functions for the dimensions of the cell modules of \(\text{TL}_n(q) \) (cf. [21, Ch. 6]).

5.1. Cell modules for \(\text{TL}_n \). Recall that the cell module \(W_t(n) \) has a basis consisting of the monic TL-diagrams \(D : t \to n \). Since such diagrams exist only when \(t \equiv n \) (mod 2), we may write \(n = t + 2k, k \geq 0 \).

Definition 5.1. For \(t, k \geq 0 \), we write \(w(t,k) := \dim W_t(t + 2k) \). By convention, \(W_0(0) = 0 \), so that \(w(0,0) = 0 \). Note that by Definition 4.2, \(w(t,k) = w(t+2k) \).

Proposition 5.2. We have the following recursion for \(w(t,k) \). For integers \(t, k \geq 0 \):

\[
w(t,k+1) = w(t-1,k+1) + w(t+1,k).
\]

Proof. The proof is based on the interpretation of \(w(t,k) \) as the number of monic TL-diagrams from \(t \) to \(t + 2k \).

Consider first the case \(t = 0 \). The assertion is then that \(w(0,k+1) = w(1,k) \). But all TL-diagrams \(D : 1 \to 1 + 2k \) are monic, as are all diagrams \(0 \to 2\ell \) (any \(\ell \)). It follows that \(w(1,k) = \dim(\text{Hom}_T(1,1+2k)) = \dim(\text{Hom}_T(0,2+2k)) = w(0,k+1) \). Thus the assertion is true for \(t = 0 \) and all \(k \geq 0 \). Similarly, if \(k = 0 \), the assertion amounts to \(w(t,1) = w(t-1,1) + w(t+1,0) \). If \(t > 0 \), the left side is easily seen to be equal to \(t + 1 \), while \(w(t-1,1) = t \) and \(w(t+1,0) = 1 \). If \(t = 0 \), the left side is equal to \(\dim(\text{Hom}_T(0,2k+2)) = \dim(\text{Hom}_T(1,2k+1)) = w(1,k) \). So the recurrence is valid for \(k = 0 \) and all \(t \).

Now consider the general case. Our argument will use the fact that \(w(t,k+1) \) may be thought of as the number of TL-diagrams \(0 \to 2t + 2(k + 1) \) of the form depicted in Fig. 1.

The condition that the diagram be monic is simply that each \(a_i \) is joined to some \(b_j \), i.e. that each arc crosses the dotted line; of course distinct arcs are non-intersecting.
Evidently such diagrams fall into two types: those in which \([a_t, b_1]\) is an arc, and the others. Now the number of diagrams in which \([a_t, b_1]\) is an arc is clearly equal to \(w(t-1, k+1)\), while those in which \([a_t, b_1]\) is not an arc are in bijection with the monic diagrams from \(t+1\) to \(t+1+2k\), as is seen by shifting the dotted line one unit to the right. Hence the number of the latter is \(w(t+1, k)\), and the recurrence (5.1) is proved. \(\square\)

5.2. A binomial expression for \(w(t, k)\).

Definition 5.3. For integers \(t, k \geq 0\), define

\[
F(t, k) = \binom{t + 2k}{k} - \binom{t + 2k}{k-1}.
\]

This definition is extended to the domain \(\mathbb{Z} \times \mathbb{Z}\) by stipulating that \(F(t, k) = 0\) if \(t < 0\) or \(k < 0\).

It is easily seen that

\[
F(t, k) = \frac{(t+1)(t+2k)(t+2k-1)\ldots(t+k+2)}{k!} = \frac{t+1}{t+k+1} \binom{t+2k}{k},
\]

and that

Lemma 5.4. We have the following recursion for \(F(t, k)\). For \(t, k \geq 0\):

\[
F(t, k+1) = F(t-1, k+1) + F(t+1, k).
\]

5.3. Catalan calculus–generating functions. For \(n \geq 0\), write \(c(n) := w(0, 2n)\), \(c(0) = 1\). It is easily seen by inspecting diagrams that for \(n > 0\),

\[
c(n) = \sum_{k=1}^{n} c(k-1)c(n-k).
\]

Writing \(c(x) := \sum_{n=0}^{\infty} c(n)x^n\), the recursion (5.5) translates into

\[
xc(x)^2 - c(x) + 1 = 0,
\]

from which it is immediate that

\[
c(x) = \frac{1 - (1 - 4x)^{\frac{1}{2}}}{2x},
\]

and applying the binomial expansion, that

\[
c(n) = \frac{1}{n+1} \binom{2n}{n}.
\]

Now define \(W_t(x) = \sum_{k=0}^{\infty} w(t, k)x^k = \sum_{k=0}^{\infty} w_t(t+2k)x^k\). Inspection of diagrams shows that the \(w(t, k)\) satisfy the following recursion.

\[
w(t, k) = \sum_{\ell=0}^{k} w(t-1, \ell)c(k-\ell),
\]

which translates into the recursion \(W_t(x) = W_{t-1}(x)c(x)\) for the generating function \(W_t(x)\). Using the fact that \(W_0(x) = c(x)\), we have proved the following statement.

Proposition 5.5. For \(t = 0, 1, 2, \ldots\), we have \(W_t(x) = \sum_{k=0}^{\infty} w(t, k)x^k = c(x)^{t+1}\).
Corollary 5.6. We have the following equation in $\mathbb{Z}[[x, y]]$.

$$W(x, y) := \sum_{t, k=0}^{\infty} w(t, k)y^tx^k = \frac{c(x)}{1-y e(x)}.$$

(5.10)

5.4. A closed expression for $w(t, k)$. We shall prove the following theorem.

Theorem 5.7. For integers $t, k \geq 0$, we have

$$w(t, k) = F(t, k).$$

That is,

$$\dim(W_t(t + 2k)) = \frac{t + 1}{t + k + 1} \binom{t + 2k}{k}.$$

(5.12)

Proof. Consider first the case $k = 0$. Then for any $t \geq 0$, $w(t, 0) = 1$, while $F(t, 0) = \frac{1}{t/0} = 1$. Thus the result is true for $k = 0$ and all t. Next consider the case $t = 0$. Then for all $k \geq 0$, $w(0, k) = c(k) = \frac{1}{k+1} \binom{2k}{k}$, while $w(0, k)$ is evidently also equal to $c(k)$ by (5.3). Thus the assertion is true for $t = 0$ and all k.

Now suppose that the following assertion is true.

$\mathbf{P}(t_0)$: The result is true for pairs (t, k) such that $t \leq t_0$ (and any $k \geq 0$).

We now use the recursions (5.1) and (5.4), in the following form.

$$F(t+1, k) = F(t, k + 1) - F(t, k + 1, k)$$

and

$$w(t+1, k) = w(t, k + 1) - w(t, k + 1, k).$$

(5.13)

By assumption, the right sides of (5.13) are equal, whence $F(t+1, k) = w(t+1, k)$, i.e. $\mathbf{P}(t+1)$ holds. Since we have seen that $\mathbf{P}(0)$ is true, the result follows. \hfill \square

6. Generating functions for the simple $\text{TL}_n(q)$-modules.

We assume throughout this section that the order $|q^2| = \ell \in \mathbb{N}$, and $\ell \geq 4$.

Recall (Definition 4.2) that $l_t(n) = \dim(L_t(n))$ is non-zero only if $n = t + 2k$ for some integer $k \geq 0$. For any integer $t \geq 0$ define

$$L_t(x) = L^{(t)}_t(x) = \sum_{k=0}^{\infty} l_t(t + 2k)x^k.$$

(6.1)

In this section we shall give explicit formulae for the power series $L^{(t)}_t(x)$.

6.1. A recurrence for the functions l_t. We maintain the following notation, which was introduced in §4.

Notation. Recall that $\mathbb{N}' = \{ t \in \mathbb{N} \mid t \neq \ell - 1 \text{ (mod } \ell) \}$, and for $t \in \mathbb{N}'$, $b(t) = b$, where $t = a\ell + b$ with $0 \leq b \leq \ell - 2$. Write $\mathcal{R} = \{0, 1, 2, \ldots, \ell - 2\}$, $\overline{\mathcal{R}} = \{1, 2, 3, \ldots, \ell - 1\}$ and $b \mapsto \overline{b}$ for the bijection $\mathcal{R} \rightarrow \overline{\mathcal{R}}$ given by $\overline{b} = \ell - 1 - b$.

Proposition 6.1. Let $t \in \mathbb{N}$ and assume below that $n \equiv t - 1 \text{ (mod 2)}$.

1. If $b(t) \in \mathcal{R}$ (i.e. $t \in \mathbb{N}'$) and $b(t) \neq 0$ or $\ell - 2$, then

$$l_t(n + 1) = l_{t-1}(n) + l_{t+1}(n).$$

(6.2)

2. If $b(t) = 0$ and n is odd, we have

$$l_t(n + 1) = w_{t-1}(n) + l_{t+1}(n).$$

(6.3)
(3) For \(t \in \mathbb{N} \) with \(b(t) = \ell - 2 \), we have, for \(n \equiv t - 1(\text{mod} \ 2) \),
\[
(6.4) \quad l_t(n + 1) = l_{t-1}(n).
\]

Proof. The relation (5.1) may be written as follows. For all \(t, n \in \mathbb{N} \), we have
\[
(6.5) \quad w_t(n + 1) = w_{t-1}(n) + w_{t+1}(n).
\]

Now observe that if \(t \equiv b(t)(\text{mod} \ \ell) \) and \(b(t) \in \mathbb{N} \), then applying (6.5) twice, we obtain
\[
(6.6) \quad w_t(n + 1) - w_{t+2b(t)}(n + 1) = w_{t-1}(n) + w_{t+1}(n) - w_{t+2b(t)-1}(n) - w_{t+2b(t)+1}(n).
\]

We shall combine the terms on the right side of (6.6) in different ways, depending on the value of \(b(t) \). First take \(t \) such that \(0 < t < \ell - 2 \). Note that \(b(t) \pm 1 = b(t) \mp 1 \), and for \(t \) such that \(0 < b(t) < \ell - 2 \) we have \(b(t \pm 1) = b(t) \pm 1 \). Hence
\[
(6.7) \quad w_t(n + 1) - w_{t+2b(t)}(n + 1) = (w_{t-1}(n) - w_{t+2b(t)+1}(n)) + (w_{t+1}(n) - w_{t+2b(t)-1}(n))
\]
\[
= (w_{t-1}(n) - w_{t+1+2b(t)}(n)) + (w_{t+1}(n) - w_{t+1+2b(t)-2}(n))
\]
\[
= (w_{t-1}(n) - w_{t+1+2b(t)-2}(n)) + (w_{t+1}(n) - w_{t+1+2b(t)+1}(n)).
\]

The same relation holds when \(t \) in (6.7) is replaced by \(t + 2i\ell \) (\(i \geq 0 \)). That is, for \(i \geq 0 \) we have
\[
(6.8) \quad w_{t+2i\ell}(n + 1) - w_{t+2i\ell+2b(t)}(n + 1) = (w_{t+2i\ell-1}(n) - w_{t+2i\ell+2b(t)-1}(n)) + (w_{t+2i\ell+1}(n) - w_{t+2i\ell+2b(t)+1}(n)).
\]

Now given the second line of (4.4), summing both sides of (6.8) over \(i \geq 0 \) yields the relation (6.2).

Next take \(t \equiv 0(\text{mod} \ \ell) \), i.e. \(b(t) = 0 \). Then (6.6) may be written as follows. For \(t \equiv 0(\text{mod} \ \ell) \), note that \(b(t) = \ell - 1 \), and we have
\[
(6.9) \quad w_t(n + 1) - w_{t+2(\ell-1)}(n + 1) = (w_{t-1}(n) - w_{t+2(\ell-2)}(n)) + (w_{t+1}(n) - w_{t+2(\ell-2)}(n))
\]
\[
= (w_{t-1}(n) - w_{t-1+2}(n)) + (w_{t+1}(n) - w_{t+1+2(\ell-1)}(n)).
\]

The same relation holds when \(t \) is replaced by \(t + 2i\ell \) (\(i \geq 0 \)). Summing both sides of (6.9) over \(i \geq 0 \), we see that the first summand on the right is \(w_{t-1}(n) \) since all other summands cancel, while the second summand is \(l_{t+1} \) by (4.4). This proves the relation (6.3).

Finally, take \(t \equiv \ell - 2(\text{mod} \ \ell) \), i.e. \(b(t) = \ell - 2 \), so that \(b(t) = 1 \) and \(g(t) = t + 2 \). In this case (6.6) reads as follows,
\[
(6.10) \quad w_t(n + 1) - w_{t+2}(n + 1) = w_{t-1}(n) + w_{t+1}(n) - (w_{t+1}(n) + w_{t+3}(n))
\]
\[
= w_{t-1}(n) - w_{t+3}(n)
\]
\[
= w_{t-1}(n) - w_{t-1+2b(t-1)}(n)).
\]

The relation (6.10) remains true when \(t \) is replaced by \(t + 2i\ell \) for any \(i \geq 0 \), so that
\[
(6.11) \quad w_{t+2i\ell}(n + 1) - w_{t+2i\ell+2}(n + 1) = w_{t+2i\ell-1}(n) - w_{t+2i\ell+2b(t+2i\ell-1)}(n)),
\]
and summing both sides of (6.11) over \(i \equiv \ell - 2(\text{mod} \ \ell) \) yields the relation (6.4) and completes the proof of the proposition. \(\square \)
6.2. **Generating functions.** We continue to assume that q^2 has finite order ℓ. In this subsection, we give explicit generating functions for the dimensions $l_t(n)$ of the simple modules $L_t(n)$ of the algebras $\mathcal{TL}_n(q)$. Specifically, we give explicit formulae for the power series $L_t^{(\ell)}(x)$ defined in (6.1).

Recall (5.7) that

$$c(x) = 1 + \sum_{n=1}^{\infty} \frac{1}{n+1} \binom{2n}{n} x^n,$$

and define

$$d(x) = c(x) - 1 = xc(x)^2. \tag{6.12}$$

Notice that the relation (5.6) may be written

$$x(d(x) + 1)^2 = d(x). \tag{6.13}$$

Recall also that for $t \in \mathbb{N}$, $b(t)$ is defined by $t = a\ell + b(t)$, where $0 \leq b(t) \leq \ell - 1$, and that $\mathcal{R} = \{0, 1, \ldots, \ell - 2\}$.

We shall prove

Theorem 6.2. Maintain the above notation and let $t \in \mathbb{N}$. If $b(t) = \ell - 1$, then $L_t^{(\ell)}(x) = W_t(x) = c(x)^{t+1}$.

If $b(t) \in \mathcal{R}$ then

$$L_t^{(\ell)}(x) = \frac{(d(x) + 1)^{t+1}(1 - d(x)^{\ell-1-b(t)})}{1 - d(x)^{\ell}}. \tag{6.14}$$

Proof. If $b(t) = \ell - 1$ then by Theorem 4.1(2), $W_t(n)$ is simple for all n. Hence in this case $L_t^{(\ell)}(x) = \sum_{k=0}^{\infty} w_t(t + 2k)x^k = W_t(x) = c(x)^{t+1}$ by Proposition 5.5.

Now assume that $b(t) \not\in \mathcal{R}$.

It follows from (4.4) that for $k \geq 0$,

$$l_t(t + 2k) = \sum_{i=0}^{\infty} w_{g^{2i}(t)}(t + 2k) = \sum_{i=0}^{\infty} w_{g^{2i+1}(t)}(t + 2k) \tag{6.15}$$

$$= \sum_{i=0}^{\infty} w_{t + 2i\ell}(t + 2k) = \sum_{i=0}^{\infty} w_{t + 2i\ell + 2b(t)}(t + 2k).$$

where g is the function defined in Theorem 4.1.
Now multiply each side of (6.15) by \(x^k\) and sum over \(k\). We evaluate the two summands separately. We first have

\[
\sum_{k=0}^{\infty} \sum_{i=0}^{\infty} w_{t+2i\ell}(t + 2k)x^k = \sum_{k=0}^{\infty} \sum_{i=0}^{\infty} w_{t+2i\ell}(t + 2i\ell + 2(k - i\ell))x^k
\]

\[
= \sum_{k=0}^{\infty} \sum_{i=0}^{\infty} w_{t+2i\ell}(t + 2i\ell + 2(k - i\ell))x^{k-i\ell}
\]

\[
= \sum_{i=0}^{\infty} x^{i\ell} \sum_{k=0}^{\infty} w_{t+2i\ell}(t + 2i\ell + 2k)x^{k-i\ell}
\]

\[
= \sum_{i=0}^{\infty} x^{i\ell} W_{t+2i\ell}(x) \text{ since } w_t(n) = 0 \text{ for } n < t
\]

\[
= \sum_{i=0}^{\infty} x^{i\ell} \left(c(x)^{t+2i\ell+1} \text{ by Proposition 5.5}\right)
\]

\[
=c(x)^{t+1} \sum_{i=0}^{\infty} (xc(x)^2)^{i\ell}
\]

\[
=c(x)^{t+1} \frac{1 - (xc(x)^2)^\ell}{1 - d(x)^\ell}
\]

A similar calculation yields that

\[
\sum_{k=0}^{\infty} \sum_{i=0}^{\infty} w_{t+2i\ell+2b\ell}(t + 2k)x^k = \frac{(d(x) + 1)^{t+1}d(x)^{\ell-1-b\ell}}{1 - d(x)^\ell},
\]

and using (6.15), the proof is complete. \(\square\)

6.3. **An alternative formula for** \(L_t^{(\ell)}(x)\). We give in this section a formula for \(L_t^{(\ell)}(x)\) in terms of the polynomials \(p_i(x)\) defined below.

Definition 6.3. Define a sequence of polynomials \(p_i(x) \in \mathbb{Z}[x], i = 1, 2, 3, \ldots\) by

\[
p_1(x) = p_2(x) = 1 \text{ and } p_{i+1}(x) = p_i(x) - xp_{i-1}(x) \text{ for } i \geq 2.
\]

Thus \(p_3(x) = 1 - x, p_4(x) = 1 - 2x, p_5(x) = 1 - 3x + x^2\) and \(p_6(x) = 1 - 4x + 3x^2\), etc.

Lemma 6.4. Let \(y\) be an indeterminate over \(\mathbb{Z}\) and \(j\) a positive integer.

1. For each \(j \geq 1\) there are unique integers \(c_i^j\) such that

\[
1 + y + y^2 + \cdots + y^{j-1} = \sum_{i=0}^{[\frac{j-1}{2}]} c_i^j y^i (y + 1)^{j-1-2i}.
\]

2. The integers \(c_i^j\) satisfy the recurrence \(c_i^{j+1} = c_i^j - c_{i-1}^j\).
(3) We have $\sum_{i=0}^{\lfloor \frac{|j-1|}{2} \rfloor} c_i x^i = p_j(x)$.

Proof. First observe that the polynomials $y^i(y+1)^{j-1-2i}$, $0 \leq i \leq \lfloor \frac{|j-1|}{2} \rfloor$ form a basis of the space of palindromic polynomials of degree $j - 1$ in y. The statement (1) follows.

Next, if we write $\sigma_j = 1 + y + y^2 + \cdots + y^{j-1}$, note that $(1+y)\sigma_j = \sigma_{j+1} + y\sigma_{j-1}$. Applying (6.17), we obtain

$$\sum_{i=0}^{\lfloor \frac{|j-1|}{2} \rfloor} c_i y^i (y+1)^{j-2i} = \sum_{i=0}^{\lfloor \frac{j}{2} \rfloor} c_i^j y^i (y+1)^{j-2i} + \sum_{i=0}^{\lfloor \frac{|j-2|}{2} \rfloor} c_i^j y^i (y+1)^{j-2i}.$$

Comparing the coefficients of $y^i(y+1)^{j-2i}$ yields the relation (2).

Write $C_j^i(x) = \sum_{i=0}^{\lfloor \frac{|j-1|}{2} \rfloor} c_i^j x^i$. The recurrence (2) shows that $C_j^{i+1}(x) = C_j^i(x) - xC_j^{i-1}(x)$. Further, it is easily checked that $C_1^1(x) = C_2^2(x) = 1$, which, by comparison with (6.16), completes the proof that $C_j^i(x) = p_j(x)$. \hfill \square

Lemma 6.5. Suppose $t = a\ell + b$ with $b = \ell - 3$ or $b = \ell - 2$. Then

$$L_t^{(\ell)}(x) = \frac{c(x)^{a\ell}}{p_{\ell}(x)},$$

where $p_{\ell}(x)$ is the polynomial defined in (6.16).

Proof. First observe that by (6.4), $l_t(t+2k) = l_{t-1}(t-1+2k)$ if $b(t) = \ell - 2$, so that $L_t^{(\ell)}(x)$ will be the same for the two nominated values of t. Now take $t = a\ell + \ell - 2$. Applying the formula (6.14), one sees easily that

$$L_t^{(\ell)}(x) = \frac{(d(x)+1)^{a\ell+\ell-1}}{1 + d(x) + d(x)^2 + \cdots + d(x)^{\ell-1}}.$$

Now using the relation $x(d(x)+1)^2 = d(x)$ repeatedly, together with Lemma 6.4, one sees that $p_{\ell-1}(x)L_t^{(\ell)}(x) = (d(x)+1)^{a\ell}$. \hfill \square

The next result is a generalisation of [16, Thm. 2.3], which deals essentially with the case $0 \leq t \leq \ell - 2$ of the Theorem.

Theorem 6.6. With the above notation, we have, for $t = a\ell + b$ with $0 \leq b \leq \ell - 2$,

$$L_t^{(\ell)}(x) = \frac{p_{\ell-1-b}(x)}{p_{\ell}(x)} c(x)^{a\ell},$$

where $c(x)$ is the Catalan series (5.7) and the $p_{\ell}(x)$ are defined in (6.16).

Proof. The recurrence (6.2) may be written as follows: for t such that $b(t) \neq 0, \ell - 2$, we have $l_t(t+2k) = l_{t-1}(t-1+2k) + l_{t+1}(t+1+2(k-1))$. Multiplying this relation by x^k and summing over $k \geq 0$, we obtain, after rearrangement,

$$L_{t-1}^{(\ell)}(x) = L_t^{(\ell)}(x) - xL_{t+1}^{(\ell)}(x).$$

Now fix $a \in \mathbb{N}$ and consider the power series $L_t^{(\ell)}(x)$ for $t = a\ell + b$, $0 \leq b \leq \ell - 2$. We have seen in Lemma 6.5 that when $b = \ell - 2$ or $b = \ell - 3$, then $L_{a\ell+\ell-2}^{(\ell)}(x) = L_{a\ell+\ell-3}^{(\ell)}(x) = \frac{c(x)^{a\ell}}{p_{\ell}(x)}$.

\hfill \square
Now fix b such that $0 \leq b \leq \ell - 3$ and assume that for all b' with $\ell - 2 \geq b' \geq b$, there are polynomials $r_{\ell-1-b'}(x)$ such that $L_{a\ell+b'}(x) = r_{\ell-1-b'}(x)L_{a\ell+b-2}(x)$. Then $r_1(x) = r_2(x) = 1$ and from the recurrence (6.19) we have

$$L_{a\ell+b-1}(x) = L_{a\ell+b}(x) - L_{a\ell+b+1}(x) = r_{\ell-1-b}(x)L_{a\ell+b-2}(x) - xxr_{\ell-2-b}(x)L_{a\ell+b-2}(x) = r_{\ell-1-b}(x)L_{a\ell+b-2}(x),$$

where $r_{\ell-1-b+1}(x) = r_{\ell-1-b}(x) - xxr_{\ell-2-b}(x)$.

It follows that for $b = 0, 1, 2, \ldots, \ell - 2$, $r_{\ell-1-b}(x) = p_{\ell-1-b}(x)$ where $p_i(x)$ is as in (6.16), and that $L_{a\ell+b}(x) = p_{\ell-1-b}(x)L_{a\ell+b-2}(x)$. Theorem now follows by using the expression for $L_{a\ell+b-2}(x)$ in Lemma 6.5.

Remark 6.7. It is clear that the Jones quotient $Q_n(\ell)$ is not generally the largest semisimple quotient of $\text{TL}_n(q)$. For example if $\ell = 3$, $\text{TL}_3(q)$ has two simple modules $L_1(3)$ and $L_2(3)$ of dimension 1, so its largest semisimple quotient has dimension 2, while $Q_3(3)$ has dimension 1.

Other examples include TL_8 where $\ell = 5$. We have dim$(Q_8) = F_{13} = 233$ while the maximal semisimple quotient of TL_8 has dimension 283.

6.3.1. Some examples. We give several examples of the application of Theorem 6.6.

(1) When $\ell = 3$, $L_\ell(x) = \frac{t(x)^3}{1-x}$ for $t = 3a + b$, $0 \leq b \leq 1$.
(2) When $\ell = 4$, $L_1(x) = L_2(x) = \frac{1}{1-2x}$, while $L_0(x) = \frac{p_1(x)}{p_0(x)} = \frac{1-x}{1-2x}$. So dim $L_0(2n) = 2n$, dim $L_1(2n+1) = 2n$ and dim $L_2(2n) = 2^{n-1}$.
(3) Take $\ell = 5$. We shall determine $L_i(x)$ for $i = 0, 1, 2, 3$. We have $L_2(x) = L_3(x) = \frac{1}{1-3x+x^2}$, $L_1(x) = \frac{1-x}{1-3x+x^2}$ and $L_0(x) = \frac{1-2x}{1-3x+x^2}$.

Note that $\frac{L_0(x)-1}{x} = L_1(x)$.

Let us write

$$\frac{1-x}{1-3x+x^2} = \sum_{n=0}^\infty a_nx^n$$

and

$$\frac{x}{1-3x+x^2} = \sum_{n=0}^\infty b_nx^n.$$

Then $a_0 = 1, a_1 = 2, a_2 = 5, a_3 = 13$ and $b_0 = 0, b_1 = 1, b_2 = 3, b_3 = 8$.

Let $F_1, F_2, F_3, \ldots = 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots$ be the Fibonacci sequence. We shall show that

$$(6.20)\quad a_0, b_1, a_1, b_2, a_2, b_3, a_3, \ldots = F_1, F_2, F_3, \ldots,$$

i.e. that for $i = 0, 1, 2, \ldots$, we have $a_i = F_{2i+1}$ and $b_i = F_{2i}$.

To prove (6.20), given the initial values of the a_i and b_i, it suffices to show that

(i) $b_n + a_n = b_{n+1}$ for $n \geq 0$, and
(ii) $a_n + b_{n+1} = a_{n+1}$ for $n \geq 0$.

For (i), observe that $\sum_{n=0}^\infty (a_n + b_n)x^n = \frac{1-x+x^2}{1-3x+x^2}$, which is readily shown to be equal to $\sum_{n=0}^\infty b_{n+1}x^n$.

Similarly, for (ii), we have $\sum_{n=0}^\infty (a_n + b_{n+1})x^n = \frac{1}{1-3x+x^2}$, which is readily shown to be equal to $\sum_{n=0}^\infty a_{n+1}x^n$.
It follows that $L_3(x) = L_2(x) = \sum_{n=0}^{\infty} b_{n+1} x^n$
We have therefore shown that $\dim(L_2(2+2n)) = \dim(L_3(3+2n)) = b_{n+1} = F_{2n+2}$, $\dim(L_1(1+2n)) = a_n = F_{2n+1}$ and for $n > 0$, $\dim(L_0(2n)) = a_n - b_n = a_{n-1} = F_{2n-1}$.

(4) Take $\ell = 6$. We shall compute $L_t(x)$ for $t = 0, 1, 2, 3, 4$. Note first that $L_3(x) = L_4(x) = \frac{1}{1-4x+3x^2}$, and since $1 - 4x + 3x^2 = (1-x)(1-3x)$, we have

$L_3(x) = L_4(x) = \sum_{n=0}^{\infty} \frac{3^{n+1} - 1}{2} x^n$

It follows that $L_2(x) = (1-x)L_3(x) = \sum_{n=0}^{\infty} 3^n x^n = \frac{1}{1-2x}$. Similarly, $L_1(x) = \frac{1-2x}{1-4x+3x^2} = \sum_{n=0}^{\infty} \frac{3^{n+1}}{2} x^n$ and $L_0(x) = 1 + xL_1(x) = 1 + \sum_{n=1}^{\infty} \frac{3^{n-1} + 1}{2} x^n$.

(5) Take $\ell = 7$. An easy but tedious calculation shows that in this case

$L_4(x) = L_5(x) = 1 + 5x + 19x^2 + 66x^3 + 221x^4 + 728x^5 + \ldots$
$L_3(x) = 1 + 4x + 14x^2 + 47x^3 + 155x^4 + 507x^5 + \ldots$
$L_2(x) = 1 + 3x + 9x^2 + 28x^3 + 89x^4 + 286x^5 + \ldots$
$L_1(x) = 1 + 2x + 5x^2 + 14x^3 + 42x^4 + 131x^5 + \ldots$
$L_0(x) = 1 + xL_1(x) = 1 + x + 2x^2 + 5x^3 + 14x^4 + 42x^5 + \ldots$

7. The algebras $Q_n(\ell)$.

We assume throughout this section that ℓ is fixed and $|q^2| = \ell$. Recall (Definition 3.5) that $Q_n(\ell) \simeq TL_n(q)/R_n(q)$, where R_n is generated by the Jones-Wenzl idempotent $E_{\ell-1} \in TL_{\ell-1}(q)$. We have seen (3.3) that, although they are not the maximal semisimple quotients of the $TL_n(q)$, the algebras Q_n are semisimple and we therefore focus on a description of their simple modules.

7.1. Classification of the simple $Q_n(\ell)$-modules.

Proposition 7.1. Let $n \geq \ell - 1$. The simple Q_n-modules are precisely those simple TL_n-modules L_t, $t \in \mathcal{T}(n)$, such that $R_nL_t = 0$, where R_n is the ideal of TL_n generated by $E_{\ell-1}$.

Proof. Recall that $Q_n = TL_n/R_n$. If M is any Q_n-module, it may be lifted via the canonical surjection $TL_n \overset{\eta}{\rightarrow} Q_n$ to a TL_n-module which we denote by \widetilde{M}, on which R_n acts trivially. Conversely, if M is any TL_n-module on which R_n acts trivially, the action factors through $TL_n/R_n = Q_n$, so that \widetilde{M} may be thought of as a Q_n-module M.

Moreover, it is clear that M is simple as Q_n-module if and only if \widetilde{M} is simple as TL_n-module.

Suppose now that M is a simple Q_n-module. Then \widetilde{M} is a simple TL_n-module, and hence by Theorem 4.1 (3), is isomorphic to L_t for some $t \in \mathcal{T}(n)$ and by the above remarks, R_n acts trivially on L_t. Conversely, if L_t satisfies $R_nL_t = 0$, then L_t is a simple Q_n-module.

Remark 7.2. If N is a TL_n module, then since $R_n = TL_nE_{\ell-1}TL_n$, it follows that $R_nN = 0$ if and only if $E_{\ell-1}N = 0$. Thus the condition in the Proposition is relatively straightforward to check.
Remark 7.3 (Remark concerning notation). Although \textit{a priori} \(E_{\ell-1} \in \text{TL}_{\ell-1}\), we have regarded it as an element of \(\text{TL}_n\) for any \(n \geq \ell - 1\). The strictly correct notation for \(E_{\ell-1} \in \text{TL}_n\), where \(n \geq \ell\), is \(E_{\ell-1} \otimes I^{\otimes(n-\ell+1)}\), where the tensor product is in the Temperley-Lieb category \(\mathcal{T}\), as described in [11] or [19]; that is, it is described diagrammatically as juxtaposition of diagrams, and \(I\) is the identity diagram from 1 to 1. We shall use this notation freely below.

Theorem 7.4. With notation as in Theorem 4.1, let \(t \in \mathcal{T}(n)\) satisfy \(t \geq \ell - 1\). Then the idempotent \(E_{\ell-1} \otimes I^{\otimes(n-\ell+1)}\) acts non-trivially on \(L_t\). Thus \(Q_n\) has at most \(\lfloor \frac{\ell}{2}\rfloor\) isomorphism classes of simple modules.

Proof. We begin by showing that if \(t \in \mathcal{T}(n)\) and \(t \geq \ell - 1\) then \(E_{\ell-1} \otimes I^{\otimes(n-\ell+1)}W_t\) contains all diagrams of the form \(I^{\otimes t} \otimes D'\), where \(D'\) is any monic diagram from 0 to \(n - t\).

To see this, note that \(W_t\) is spanned by monic diagrams from \(t\) to \(n\) in \(\mathcal{T}\). Take \(D = I^{\otimes t} \otimes D' \in W_t\), where \(D'\) is any (monic) diagram from 0 to \(n - t\). By the formula in Theorem 3.3, the coefficient of \(I^{\otimes(t-1)}\) in \(E_{\ell-1}\) is 1. Since all the other summands act trivially on \(D\) (because they reduce the number of ‘through strings’), it follows that \(E_{\ell-1} \otimes I^{\otimes(n-\ell+1)}D = D\) in \(W_t\), and hence that \(D \in E_{\ell-1} \otimes I^{\otimes(n-\ell+1)}W_t\).

Now if \(D = I^{\otimes t} \otimes D'\) as above and \(\phi_t\) is the canonical bilinear form on \(W_t\) (see [10, §2]), then \(\phi_t(D,D)\) is a power of \(-(q + q^{-1})\), and hence is non-zero. It follows from [10, Cor. (2.5)(ii)] that \(W_t = \text{TL}_nD\), whence \(W_t = R_nW_t\). Moreover it also follows that \(D \not\in \text{Rad}_t\), and hence that modulo \(\text{Rad}_t\), \(D\) generates \(L_t\), whence \(R_nL_t = L_t\). \(\Box\)

It follows from the above result that the only possible simple \(Q_n\)-modules are the \(L_t\) with \(t < \ell - 1\).

Theorem 7.5. The simple \(Q_n\) modules are the \(L_t\) with \(t \leq \ell - 2\).

Proof. In view of Proposition 7.1 and Theorem 7.4, it suffices to show that \((E_{\ell-1} \otimes I^{\otimes(n-\ell+1)})L_{\ell-2} = 0\) and \((E_{\ell-1} \otimes I^{\otimes(n-\ell+1)})W_t = 0\) for \(t \leq \ell - 3\).

Consider first the case \(t \leq \ell - 3\). Then any monic diagram \(D : t \to n\) contains an upper horizontal arc whose right vertex \(\leq \ell - 1\). Since \(E_{\ell-1}\) is harmonic in \(\text{TL}_{\ell-1}\), it follows that \((E_{\ell-1} \otimes I^{\otimes(n-\ell+1)})D = 0\), and hence that \((E_{\ell-1} \otimes I^{\otimes(n-\ell+1)})W_t = 0\).

Now consider the case \(t = \ell - 2\). Then \(g(t) = \ell\) (see the statement of Theorem 4.1) and it follows from Theorem 4.1(2) and the fact that \(n \geq \ell\), that \(W_{\ell-2}(n)\) has composition factors \(L_{\ell-2}\) and \(L_\ell\). If \(D : t \to n\) is a monic diagram, then by the harmonic nature of \(E_{\ell-1}\), \((E_{\ell-1} \otimes I^{\otimes(n-\ell+1)})D = 0\) unless \(D = I^{\otimes(\ell-2)} \otimes D'\), where \(D'\) is a diagram from 0 to \(n - \ell + 2\). But in this case an inspection of the diagrams shows that if \((E_{\ell-1} \otimes I^{\otimes(n-\ell+1)})D = x \in W_{\ell-2}\), then \(\phi_{\ell-2}(x,x)\) is a multiple of \(\text{tr}_{\ell-1}(E_{\ell-1}) = 0\).

More generally, if \(D_1, D_2\) are diagrams in \(W_{\ell-2}\) and \((E_{\ell-1} \otimes I^{\otimes(n-\ell+1)})D_i = x_i\) \((i = 1, 2)\), then the same argument shows that \(\phi_{\ell-2}(x_1, x_2) = 0\).
It follows that for any diagrams $D_1, D_2 \in W_{\ell-2}$, $\phi_{\ell-2}(E_{\ell-1} \otimes I^{\otimes(n-\ell+1)})D_1, D_2) = 0$, since $E_{\ell-1} \otimes I^{\otimes(n-\ell+1)}$ is idempotent and self dual, so that
\[
\phi_{\ell-2}(E_{\ell-1} \otimes I^{\otimes(n-\ell+1)})D_1, D_2 = \phi_{\ell-2}((E_{\ell-1} \otimes I^{\otimes(n-\ell+1)})^2 D_1, D_2)
\]
\[
= \phi_{\ell-2}(E_{\ell-1} \otimes I^{\otimes(n-\ell+1)})D_1, (E_{\ell-1} \otimes I^{\otimes(n-\ell+1)})D_2
\]
\[
= 0.
\]
Hence $R_nW_{\ell-2} \subseteq \text{Rad}_{\ell-2}$, and it follows that $R_nL_{\ell-2} = 0$. \hfill \Box

7.2. Dimensions of the simple $Q_n(\ell)$-modules. Since the simple $Q_n(\ell)$-modules are just the $L_t^{(\ell)}(n)$ $0 \leq t \leq \ell - 2$, $t \equiv n(\text{mod} 2)$, their dimensions are given by the formula (6.18). That is,
\[
\sum_{k=0}^{\infty} \text{dim}(L_t^{(\ell)}(t + 2k))x^k = \frac{p_{t-1-t}(x)}{p_t(x)}.
\]

7.3. The case $\ell = 4$. Clifford algebras. We have seen in (6.3.1)(2) that $Q_{2n+1}(4)$ has just one simple module, whose dimension is 2^n and that $Q_{2n}(4)$ has two simple modules, both of dimension 2^{n-1}. It follows (see also the general formula (8.13)) that $\text{dim} Q_n(4) = 2^{n-1}$ for $n \geq 1$. We shall see in this section that in this case, Q_n is actually a Clifford algebra. Because of its connection to the Ising model in statistical mechanics [21], we shall refer to the $Q_n(4)$ as the Ising algebras.

Let U be a complex vector space of finite dimension n, with a non-degenerate symmetric bilinear form $\langle -, - \rangle$. Then U has an orthonormal basis u_1, \ldots, u_n, which enjoys the property that $\langle u_i, u_j \rangle = \delta_{ij}$. If $\gamma_i = \frac{1}{\sqrt{2}}u_i$ for $i = 1, \ldots, n$, then for any i, j,
\[
\langle \gamma_i, \gamma_j \rangle = \frac{1}{2}\delta_{i,j}.
\]

The Clifford algebra $C_n = C(U, \langle -, - \rangle)$ (for generalities about Clifford algebras we refer the reader to [7]) is defined as
\[
C_n = \frac{T(U)}{I},
\]
where $T(U) = \bigoplus_{i=0}^{\infty} U^{\otimes i}$ is the free associative \mathbb{C}-algebra (or tensor algebra) on U, and I is the ideal of $T(U)$ generated by all elements of the form $u \otimes u - \langle u, u \rangle 1$ ($u \in U$). This last relation may equivalently be written (omitting the \otimes in the multiplication)
\[
uv + vu = 2\langle u, v \rangle 1.
\]

The algebra C_n is evidently generated by any basis of U, and hence by (7.2) and (7.4) has the presentation
\[
C_n = \langle \gamma_1, \ldots, \gamma_n \mid \gamma_i \gamma_j + \gamma_j \gamma_i = \delta_{ij} \text{ for } 1 \leq i, j \leq n \rangle.
\]

For any subset $J = \{j_1 < j_2 < \cdots < j_p \} \subseteq \{1, \ldots, n\}$, write $\gamma_J = \gamma_{j_1} \gamma_{j_2} \cdots \gamma_{j_p}$. It is evident that $\{\gamma_J \mid J \subseteq \{1, 2, \ldots, n\}\}$ is a basis of C_n which is therefore \mathbb{Z}_2-graded (since the relations are in the even subalgebra of the tensor algebra), the even (resp. odd) subspace being spanned by those γ_J with $|J|$ even (resp. odd).

The following statement is now clear.
Proposition 7.6. The Clifford algebra $C(U, \langle -, - \rangle)$ has dimension 2^n, where $n = \dim(U)$. Its even subalgebra C^0_n has dimension 2^{n-1}.

The next theorem is the main result of this section; it asserts that the Ising algebra is isomorphic to the even subalgebra of the Clifford algebra.

Theorem 7.7. We continue to assume $\ell = 4$ and that $q = -\exp(\frac{\pi i}{4})$. Other notation is as above. For $n = 3, 4, \ldots$ there are surjective homomorphisms $\phi_n : \text{TL}_n(q) \rightarrow C^0_n$ which induce isomorphisms $\bar{\phi}_n : Q_n \xrightarrow{\cong} C^0_n$.

Proof. Define $\phi_n(f_j) = \frac{1}{\sqrt{2}}(1 + 2i\gamma_j\gamma_{j+1})$. It was remarked by Koo and Saleur [17, §3.1 eq. (3.2)] (see also [3]) that the $\phi_n(f_j)$ satisfy the relations (2.1) in C_n, and therefore that ϕ_n defines a homomorphism from TL_n to C_n, and further that $E_3 \in \ker(\phi_n)$.

It is evident that the image of ϕ_n is C^0_n, and therefore that $\bar{\phi}_n : Q_n \rightarrow C^0_n$ is surjective. But by Prop. 7.6 these two algebras have the same dimension, whence $\bar{\phi}_n$ is an isomorphism. □

7.3.1. Canonical trace. Let $\text{TL}_n(q)$ be the n-string Temperley-Lieb algebra as above, and assume $\delta := -(q + q^{-1}) \neq 0$ is invertible. The canonical Jones trace tr_n on $\text{TL}_n(q)$ was defined in (2.2). As pointed out in (3.3), this trace descends to a non-degenerate trace on Q_n, satisfying similar properties. In the case $\ell = 4$ this amounts to the following statement.

Proposition 7.8. There is a canonical trace $\overline{\text{tr}}_n$ on C^0_n, given by taking the constant term (coefficient of 1) of any of its elements. This trace corresponds to the Jones trace above in the sense that for $x \in Q_n$, $\text{tr}_n(x) = \overline{\text{tr}}_n(\phi(x))$. It is therefore non-degenerate.

The proof is easy, and consists in showing that $\overline{\text{tr}}_n$ satisfies the analogue of (2.2) in C^0_n.

7.3.2. The spinor representations of $\mathfrak{so}(n)$. We give yet another interpretation of the algebra in terms of the spin representations of $\mathfrak{so}(n)$. Let $\text{SO}(n)$ be the special orthogonal group of the space $(U, \langle -, - \rangle)$ above. Its Lie algebra has basis the set of matrices (with respect to the orthogonal basis (γ_i)) $J_{ij} := E_{ij} - E_{ji}$, $1 \leq i < j \leq n$, where the E_{ij} are the usual matrix units. This basis of $\mathfrak{so}(n)$ satisfies the commutation relations

\begin{equation}
[J_{ij}, J_{kl}] = \delta_{jk}J_{il} - \delta_{jl}J_{ik} - \delta_{ik}J_{jl} + \delta_{il}J_{jk}.
\end{equation}

Proposition 7.9. For $n \geq 2$, there are surjective homomorphisms $\psi_n : U(\mathfrak{so}(n)) \rightarrow C^0_n \equiv Q_n$, such that $\psi_n(J_{ij}) = \omega_{ij} := \frac{1}{2}(\gamma_i\gamma_j - \gamma_j\gamma_i)$. The irreducible spin representations of $\mathfrak{so}(n)$ are realised on the simple Q_n-modules L_0 and L_2 when n is even and on L_1 when n is odd.

Proof. As this is well known, we give merely a sketch of the argument. To show that ψ_n defines a homomorphism, it suffices to observe that the ω_{ij} satisfy the same commutation relations (7.6) as the J_{ij}, and this is straightforward. The surjectivity of ψ_n is evident from the observation that $\omega_{ij} = \gamma_i\gamma_j$, which shows that the image of ψ_n contains the whole of $C^0_n \simeq Q_n$. □
8. The algebras $Q_n(\ell)$ and the Reshetikhin-Turaev-Andersen fusion category.

We show in this section that $Q_n(\ell)$ is the endomorphism algebra of a certain truncated tensor product of modules for $U_q = U_q(\mathfrak{sl}_2)$, where q is such that q^2 is a primitive ℓth root of unity. An observation about the relevant fusion category permits the determination of the dimension of $Q_n(\ell)$. We assume throughout that $\ell \geq 3$.

8.1. Tilting modules for $U_q(\mathfrak{sl}_2)$. For $n \in \mathbb{N}$, let $\Delta_q(n)$ be the Weyl module (cf. [2, §1]) of the quantum group $U_q = U_q(\mathfrak{sl}_2)$ and let $T_q(n)$ be the unique indecomposable tilting module for U_q with highest weight n [2, §5].

It follows from [2, Thm. 5.9] that for $n \in \mathbb{N}$,

\[\Delta_q(1)^{\otimes n} \simeq \bigoplus_{t \in \mathbb{N}} l_t(n) T_q(t), \]

where $l_t(n) = \dim(L_t(n))$ is the dimension of the simple $\text{TL}_n(\mathfrak{g})$-module $L_t(n)$. Note that $l_t(n)$ is non-zero only if $t \equiv n \pmod{2}$.

Further, the structure of the tilting modules $T_q(m)$ is described in [2, Prop. 6.1] as follows.

(8.2)

1. If $m < \ell$ or $m \equiv -1 \pmod{\ell}$, then $T_q(m) \simeq \Delta_q(m)$ is a simple U_q-module.
2. If $m = a\ell + b$ with $a \geq 1$ and $0 \leq b \leq \ell - 2$, then $T_q(m)$ has a submodule isomorphic to $\Delta_q(m)$ such that $\frac{T_q(m)}{\Delta_q(m)} \simeq \Delta_q(g^{-1}(m))$,

where g is the function defined by (4.3).

8.2. Andersen’s fusion category. Andersen proved in [1, Thm. 3.4] a general result for quantised enveloping algebras at a root of unity, which implies in the case of $U_q(\mathfrak{sl}_2)$ that the tilting modules $T_q(m)$ with $0 \leq m \leq \ell - 2$ are precisely those tilting modules which have endomorphisms with non-zero quantum trace. This may easily be verified directly in our case using the description (8.2) of the tilting modules. Andersen’s result [1, Cor. 4.2] (see also [23]) implies that in our case, we have the following result.

Proposition 8.1. Let M, N be tilting modules for $U_q(\mathfrak{sl}_2)$. Write

\[M \otimes N = \bigoplus_{n \in \mathbb{N}} m_n T_q(n), \]

and define the reduced tensor product $\underline{\otimes}$ by

\[M \underline{\otimes} N = \bigoplus_{n=0}^{\ell-2} m_n T_q(n). \]

Then the reduced tensor product $\underline{\otimes}$ is associative.
Definition 8.2. For modules $M = \bigoplus_{n=0}^{t-2} m_n T_q(n)$ and $M' = \bigoplus_{n=0}^{t-2} m'_n T_q(n)$, define

$$ (M, M')_{U_q} = \dim(\text{Hom}_{U_q}(M, M')) = \sum_{n=0}^{t-2} m_n m'_n. $$

Lemma 8.3. Let $M, N \in C_{\text{red}}$. Then

$$ (M \otimes \Delta_q(1), N)_{U_q} = (M, N \otimes \Delta_q(1))_{U_q}. $$

Proof. Since both sides of (8.5) are linear in M and N, it suffices to take $M = T_q(s) = \Delta_q(s)$ and $N = \Delta_q(t)$ for $s, t \in \{0, 1, 2, \ldots, \ell - 2\}$. The “reduced Clebsch-Gordan formula” asserts that for $m \in \{0, 1, 2, \ldots, \ell - 2\}$,

$$ \Delta_q(m) \otimes \Delta_q(1) \simeq \begin{cases} \Delta_q(m - 1) \oplus \Delta_q(m + 1) & \text{if } m \neq 0 \text{ or } \ell - 2 \\ \Delta_q(1) & \text{if } m = 0 \\ \Delta_q(\ell - 3) & \text{if } m = \ell - 2. \end{cases} $$

The assertion is now easily verified. \qed

The following result provides an explicit description of the operation \otimes in the category C_{red}.

Proposition 8.4. Suppose $s, t \in \mathbb{Z}$ are such that $0 \leq s, t \leq \ell - 2$. Then

$$ \Delta_q(s) \otimes \Delta_q(t) \cong \Delta_q(|s - t|) \oplus \Delta_q(|s - t| + 2) \oplus \cdots \oplus \Delta_q(m), $$

where $m = m(s, t) = \min\{s + t, 2(\ell - 2) - (s + t)\}$.

Proof. Note first that by the commutativity of \otimes, it suffices to prove (8.7) for s, t such that $0 \leq t \leq s \leq \ell - 2$. Further, observe that (8.7) holds for $t = 0, 1$. The case $t = 0$ is trivial, while if $t = 1(\leq s)$, we have

$$ \Delta_q(s) \otimes \Delta_q(1) \cong \begin{cases} \Delta_q(s - 1) \oplus \Delta_q(s + 1) & \text{if } s < \ell - 2 \\ \Delta_q(s - 1) & \text{if } s = \ell - 2, \end{cases} $$

which is precisely the assertion (8.7) in this case. We next show that (8.7) holds when $s = \ell - 2$. This assertion amounts to

$$ \Delta_q(\ell - 2) \otimes \Delta_q(t) \cong \Delta_q(\ell - 2 - t) \text{ for all } t. $$

We prove (8.8) by induction on t; the statement holds for $t = 0, 1$, as already observed. For $1 < t \leq \ell - 2$, we have $\Delta_q(t - 1) \otimes \Delta_q(1) \cong \Delta_q(t) \oplus \Delta_q(t - 2)$, whence by induction, $\Delta_q(\ell - 2) \otimes \Delta_q(t - 1) \otimes \Delta_q(1) \cong \Delta_q(\ell - 2 - t) \otimes \Delta_q(\ell - 2 - (t - 2))$. But again by induction, the left side is equal to $\Delta_q(\ell - 2 - (t - 1)) \otimes \Delta_q(1) \cong \Delta_q(\ell - 2 - t) \oplus \Delta_q(\ell - 2 - t)$, which proves (8.8).

We may therefore now assume that $\ell - 3 \geq s \geq t \geq 2$, and proceed by induction on t. Using (8.6), and (8.5), we see easily that for any r with $0 \leq r \leq \ell - 2$, we have

$$ (\Delta_q(s) \otimes \Delta_q(t), \Delta_q(r))_{U_q} = (\Delta_q(s) \otimes \Delta_q(t - 1), \Delta_q(1) \otimes \Delta_q(r))_{U_q} - (\Delta_q(s) \otimes \Delta_q(t - 2), \Delta_q(r))_{U_q}. $$

We shall show, using (8.9), that for $0 \leq r \leq \ell - 2$,

Assertion 8.5. The multiplicity of $\Delta_q(r)$ in both sides of (8.7) is the same.
If \(r = 0 \), the right side of (8.9) is zero unless \(s - t + 1 = 1 \), i.e. \(s = t \), in which case it is 1. This proves the assertion for \(r = 0 \). If \(r = \ell - 2 \), the first summand on the right side of (8.9) is \((\Delta_q(s) \otimes \Delta_q(t - 1), \Delta_q(\ell - 3))_{U_q} \), which is 1 if \(s + t - 1 = \ell - 1 \) or \(\ell - 3 \) and zero otherwise. If \(s + t - 1 = \ell - 1 \), then the second summand on the right side of (8.9) is 1, whence the right side is zero unless \(s + t = \ell - 2 \), in which case it is 1. This proves Assertion 8.5 when \(r = \ell - 2 \).

We may therefore assume that \(0 < r < \ell - 2 \), so that (8.9) may be written as follows.

\[
(\Delta_q(s) \otimes \Delta_q(t), \Delta_q(r))_{U_q} = (\Delta_q(s) \otimes \Delta_q(t - 1), \Delta_q(r - 1))_{U_q} + (\Delta_q(s) \otimes \Delta_q(t - 1), \Delta_q(r + 1))_{U_q} - (\Delta_q(s) \otimes \Delta_q(t - 2), \Delta_q(r))_{U_q}.
\]

Now by induction, we have

\[
\Delta_q(s) \otimes \Delta_q(t - 1) \cong \Delta_q(s - t + 1) \oplus \Delta_q(s - t + 3) \oplus \cdots \oplus \Delta_q(m(s, t - 1))
\]

and \(\Delta_q(s) \otimes \Delta_q(t - 2) \cong \Delta_q(s - t + 2) \oplus \Delta_q(s - t + 4) \oplus \cdots \oplus \Delta_q(m(s, t - 2)) \).

We consider three cases.

Case 1: \(s + t - 1 > \ell - 2 \). In this case it is clear that \(m(s, t - 1) = m(s, t) + 1 \) and \(m(s, t + 2) = m(s, t) + 2 \). Hence in equation (8.10), the last two summands cancel, and we are left with \((\Delta_q(s) \otimes \Delta_q(t), \Delta_q(r))_{U_q} = (\Delta_q(s) \otimes \Delta_q(t - 1), \Delta_q(r - 1))_{U_q} \) (for \(0 < r < \ell - 2 \)). Bearing in mind that \(m(s, t - 1) = m(s, t) + 1 \), this completes the proof of Assertion 8.5 in this case.

Case 2: \(s + t - 1 \leq \ell - 2 \) and \(s + t \neq \ell - 1 \). When \(s + t - 1 \leq \ell - 2 \), a short calculation shows that \(m(s, t - 1) = m(s, t) - 1 \) and \(m(s, t - 2) = m(s, t) - 2 \), except in the single case when \(s + t = \ell - 1 \), with which we shall deal separately. We therefore assume for the moment that \(s + t \neq \ell - 1 \), and using (9.7), evaluate each of the three terms in the right side of (8.10). The first term is 1 for \(r \) (of the correct parity) such that \(s - t + 2 \leq r \leq m(s, t) \), and zero otherwise. The second term is 1 for \(r \) (of the correct parity) such that \(s - t \leq r \leq m(s, t) - 2 \), and zero otherwise, while the third term is \(-1\) for \(r \) (of the correct parity) such that \(s - t + 2 \leq r \leq m(s, t) - 2 \), and zero otherwise. This proves Assertion 8.5 in this case.

Case 3: We consider finally the remaining case \(s + t = \ell - 1 \). In this case we have \(m(s, t) = \ell - 3 = m(s, t - 2) \), and \(m(s, t - 1) = \ell - 2 \). Using this we again evaluate the three terms on the right side of (8.10), recalling that \(r \leq \ell - 3 \). The first term is 1 for \(r \) (of the correct parity) such that \(s - t + 2 \leq r \leq \ell - 3 \), and zero otherwise. The second term is 1 for \(r \) (of the correct parity) such that \(s - t \leq r \leq \ell - 3 \), and zero otherwise while the third term is \(-1\) for \(r \) (of the correct parity) such that \(s - t + 2 \leq r \leq \ell - 3 \), and zero otherwise.

This completes the proof of Proposition 8.4. \(\square \)

8.3. Connection with the algebra \(Q_n(\ell) \). We start with the following observation.

Proposition 8.6. We have

\[
\text{End}_{U_q}(\Delta_q(1) \otimes^n) \cong Q_n(\ell).
\]
Proof. It follows from the definition and from (8.1) that
\[
\Delta_q(1) \otimes^n \simeq \bigoplus_{t=0}^{\ell-2} l_t(n) \Delta_q(t).
\]

Since the \(\Delta_q(t)\) are simple for \(0 \leq t \leq \ell - 2\), it follows that \(\text{End}_{U_q}(\Delta_q(1) \otimes^n)\) is the direct sum of matrix algebras of degree \(l_t(n)\), for \(t\) such that \(0 \leq t \leq \ell - 2\) and \(t \equiv n (\text{mod } 2)\). But this latter set of integers is precisely the set of degrees of the simple modules for the semisimple algebra \(Q_n(\ell)\). The result follows. \(\Box\)

This result may be used to deduce the dimension of \(Q_n(\ell)\).

Corollary 8.7. (see [9, Thm. 2.9.8]) Define \(Q(\ell)(x) := \sum_{n=0}^{\infty} \dim(Q_{n+1}(\ell))x^n\). Then
\[
Q(\ell)(x) = \frac{p_{\ell-2}(x)}{p_\ell(x)},
\]
where the polynomials \(p_t(x)\) are defined in (6.16).

Proof. It follows from Proposition 8.6 that in the notation of Definition 8.2,
\[
\dim(Q_{n+1}(\ell)) = (\Delta_q(1) \otimes (n+1), \Delta_q(1) \otimes (n+1))_{U_q}.
\]
But by \(n\) applications of Lemma 8.3, we see that
\[
(\Delta_q(1) \otimes (n+1), \Delta_q(1) \otimes (n+1))_{U_q} = (\Delta_q(1) \otimes (2n+1), \Delta_q(1))_{U_q} = l_1(2n + 1).
\]

Finally, by (7.1), we have \(\sum_{n=0}^{\infty} l_1(2n + 1)x^n = \frac{p_{\ell-2}(x)}{p_\ell(x)}\), and the proof is complete. \(\Box\)

In this section we investigate some structures which are related to the constructions above. We start with a fusion structure on the representation rings of the semisimple algebra \(Q_n(\ell)\). Throughout this section we take \(\ell = |q^2| \geq 3\) as fixed, unless otherwise specified.

9.1. Fusion structure on the Jones algebras. Let \(Q_n = Q_n(\ell)\) be as above. This is a semisimple algebra, and if we write \(\mathcal{R}(n) := \{t \in \mathbb{Z} \mid t \equiv n (\text{mod } 2)\text{ and } 0 \leq t \leq \min\{n, \ell - 2\}\}\), then
\[
K_0(Q_n) \cong \bigoplus_{t \in \mathcal{R}(n)} \mathbb{Z}[L_t(n)].
\]

Define the algebra
\[
K(Q) := \bigoplus_{n \geq 1} K_0(Q_n),
\]
where multiplication is given by
\[
[L_s(m)] \circ [L_t(n)] := [\text{Ind}_{Q_n \otimes Q_n}^{Q_{m+n}}(L_s(m) \boxtimes L_t(n))].
\]

Remark 9.1. Here \(Q_n \otimes Q_n\) is the subalgebra of \(Q_{m+n}\) which is generated by the image of \(\text{TL}_m(q) \otimes \text{TL}_n(q) \subseteq \text{TL}_{m+n}(q)\) under the canonical map \(\text{TL}_{m+n}(q) \to Q_{m+n}(\ell)\). The induced representation \(\text{Ind}_{\text{TL}_m \otimes \text{TL}_n}^{\text{TL}_{m+n}}(L_s(m) \boxtimes L_t(n))\) may have summands which are not acted upon trivially by \(R_{m+n}(q)\). To obtain a representation of \(Q_{m+n}\),
we consider the submodule of this induced representation of \mathcal{TL}_{m+n} consisting of elements annihilated by $R_{m+n}(q)$.

The multiplication defined above on $K(Q)$ is bilinear, associative and commutative.

Theorem 9.2. We have
\[
[L_s(m)] \circ [L_t(n)] = \sum_{|s-t|\leq r \leq m(s,t)} [L_r(m+n)].
\]
where $m(s,t) = \min\{s + t, 2(\ell - 2) - (s + t)\}$, as in Proposition 8.4.

Proof. It follows from Proposition 8.6 that for $m \geq 1$, as $U_q \otimes Q_m$-module,
\[
\Delta_q(1)^{\otimes m} \cong \oplus_{s \in R(m)} \Delta_q(s) \boxtimes L_s(m).
\]
It follows that as $U_q \otimes (Q_m \otimes Q_n)$-module, we have
\[
\Delta_q(1)^{\otimes (m+n)} \cong \bigoplus_{s \in R(m), t \in R(n)} \Delta_q(s) \boxtimes (L_s(m) \boxtimes L_t(n)) .
\]
But as a module for $U_q \otimes Q_{m+n}$,
\[
\Delta_q(1)^{\otimes (m+n)} \cong \bigoplus_{r \in R(m+n)} \Delta_q(r) \boxtimes L_r(m+n).
\]
Moreover by Proposition 8.4, we may expand (9.4) as follows.
\[
(\Delta_q(s) \boxtimes \Delta_q(t)) \boxtimes (L_s(m) \boxtimes L_t(n)) \cong \bigoplus_{r \in R(m+n), |s-t|\leq r \leq m(s,t)} \Delta_q(r) \boxtimes (L_s(m) \boxtimes L_t(n)) .
\]
Comparing this last equation with (9.5), we see that given $r \in R(m+n)$, we have
\[
\text{Res}_{Q_m \otimes Q_n}^{Q_{m+n}} (L_r(m+n)) \cong \bigoplus_{|s-t|\leq r \leq m(s,t)} (L_s(m) \boxtimes L_t(n)) .
\]
It follows from (9.6) by Frobenius reciprocity (see Corollary A.2 below), that
\[
\text{Ind}_{Q_m \otimes Q_n}^{Q_{m+n}} (L_s(m) \boxtimes L_t(n)) \cong \bigoplus_{r:|s-t|\leq r \leq m(s,t)} L_r(m+n) ,
\]
which is the required statement. \qed

9.2. Some speculation about connections with the Virasoro algebra. We conclude with some speculations on possible connections of our results with Virasoro algebras. Recall that the Virasoro algebra $\mathcal{L} = \bigoplus_{i \in \mathbb{Z}} \mathcal{L}_i \oplus \mathcal{C} \mathcal{C}$ has irreducible highest weight modules $L(c,h)$ with highest weight (c,h), where $c,h (\in \mathcal{C})$ are respectively the central charge and the eigenvalue of L_0. It was conjectured by Friedan, Qiu and Schenker [5] that $L(c,h)$ is unitarisable if and only if either

(1) $c \geq 1$ and $h \geq 0$, or
(2) there exist integers $m \geq 2$, r and s with $0 < r < m$ and $0 < s < m+1$ such that
\[
c = c_m := 1 - \frac{6}{m(m+1)} \quad \text{and} \quad h = h_{r,s} := \frac{(m+1)r - ms)^2 - 1}{4m(m+1)}.
\]
As \(h_{r,s} = h_{m-r,m+1-s} \), it is suffices to take, \(1 \leq s \leq r < m \) in the latter case. The "if" part of this statement is proved by Goddard, Kent and Olive [8] and the "only if" part is proved by Langlands [18].

This result bears a superficial resemblance to Jones’ result on the range of values of the index of a subfactor as was mentioned in the preamble. Thus it might be expected that case (2) is somehow connected with our algebras \(\mathbb{Q}_n(\ell) \) for \(\ell = 3, 4, 5, \ldots \).

Further, there are several instances in the literature (see, e.g. [6, 17, 22]) which hint at a connection between \(\mathbb{Q}_n(\ell) \) and the minimal unitary series of \(\mathcal{L} \) with central charge \(c_\ell \). Our work may provide some further evidence along those lines.

For \(\ell = 3, c = 0 \), and there is just one irreducible representation, viz. the trivial one. This is ‘consistent’ with \(\mathbb{Q}_n(3) = \mathbb{C} \). For \(\ell = 4, c = \frac{1}{2} \). This case is the Ising model, or equivalently, the 2-state Potts model, as we have already observed.

Theorem 9.2 implies that there is a ‘stable limit’ \(K(\mathbb{Q}_\infty) := K(\mathbb{Q}_{\text{even}}(\ell)) \oplus K(\mathbb{Q}_{\text{odd}}(\ell)) \), where \(\mathbb{Q}_{\text{even}}(\ell) := \lim_{n \to \infty} \mathbb{Q}_{2n}(\ell) \) and \(\mathbb{Q}_{\text{odd}}(\ell) := \lim_{n \to \infty} \mathbb{Q}_{2n+1}(\ell) \). Denoting the element of \(K(\mathbb{Q}_\infty) \) corresponding to \(([L_s(n)])_{n \in \mathbb{Z}_{\geq 0}} \) by \([L_s]\), one has

\[
[L_s] \circ [L_t] = \sum_{r \equiv s+t(2)} \sum_{|s-t| \leq r \leq m(s,t)} [L_r]
\]

as in Theorem 9.2. This algebra \(K(\mathbb{Q}_\infty) \) is isomorphic to the Fusion algebra of \(\hat{\mathfrak{sl}}_2 \) of level \(\ell - 2 \), which in turn is isomorphic to the subalgebra of the Fusion algebra of \(\mathcal{L} \) with central charge \(c_{\ell-1} \) generated by \([L(c_{\ell-1}, h_{1,s})]\) \(1 \leq s \leq \ell - 1 \) (cf. [12, §9.3]).

We hope to return to this theme in a future work.

Appendix A. Frobenius reciprocity for algebras

We supply a proof of the statement we require for the proof of Theorem 9.2.

Let \(B \subseteq A \) be finite dimensional algebras over any field \(K \), and let \(\mathcal{C}(A) \) and \(\mathcal{C}(B) \) be the categories of finite dimensional \(A \)-modules and \(B \)-modules respectively. We have induction and restriction functors, denoted by

\[
\text{Ind}_B^A := A \otimes_B - : \mathcal{C}(B) \to \mathcal{C}(A), \quad \text{Res}_B^A : \mathcal{C}(A) \to \mathcal{C}(B)
\]

Proposition A.1. With the above notation, let \(M \in \mathcal{C}(A) \) and \(N \in \mathcal{C}(B) \). Then there are vector space isomorphisms \(f, g \) as in (A.1) which are natural in \(M, N \)

\[
(A.1) \quad \text{Hom}_A(\text{Ind}_B^A(N), M) \overset{f}{\longrightarrow} \text{Hom}_B(N, \text{Res}_B^A(M)), \quad \overset{g}{\longleftarrow}
\]

and which are mutually inverse.

Proof. Let us begin by defining \(f \) and \(g \).

For any \(\phi \in \text{Hom}_A(\text{Ind}_B^A(N), M) \), define \(\phi_0 : N \to M \) by

\[
\phi_0(v) = \phi(1 \otimes v), \quad \forall v \in N.
\]

Then \(\phi_0 \) is well defined, and for any \(b \in B \), we have \(\phi_0(bv) = \phi(1 \otimes bv) = \phi(b \otimes v) = b\phi(1 \otimes v) = b\phi_0(v) \). Hence \(\phi_0 \in \text{Hom}_B(N, \text{Res}_B^A(M)) \), and we define \(f(\phi) = \phi_0 \).
Next, for $\psi \in \text{Hom}_B(N, \text{Res}^A_B(M))$, define $\psi_1 : A \otimes_B N \to M$ by

$$\psi_1(a \otimes v) = a\psi(v), \quad \forall a \in A, \ v \in N.$$

Then ψ_1 is well-defined, as for all $b \in B$,

$$\psi_1(a \otimes bv) = ab\psi(v) = \psi(ab \otimes v).$$

Moreover, evidently $\psi_1 \in \text{Hom}_A(\text{Ind}^A_B(N), M)$, and we define $g(\psi) = \psi_1$.

Now take $\phi \in \text{Hom}_A(\text{Ind}^A_B(N), M)$. Then for $a \in A$ and $v \in N$ we have

$$(g \circ f)(\phi)(a \otimes v) = g(f(\phi))(a \otimes v)$$

$$= af(\phi)(v)$$

$$= a\phi(1 \otimes v)$$

$$= \phi(a \otimes v),$$

so that $g \circ f = \text{id}_{\text{Hom}_A(\text{Ind}^A_B(N), M)}$; and similarly $f \circ g = \text{id}_{\text{Hom}_B(N, \text{Res}^A_B(M))}$. Since the naturality is clear, the proof is complete. \[\square \]

Corollary A.2. We have

$$\dim_K \text{Hom}_A(\text{Ind}^A_B(N), M) = \dim_K \text{Hom}_B(N, \text{Res}^A_B(M)).$$

References

Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne cedex, France

E-mail address: iohara@math.univ-lyon1.fr

School of Mathematics and Statistics, University of Sydney, N.S.W. 2006, Australia

E-mail address: gustav.lehrer@sydney.edu.au, ruibin.zhang@sydney.edu.au