
HAL Id: hal-01476640
https://hal.science/hal-01476640

Submitted on 24 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boosting Wigner’s nj-symbols
Simone Speziale

To cite this version:
Simone Speziale. Boosting Wigner’s nj-symbols. Journal of Mathematical Physics, 2017, 58 (3),
pp.032501 �10.1063/1.4977752�. �hal-01476640�

https://hal.science/hal-01476640
https://hal.archives-ouvertes.fr


Boosting Wigner’s nj-symbols

Simone Speziale
Aix Marseille Univ., Univ. de Toulon, CNRS, CPT, UMR 7332, 13288 Marseille, France

v1: September 7, 2016. v2: December 8, 2016

Abstract

We study the SL(2,C) Clebsch-Gordan coefficients appearing in the lorentzian EPRL spin foam ampli-
tudes for loop quantum gravity. We show how the amplitudes decompose into SU(2) nj−symbols at the
vertices and integrals over boosts at the edges. The integrals define edge amplitudes that can be evaluated
analytically using and adapting results in the literature, leading to a pure state sum model formulation.
This procedure introduces virtual representations which, in a manner reminiscent to virtual momenta
in Feynman amplitudes, are off-shell of the simplicity constraints present in the theory, but with the
integrands that peak at the on-shell values. We point out some properties of the edge amplitudes which
are helpful for numerical and analytical evaluations of spin foam amplitudes, and suggest among other
things a simpler model useful for calculations of certain lowest order amplitudes. As an application, we
estimate the large spin scaling behaviour of the simpler model, on a closed foam with all 4-valent edges
and Euler characteristic χ, to be Nχ−5E+V/2. The paper contains a review and an extension of results
on SL(2,C) Clebsch-Gordan coefficients among unitary representations of the principal series that can
be useful beyond their application to quantum gravity considered here.
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1 Introduction

A compelling approach to the dynamics of loop quantum gravity is the spin foam formalism (for reviews,
see [1, 2]); It defines transition amplitudes for the spin network states of the canonical theory in the form
of a sum over histories of quantum geometries, providing a regularised version of the quantum gravity path
integral. The state of the art is the model proposed by Engle, Pereira, Rovelli and Livine (EPRL) [3] (see also
[4, 5, 6, 7]), notably for its semiclassical properties [8, 9] and the fact that it provides transition amplitudes
for all possible spin networks [10, 11]. Spin foam models in general have the mathematical structure of
a gauge theory on an arbitrary lattice, which represents a discretisation of spacetime.1 The key object is
however not the plaquette, but the vertex amplitude. This is defined by integrals of tensor products of
irreducible representations over the gauge group. For Euclidean signature, the relevant group is SU(2), and
these integrals can be evaluated in terms of its well-known Clebsch-Gordan coefficients. For Lorentzian
signature, the group is SL(2,C), and the expression of the amplitudes in terms of SL(2,C) Clebsch-Gordan
coefficients has not appeared yet, perhaps due to the fact that the latter are less known. Filling this gap is
the main goal of this paper. In doing so we review and extend existing results on SL(2,C) Clebsch-Gordan
coefficients, and provide many analytical and numerical insights on the amplitudes, which we hope will be
of use for the notoriously difficult problem of explicitly computing physical processes such as [20].

The SL(2,C) Clebsch-Gordan coefficients we are interested in are those among the unitary, infinite-
dimensional irreducible representations (irreps) of the principal series. These have been studied at length in
the mathematical literature, starting from the seminal work of Naimark [21], and their formal properties are
summarised in the reference monograph by Ruhl [22]. Explicit values, symmetry properties and recurrence
relations have been studied by a number of authors, e.g. [23, 24, 25, 26] which are the ones most relevant to
our work. The literature is rather uniform insofar as the norm of the coefficients is concerned, less so for the
phase. Clarifying the phase differences and amending at places existing results was part of the work for the
present paper. In particular, we show following [25, 26] how to fix phase conventions such that all Clebsch-
Gordan’s are real, and thus also all invariant tensors, which is practical for applications and numerical studies
(These conventions are, unfortunately, not those of [22], which lead to complex Clebsch-Gordan’s, and differ
also from those of [23, 24], which lead to Clebsch-Gordan’s and invariant tensors which are either real or
purely imaginary).

The crucial property of the Clebsch-Gordan’s for SL(2,C) is that they can be decomposed in terms of
those for SU(2), times coefficients defined by integrations along a single boost direction. The same property
applies to tensor product and graph invariants, and shows up in the EPRL model: it is possible to factorise its
quantum amplitude in terms of SU(2) nj-symbols at the vertices, ‘boosted’ by edges amplitudes carrying the
non-compact integrations over the rapidities r’s. The qualitative structure of this factorisation is probably
already familiar to experts in spin foams (it follows directly using Cartan’s decomposition of SL(2,C)),
however going into the details here allows us to define a number of relevant objects and to highlight a
few important properties that are new. In particular, the factorisation suggests the definition of a simplified
model, in which only the intertwiner labels and not the spins are boosted. The simplified model is significantly

1The continuum limit has then to be reached either via refining (e.g. [12]), which may require renormalisation, see e.g.
[13, 14, 15] for work in this direction, or via a resummation over the 2-complexes, defined for instance using group field
theory/random tensor models, see e.g. [16, 17, 18, 19].
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faster to evaluate numerically, and turns out to provide a useful first order approximation for certain large
spin regimes.

Next, we show how the boost integrals defining the edge amplitudes can be performed exactly in terms
of finite sums of Gamma functions, using and amending a key result by Kerimov and Verdier [25]. Together
with the factorisation, this leads to a pure state sum formulation of the model, in which all the group integrals
have been completely eliminated. When intertwiners are present, the application of the finite sums formula
requires a recoupling scheme and introduces a new feature in the EPRL model, namely virtual Lorentz
irreps off-shell of the simplicity constraints. Remarkably, the amplitudes are strongly peaked at values of
the virtual irreps satisfying the constraints.

To complete the analysis, we study numerically the edge amplitudes in the special case of 3-valent (no
intertwiners) and 4-valent (single intertwiner) cases, to identify the scaling behaviours. Our investigations
show a few characteristic features. First, the amplitudes are generically peaked on the minimal spin con-
figurations used in the simplified model, thus supporting its relevance. The peakedness is power-law in the
shift away from the minimal configuration, and its details depend on the actual irrep considered. We also
investigate the large spin scaling. For the minimal configurations, we find (oscillating) power laws with a
universal scaling N−3/2 (except for degenerate cases in the 3-valent amplitude) and peakedness on diagonal
intertwiner labels, confirming the results of [27] based on a saddle point analysis. For non minimal config-
urations, we find faster power laws or exponential decays, as well as peakedness on non-equal intertwiners.
On general grounds, the various peakedness properties tend to be sharper for smaller values of the Immirzi
parameter γ.

As a simple application of our results, in the final Section 6 we use the factorisation and the scaling
properties to estimate the scaling behaviour of the simplified model in two examples, obtaining Nχ−5/2E+V/2

for a foam with only 3-valent edges, and Nχ−5E+V/2 for a foam with all edges 4-valent.
Although mainly motivated by their applications to quantum gravity, our review and extension of results

on SL(2,C) Clebsch-Gordan coefficients are general and can be of interest beyond the applications considered
here. In particular, Sections 3,4 and 5 and the Appendices can be read without any reference to spin foam
models.

2 EPRL spin foam amplitudes and their factorisation

We assume that the reader is familiar with the EPRL model, and refer to the original literature [3, 5, 6, 7]
and existing reviews (e.g. [1, 2]) for motivations, details and its relation to loop quantum gravity. The
only technical aspect that we need to recall here is the interplay between SU(2) and SL(2,C), which plays a
major role. While the local semi-simple gauge group of general relativity is the non-compact Lorentz group,
the use of real Ashtekar-Barbero introduces an auxiliary group SU(2), embedded non-trivially in SL(2,C).
The embedding is determined by the simplicity constraints relating general relativity to the topological BF
theory, and depends on the Immirzi parameter γ. The Lorentzian EPRL model provides an implementation
of this set-up at the non-perturbative quantum level: The partition function of the theory is defined via
a summation over SU(2) spins only, as typical in spin foam models, but the SU(2) labels are non-trivially
embedded in the unitary irreducible representations of the Lorentz group.

2.1 Definition of the model

The partition function of the EPRL model on a closed 2-complex C is a state sum over SU(2) spins jf and
intertwiners ie, associated respectively with faces f and edges e of the 2-complex,

ZEPRLC =
∑

{jf ,ie}

∏

f

djf
∏

e

die
∏

v

Av(jf , ie). (1)

Here dj := 2j+1, the face weights are chosen requiring the convolution property of the path integral at fixed
boundary graph, and the edge weights can be reabsorbed in the vertex amplitude, so that the expression in
which they do not appear is also found in the literature. In the following our main object of interest will be
the vertex amplitude Av, constructed from unitary irreducible representations of the principal series. These
are labelled by a pair (ρ ∈ R, k ∈ N/2), with canonical basis chosen to diagonalise the operators L2 and Lz
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of the rotation subgroup SU(2) of SL(2,C) [21, 22]. The basis vectors thus read |ρ, k; j,m〉, and the group
elements h are represented by the infinite dimensional unitary matrices

D
(ρ,k)
jmln(h), (j, l) ≥ |k|, −j ≤ m ≤ j, −l ≤ n ≤ l, h ∈ SL(2,C). (2)

Notice that because of the symmetries of these matrices, see Appendix A, attention can often be restricted
to positive labels. Among these irreps, the EPRL model selects a special class satisfying the following
conditions,

ρ = γk, k = j. (3)

This crucial restriction on the labels, denoted Y -map in [3], is what implements the primary simplicity con-
straints linking general relativity to topological BF theory. Without these constraints, the vertex amplitude
of the spin foam model would correspond to SL(2,C) BF theory.

A brief comment on the constraints, referring the interest reader to the cited literature for details on
the origin and geometrical meaning of the constraints. The first restriction is Lorentz invariant; the second
one is not, as it relates the Lorentz-invariant irrep label k to the matrix element label j invariant only
under the canonical SU(2) subgroup. This fixed ‘time gauge’ formalism is convenient to define the quantum
theory, and the amplitudes have been shown to be perfectly gauge-invariant [28, 29]. The restricted matrix
elements satisfying (3) are the discrete equivalent of the non-trivial embedding of the Ashtekar-Barbero
SU(2) connection in SL(2,C) variables, as mentioned above. See e.g. [30] for a recent detailed discussion of
this point.

Then, to write Av in a compact form for a N -valent vertex, it is customary to consider the boundary
graph to the vertex, and denote by a, b = 1, . . . , N its nodes, dual to the edges at the vertex, and by ab
its links, dual to the faces; so that spins are associated with links ab and the 2-complex orientation can be
used to distinguish the source magnetic numbers mab and the target ones mba. The vertex amplitude in the
magnetic index basis is2

Av[jab,mab,mba] :=

∫ N−1∏

a=1

dha
∏

(ab)

D
(γjf ,jf )
jfmabjfmba

(h−1
a hb), (4)

with the integrations being over the group manifold SL(2,C), and the simplicity constraints (3) are imposed
on each face of the 2-complex. The key property of the model is that for a 4-simplex vertex graph, a saddle
point approximation of the above integrals at large spins jf gives exponentials of the Regge action [8, 9], thus
supporting the geometric interpretation of the model as a sampling of path integral of quantum geometries.
The quantum numbers being summed over describe fuzzy polyhedra, each dual to a half-edge and forming
the boundary of a flat polytope dual to the vertex; h−1

a hb carries the extrinsic curvature of this boundary,
and the Y map imposes that the polyhedron shared by two adjacent polytopes lives in the same space-like
hyperplane. Thanks to this property, the intrinsic curvature of the discrete spacetime can be described via
a deficit angle à la Regge. The geometric interpretation has been further investigated in a number of papers
(e.g. [31, 32, 33, 34, 35, 36, 37, 38, 39]), and it is in our biased opinion much clarified using twistors and
twisted geometries [40, 41, 30].

The original model was defined for the special case of a 2-complex dual to a triangulation of spacetime with
flat 4-simplices [3], and later generalised to an arbitrary 2-complex [11, 10, 37].3 Care is needed however in
considering general 2-complexes: first of all, arbitrary 2-complexes can correspond to very singular manifolds,
whose relevance for quantum gravity is debatable; Secondly, not all graphs are integrable, because of the
unboundness of the group integrals, unlike in Euclidean models. For the amplitude to be well-defined, one
has to eliminate a redundant SL(2,C) integration per vertex, which is the reason why in the above formula
we only have N − 1 integrals; And even so, some graphs lead to divergent amplitudes and have thus to be
excluded in the definition of the generalised model. A sufficient condition for integrability, as argued in [43]
and proved in [44], is for the graph to be 3-link-connected, meaning that any partition of the nodes of the
graph can not be disjointed by cutting only two links.4

2Another common representation uses the holonomy basis, see [2].
3And also to constantly curved 4-simplices via the use of quantum groups, e.g. [42].
4The integrability condition is the same for both the EPRL and its predecessor the Barrett-Crane model [45]. The two differ

in fact only in the restriction of the labels, which does not affect the leading divergent behaviour in the integrals.
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In dealing with the model, it is practical to use a graphical notation, where each representation matrix is
represented by an oriented line, with rows associated to the end point and columns associated to the starting
point.5 Each edge of the foam is split into a multi-strand line according to its valency (i.e. the number of
faces sharing that edge), and a vertex is identified by the intersection of the edges; a squared box indicates
an integration over SL(2,C), and a blue thin and filled box a Y map. To give an explicit example, for a
vertex σ dual to a 4-simplex, we have (neglecting the orientation of the links not to clutter the picture)

In dealing with the model, it is practical to use a graphical notation, where each representation matrix is
represented by an oriented line, with rows associated to the end point and columns associated to the starting
point.5 Each edge of the foam is split into a multi-strand line according to its valency (i.e. the number of
faces sharing that edge), and a vertex is identified by the intersection of the edges; a squared box indicates
an integration over SL(2, C), and a blue thin and filled box a Y map. To give an explicit example, for a
vertex � dual to a 4-simplex, we have (neglecting the orientation of the links not to clutter the picture)

A�[jab, mab] = . (5)

The outgoing blue lines represent SU(2) magnetic indices mi, which are glued to the next vertex amplitude
and summed over. The integration over SL(2, C) induces SU(2)-gauge-invariance of the boundary, therefore
the magnetic indices can be contracted for free with Wigner’s generalised 3jm-symbols, giving the vertex
amplitude in the form

A�(jf , ie) = . (6)

In this way, the summations over magnetic indices at each edge can be replaced by summations over inter-
twiners, once we have chosen a basis for each recoupling, and one obtains the state sum formula (1). When
boundaries are present, there is a single integration at the boundary edge, and spins and intertwiners of
faces and edges at the boundary are not summed over, but become the spins and intertwiners of links and
nodes of the boundary EPRL projected spin networks [46, 28].

Before concluding this brief review, notice that the Y -map is present only on one side of each group
element in (4), the one reaching out to the next vertex: the two group elements joining at the vertex are
instead multiplied together without the Y map, a property that should be clear in the graphical notation.
Accordingly, the infinite-dimensional matrix product h�1

a hb contains an infinite summation over SU(2) spins
(which are just like magnetic numbers from the perspective of the infinite-dimensional SL(2, C) irrep),

D
(�j,j)
jmjm0(h

�1
a hb) =

X

l�j

lX

n=�l

D
(�j,j)
jmln (h�1

a )D
(�j,j)
lnjm0(hb). (7)

If we make these summations explicit at each vertex, the partition function will have as many new spins lfv

per face as its valence.6

2.2 Factorisation in SU(2) vertex amplitudes

As a first step to deal with the SL(2, C) integrals, we exploit the Cartan decomposition of h as

h = ue
r
2�3v�1, (8)

where u and v are arbitrary rotations, and r 2 [0,1) is the rapidity parameter of a boost along the z axis.
The parametrization has a U(1) gauge of common rotations of u and v along the z axis, but this redundancy
is harmless since the orbits are compact, and can be easily taken into account normalising the Haar measure
as in [22],

dh = dµ(r) du dv, dµ(r) =
1

4⇡
sinh2 r dr, (9)

5This is the convention associated with action from the right, and it is the one used in the twistorial papers. The opposite
convention, rows on source and columns on target can also be commonly found and corresponds to the action from the left.

6These implicit extra variables are often neglected in Euclidean models, but they are present from the start in the general
definition of spin foam models based on wedges [47].
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D
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where u and v are arbitrary rotations, and r ∈ [0,∞) is the rapidity parameter of a boost along the z axis.
The parametrization has a U(1) gauge of common rotations of u and v along the z axis, but this redundancy
is harmless since the orbits are compact, and can be easily taken into account normalising the Haar measure
as in [22],

dh = dµ(r) du dv, dµ(r) =
1

4π
sinh2 r dr, (7)

where du and dv are Haar measures for SU(2). In an arbitrary unitary irrep of the principal series, (6) reads

D
(ρ,k)
jmln(h) =

∑

p

D(j)
mp(u)d

(ρ,k)
jlp (r)D(l)

pn(v−1), (8)

where D(j) are Wigner’s matrices for SU(2) and the boost matrix elements d(ρ,k) are given as sums of
hypergeometric functions in Appendix A. Using this decomposition it is easy to see that the partition function
(1) factorises into SU(2) nj-symbols at the vertices, times integrals over the boost parameter associated with
the edges.

Consider an edge in the bulk of the spin foam, and the two SL(2,C) integrations along it. For concreteness,
let us fix a four-stranded edge with all strands oriented left to right, being part of a simplicial spin foam.7

Denote as in (5) by {j,m} the labels in the middle of the edge, {l, n} and {l′, n′} those respectively on the
side of the source and target vertices of the edge. The integration on the first half-edge gives

∫
dh

4⊗

i=1

D
(γji,ji)
jimilini

(h) =

∫
du dv dµ(r)

4⊗

i=1

∑

pi

D(ji)
mipi(u)d

(γji,ji)
jilipi

(r)D(li)
pini(v

−1) (9)

=
∑

i,k

didk

(
ji
mi

)(i)(
li
ni

)(k)

Bγ4 (ji, li; i, k),

where we defined the following half-edge weight, or dipole graph amplitude,

Bγ4 (ji, li; i, k) :=

∫
dµ(r)

∑

pi

(
ji
pi

)(i)(
li
pi

)(k) 4⊗

i=1

d
(γji,ji)
jilipi

(r), (10)

and we used twice the SU(2) result

∫
du

4⊗

i=1

D(ji)
mipi(u) =

∑

i

di

(
ji
mi

)(i)(
ji
pi

)(i)

, (11)

in terms of Wigner’s 4jm symbols, see Appendix B.1. The dipole graph amplitude describes two of these
SU(2) symbols averaged over all possible z-boosts relating them, and it will be a central object of interest
of the paper.

Next, gluing this expression to the integral on the second half of the same edge integral, and using the
orthogonality of the 4jm symbols on the mi indices (see (B.26)), we obtain

∫
dh̃

4⊗

i=1

D
(γji,ji)
l′in
′
ijimi

(h̃)

∫
dh

4⊗

i=1

D
(γji,ji)
jimilini

(h) (12)

=
∑

i,k,k′

didkdk′

(
li
ni

)(k)(
l′i
n′i

)(k′)

Bγ4 (ji, li; i, k)Bγ4 (ji, l
′
i; i, k

′).

When we glue the strands to the vertices, the 4jm-symbols above with magnetic labels ni and n′i contract
to form SU(2) nj-symbols at the vertices, and we are left with the following edge amplitude,

dieA
γ
e (jf , ie, lfv, kev, kev′) := diedkevdkev′B

γ(jf , lfv; ie, kev)B
γ(jf , lfv′ ; ie, kev′). (13)

7If a strand has a different orientation the formulae below are modified as in the usual graphical calculus for SU(2), inverting
the relevant group element and intertwiner.
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Figure 1: (In color in the online version) The steps leading to (13), in graphical notation. Each edge contains

two group integrations, represented by boxes, joined by a Y map, represented by the blue bar. Using (7), we split

each SL(2,C) integration in three: first, an SU(2) integral on the vertex side, whose evaluation leads to an SU(2)

nj-symbol labelled by the spins l; second, an integral over the boost parameter r, bridging between the l and j vectors;

third, another SU(2) integral absorbed by the SU(2) intertwiner gluing the two half-edges. Over the whole edge, we

have two integrals over the boost parameter on either side of the edge intertwiner, ie, connected via summations over

new SU(2) intertwiners, say kev and kev′ , to the SU(2) vertex amplitudes labelled with spins lfv. The graphical

notation motivates the name dipole amplitude for Bγ4 . In the last picture we have kept just the blue colour in the

dipole diagrams to mark the Y map still present on one side of the dr integrals. Finally, attaching the edge to its

source and target vertices gives a graphical representation like in Fig.2.

As a result, the partition function for a 5-valent complex takes the factorised form

ZEPRLC =
∑

jf ,ie,lfv,kev

∏

f

djf
∏

e

dieA
γ
e (jf , ie, lfv, kev, kev′)

∏

v

{15j}v(lfv, kev). (14)

These simple algebraic manipulations can be done compactly using a graphical notation, as shown in Figs. 1
and 2, and make it natural to refer to (10) as a dipole graph amplitude, or dipole amplitude, for short.

Figure 2: (In color in the online version) The EPRL spin foam after the factorisation, assuming a 4-valent edge

connecting two 5-valent vertices. The original spins and intertwiners, in blue, are carried only by the γ-dependent

edge amplitudes, and the vertex amplitudes are pure SU(2) nj-symbols like in SU(2) BF theory. Summations over

the spin and intertwiner numbers are implicitly understood, as well as dj weight factors.

The vertex structures are now purely SU(2), and the edge amplitude contains all the dependence on
boosts and on the Immirzi parameter. Geometrically, one can think of this construction as SU(2) areas and
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shapes associated with individual polyhedra being boosted between adjacent polytopes. The trade-off for
this factorisation is that one has to make explicit the infinite summations over the spin labels lfv.

A few comments are in order. First, the factorisation generalises to an arbitrary 2-complex, provided the
amplitude is integrable: the edge amplitude now carries a set of ve−3 intertwiner labels ({ie}, {kev}, {kev′})
per edge of valency ve, and the SU(2) {15j}-symbol of Fig. 2 is replaced by the relevant {nj}-symbol
associated with the valence and combinatorial structure of the vertex. The partition function factorises as

ZEPRLC =
∑

jf ,{ie},lfv,{kev},{kev′}

∏

f

djf
∏

e

d{ie}A
γ
e (jf , {ie}, lfv, {kev}, {kev′})

∏

v

{nj}v(lfv, kev). (15)

Again, the edge amplitude is the product of dk factors and two dipole amplitudes, each given by

Bγ(ji, li; {i}, {k}) =

∫
dµ(r)

∑

pi

(
ji
pi

)({i})(
li
pi

)({k})⊗

i

d
(γji,ji)
jilipi

(r), (16)

see Appendix B.1 for details on the generalised njm symbols.
Second, we restricted attention so far to the simple representations (3), but the factorisations (14) and

(15) hold for arbitrary representations, with (γj, j) in the dipole amplitudes replaced in (ρ, k). For instance,
a similar decomposition can be obtained also for the Lorentzian Barrett-Crane model [45], or in general for
relativistic spin networks and projected spin networks [48]. Indeed, this factorisation is just an example of
a more general factorisation property of SL(2,C) Clebsch-Gordan coefficients, to be reviewed in the next
Section.

Third, the partition function is real, and so must be the edge amplitudes, provided one works with the
conventional, real SU(2) Clebsch-Gordan coefficients. The individual dipole amplitudes (10) and (16) are a
priori complex, but can be made real if we choose the right phase conventions for the boost matrices d(ρ,k),
as we discuss in the next Section.

Summarising, applying the Cartan decomposition (6) to (1), one obtains a factorisation of the EPRL
model in terms of SU(2) nj-symbols at the vertices, ‘boosted’ by edges amplitudes carrying the non-compact
integrations over the rapidities r’s. The edge amplitudes contain the dependence of the model on γ, and are a
product of two dipole amplitudes (10) or (16) in general. Our next goal is to show how the integrals defining
the edge amplitudes can be explicitly computed, using the explicit form of the boost matrix elements, and
the precise relation between the dipole amplitudes and SL(2,C) Clebsch-Gordan coefficients.

2.3 Simplified EPRL model

Before moving on, let us take advantage of (15) to suggest the introduction of a simplified EPRL model,
useful in certain approximations. The factorisation property of the EPRL model is somewhat hindered by
the proliferation of spin labels, with as many new ones per face as its valence. This is of course unavoidable,
as these summations are present from the start in (4), just implicit in the matrix product. In the light of
the known computational complexity of the EPRL model, it is tempting to consider a natural simplification
where all the new spins lfv are fixed to their minimal values jf . This amounts to imposing an extra Y
map also between the two SL(2,C) group elements ha and hb in the definition (4) of the vertex amplitude.
Geometrically, it means allowing only the shapes of the polyhedra (namely the intertwiners) to be boosted,
and not the areas (namely the spins). This simplification may appear drastic; but as we will see below,
the largest contributions to the EPRL edge amplitude do come from configurations with li = ji, that is the
minimal admissible values for the li spins, which suggests that the simplified model can still capture some
relevant properties of the full model.

For this simpler model, there is a single spin per face, and the partition function reads

ZEPRLsC =
∑

jf ,ie,kev

∏

f

djf
∏

e

dieA
γ
e (jf , ie, jf , kev)

∏

v

{nj}v(jf , ie). (17)

Furthermore, the associated dipole diagram amplitude is

Bγs (ji; {i}, {k}) := Bγ(ji, li; {i}, {k}) =

∫
dµ(r)

∑

pi

(
ji
pi

)({i})(
ji
pi

)({k})⊗

i

d
(γji,ji)
jijipi

(r), (18)
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in which only the ‘spin-diagonal’ boost matrix elements (24) enter. These are given by a single hypergeometric
function (see (23) below). Thanks to the reduced spin summations, and the simpler boost matrix elements,
the model so defined is significantly simpler than the original one, and much faster to evaluate.

Below in Section 6 we will use the results on the large spin scaling of the dipole amplitudes to estimate
the overall scaling of the simplified model (17). Another interesting property of the simplified model is that
it can be entirely re-expressed in terms of spinors, using formulas like (53) below.

3 Boost matrix elements and SL(2,C) Clebsch-Gordan coefficients

For generality, we consider in this Section arbitrary irreps. We will specialise to the γ-simple irreps (3)
relevant to the EPRL model in the next Section.

3.1 Boost matrix elements for simple representations

The explicit z-boost matrix elements can be found in the literature (e.g. [21, 22, 49, 50, 22, 51]), but in forms
that may differ by a phase. This is a delicate point, as the phase determines the reality of Clebsch-Gordan
coefficients and dipole amplitudes. For this paper, we take

d
(ρ,k)
jlp (r) = (−1)

j−l
2 eiΦ

ρ
j e−iΦ

ρ
l

√
dj
√
dl

(j + l + 1)!
[(j + k)!(j − k)!(j + p)!(j − p)!(l + k)!(l − k)!(l + p)!(l − p)!]1/2

× e−(k−iρ+p+1)r
∑

s,t

(−1)s+te−2tr(k + p+ s+ t)!(j + l − k − p− s− t)!
s!(j − k − s)!(j − p− s)!(k + p+ s)!t!(l − k − t)!(l − p− t)!(k + p+ t)!

× 2F1[l + 1− iρ, k + p+ 1 + s+ t, j + l + 2, 1− e−2r], (19)

where

eiΦ
ρ
j =

Γ(j + iρ+ 1)

|Γ(j + iρ+ 1)| . (20)

The phase is chosen to have the following symmetry property,

d
(ρ,k)
jlp (r) = (−1)j−ld(ρ,k)

jl,−p(r), (21)

which in turns implies the symmetry

d
(−ρ,−k)
jlm (r) = d

(ρ,k)
jlm (r) (22)

and the reality of group-averaged tensor products and dipole amplitudes (16), as proved in Appendix A.
This phase convention differs from the one in Ruhl’s monography [22], which lacks the first three factors
in (19). The factors (20) are already present in the conventions of [49, 50], and used in the literature on
Clebsch-Gordan coefficients [23, 24, 52].8 They lead to dipole amplitudes which are either real of purely

imaginary. The additional factor (−1)
j−l
2 makes the dipole amplitudes always real. All three choices (19),

[22] and [49, 50] are related by a straightforward unitary transformation. The precise phase choice is to some
extent irrelevant for spin foam amplitudes, as the latter are real by construction: any complex phase in the
dipole amplitudes would cancel out when these are glued together. Nonetheless, it is convenient to work
with real dipole amplitudes as it make it easier to investigate analytically and numerically their properties,
as we will do below in Sections 4 and 5.

8A similar phase is also considered by Ruhl, for what are referred to as functions of the second kind,

e
(ρ,k)
Ruhl :=

(
Γ(j + iρ+ 1)

Γ(j − iρ+ 1)

)1/2 (Γ(l − iρ+ 1)

Γ(l + iρ+ 1)

)1/2

d
(ρ,k)
Ruhl .

However with the phase factor defined by the square root instead of the norm as in (20), these functions fail to be a representation
of the group – as appropriately pointed out in [22] –, for the trivial reason of extra minus signs appearing in the multiplication
law. This is also the wrong phase definition appearing in [25], as we will comment upon below in Section 3.3.
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The expression (19) simplifies in the case of the γ-simple representations, in particular fixing k = j kills
one summation, and we have

d
(γj,j)
jlp (r) = (−1)

j−l
2 eiΦ

γj
j e−iΦ

γj
l

√
dj
√
dl

(j + l + 1)!

[
(2j)!(l + j)!(l − j)! (l + p)!(l − p)!

(j + p)!(j − p)!

]1/2

(23)

× e−(j−iγj+p+1)r
∑

s

(−1)s e−2sr

s!(l − j − s)! 2F1[l + 1− iγj, j + p+ 1 + s, j + l + 2, 1− e−2r].

A further simplification of the matrix elements occurs in the minimal, or ‘spin-diagonal’ case l = j: only
the term s = 0 survives in the summation, and the matrix elements are given by a single hypergeometric
function,

d
(γj,j)
jjp (r) = e−(j−iγj+p+1)r

2F1[j + p+ 1, j(1− iγ) + 1, 2j + 2, 1− e−2r]. (24)

Below in Section 6 we will consider a simplified version of the EPRL model in which only these matrix
elements occur.

The complicate expressions of the above boost matrix elements can be compared with the much simpler
ones appearing in the Lorentzian Barrett-Crane model [45]. This is defined for space-like faces using the
matrix elements k = j = l = 0, for which we have the elementary form

d
(ρ,0)
000 (r) =

sin(ρr)

ρ sinh r
, (25)

and the relevant Clebsch-Gordan coefficients have a simple, compact expression, see (47) below. Of course,
the Barrett-Crane model has the drawback that the large spin limit does not capture the (discrete) Levi-
Civita condition for the connection [53], so it fails to reproduce approximate solutions of general relativity
in this limit.9

3.2 SL(2,C) Clebsch-Gordan coefficients and dipole amplitudes

The spin foam vertex amplitude (4) has a similar structure also in Euclidean signature, with the irreps and
integrals of SL(2,C) replaced by those for the compact groups SU(2) or SO(4). It is then customary to
perform explicitly the integrations in terms of Clebsch-Gordan coefficients, using formulas like (11), and
obtaining state sum models described by Wigner’s nj-symbols. The same can be done in the Lorentzian
case, with the corresponding SL(2,C) Clebsch-Gordan coefficients. These may be less familiar to the reader
than those for SU(2) or SU(N), but have been studied at length in the literature, and relevant results will
be recalled in this Section.

As shown initially by Naimark [21], tensor products of SL(2,C) unitary irreps of the principal series
decompose among themselves with each irrep in the decomposition appearing only once. This allows to
define the Clebsch-Gordan coefficients as usual,

|ρ1, k1; j1m1〉 ⊗ |ρ2, k2; j2,m2〉 =

∫
dρ
∑

k,j,m

Cρkjmρ1k1j1m1ρ2k2j2m2
|ρ, k; j,m〉. (26)

The recoupling conditions [21] turn out to be the usual triangle inequalities for the SU(2) spins,

|j1 − j2| ≤ j3 ≤ j1 + j2 (27)

9The Barrett-Crane model also describes time-like faces, for which the prescription is to take irreps of the category d(0,k). To
treat this case in the EPRL model, one has to take the normal vector defining the linear simplicity constraints to be space-like.
This leaves the first, Lorentz-invariant restriction ρ = γj untouched, but replaces the SU(2) label j in the second, non-Lorentz-
invariant restriction of k, by a representation of the SU(1, 1) group stabilising the chosen space-like direction. The solution to
the simplicity and closure constraints describes time-like polyhedra, with both space-like and time-like faces possible, described
by SU(1, 1) unitary irreps respectively in the discrete or continuous series (see e.g. [54]). A version of the EPRL model including
time-like faces is studied in [55], and it would certainly be of much interest to study the factorisation exposed here in terms of
the SU(1, 1) subgroup instead of SU(2). Notice that thanks to the freedom of choosing an arbitrary direction to be stabilised,
the EPRL model can in principle treat also null polyhedra [56], unlike the Barrett-Crane model.
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and so on cyclically, plus the trivial condition
∑

i

ki ∈ Z (28)

on the discrete irrep labels. It is sometimes convenient to split the Clebsch-Gordan coefficients into two
classes, those for which the ki themselves satisfy triangle inequalities like (27), and those that do not. There
are on the other hand no restrictions on the continuous labels ρi, a fact which will play a role below, so the
integral in (26) runs on R.

The factorisation (15) of the spin foam amplitude obtained in the previous Section is a direct consequence
of the following general factorisation of SL(2,C) Clebsch-Gordan coefficients in terms of SU(2) ones (see e.g.
[24]),

Cρkjmρ1k1j1m1ρ2k2j2m2
= χ(ρ1, ρ2, ρ, k1, k2, k; j1, j2, j)C

jm
j1m1j2m2

, (29)

a property which follows more or less directly from the use of the canonical basis. For brevity of notation,
we will keep track from now on of the dependence of χ on the SU(2) spins ji only, and write χ(j1, j2, j3).

To apply the Clebsch-Gordan decomposition to the matrices (2), recall that these provide a generalised
(in the sense of distributions) orthogonal basis of L2[SL(2,C), dµHaar], with non-trivial Plancherel measure
appearing in the orthogonality formula [22],

∫
dhD

(ρ1,k1)
j1m1l1n1

(h)D
(ρ2,k2)
j2m2l2n2

(h) =
δ(ρ1 − ρ2)δk1k2

4(ρ2
1 + k2

1)
δj1j2δl1l2δm1m2

δn1n2
. (30)

Accordingly, the tensor product decomposes as

D
(ρ1,k1)
j1m1l1n1

(h)D
(ρ2,k2)
j2m2l2n2

(h) =

∫ ∞

−∞
dρ
∑

k

4(ρ2 + k2)
∑

j,l,m,n

C̄ρkjmρ1k1j1m1ρ2k2j2m2
Cρklnρ1k1l1m1ρ2k2l2m2

D
(ρ,k)
jmln(h),

with the sum over k restricted by (28) and the other sums by (j, l) ≥ |k| and the usual triangle inequalities.
From the Clebsch-Gordan decomposition and the orthogonality (30) it follows that

∫
dhD

(ρ1,k1)
j1m1l1n1

(h)D
(ρ2,k2)
j2m2l2n2

(h)D
(ρ3,k3)
j3m3l3n3

(h) = C̄ρ3k3j3m3

ρ1k1j1m1ρ2k2j2m2
Cρ3k3l3n3

ρ1k1l1m1ρ2k2l2m2
(31)

= χ̄(j1, j2, j3)χ(l1, l2, l3)Cj3m3

j1m1j2m2
Cl3n3

l1n1l2n2
.

The left-hand side can be easily shown to be real, thanks to

D
(ρ,k)
jmln = (−1)j−l+m−nD(ρ,k)

j−ml−n, (32)

which follows from known properties of the Wigner matrices and our previous phase choice (21) for the
boost matrices. See Appendix A for an explicit proof. Nonetheless, this does not imply that the individual
Clebsch-Gordan coefficients χ(ji) appearing on the right-hand side are real; and indeed, if one works with
Naimark’s basis they are not, because the boost raising and lowering operators have complex coefficients.
For instance, the literature [23, 24] uses phase conventions that make them either real or purely imaginary.
It is however possible to make them always real, following [25, 26] as we will do below. We nevertheless
keep track of the complex conjugate in our formulas, so to make them applicable also for researchers using
different phase conventions. The (non-trivial) relation between the phase conventions of [23, 24] and [25, 26]
is discussed in Appendix B.2.

Using (32) in the left-hand side of (31) and known symmetries of Wigner’s 3jm symbols (see (B.19)), we
also have

∫
dh

3⊗

i=1

D
(ρi,ki)
jimilini

(h) = (−1)j1−j2+j3+l1−l2+l3
√
dj3
√
dl3

(
ji
mi

)(
li
ni

)
χ̄(j1, j2, j3)χ(l1, l2, l3). (33)

From this expression, it is immediate to find the precise relation between Clebsch-Gordan coefficients and
the 3-valent dipole amplitude. The latter is defined as in (16),

B3(ρi, ki; ji, li) =

∫
dµ(r)

∑

pi

(
ji
pi

)(
li
pi

) 3⊗

i=1

d
(ρi,ki)
jilipi

(r), (34)
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and related to the left-hand side of (33) by

∫
dh

3⊗

i=1

D
(ρi,ki)
jimilini

(h) =

(
ji
mi

)(
li
ni

)
B3(ρi, ki; ji, li), (35)

where we used the Cartan decomposition and the property (B.23) of Winger’s 3jm symbols. Comparing the
two, we read

B3(ρi, ki; ji, li) = (−1)j1−j2+j3+l1−l2+l3
√
dj3
√
dl3 χ̄(j1, j2, j3)χ(l1, l2, l3). (36)

Reality of this expression can be again proven using (32).
This relation extends to dipole amplitudes (16) with n strands, with the appropriate generalised n-valent

Clebsch-Gordan coefficients on the right-hand side. These are defined in Appendix B.2, and as for the
more familiar SU(2) case, can be re-expressed in terms of fundamental 3-valent coefficients, introducing a
recoupling scheme with virtual links carrying irreps corresponding to the coupling of only two irreps at a
time. That is, we first use the Clebsch-Gordan decomposition to reduce the tensor product of four matrices
to three, and then apply (33) to eliminate the group integral. Choosing to fix ideas to couple first the
channels 1 and 2, the intermediate step introduces virtual irreps (ρ12, k12), and the final result reads

∫
dh

4⊗

i=1

D
(γji,ji)
jimilini

(h) = (−1)j1−j2+j3−j4−l1+l2−l3+l4
√
dj4
√
dl4

∫ ∞

−∞
dρ12

∑

k12

4(ρ2
12 + k2

12) (37)

×
∑

j12,l12

χ̄(j1, j2, j12)χ̄(j12, j3, j4)χ(l1, l2, l12)χ(l12, l3, l4)
√
dj12

√
dl12

(
ji
mi

)(j12)(
li
ni

)(l12)

,

where we used the definition of Wigner’s 4jm symbol, see Appendix B.1. In this expression, the sums over
k12 are restricted by (28), those over j12 and l12 by the triangle inequalities and by (j12, l12) ≥ |k12|. Notice
that since ji are fixed, this last condition means that the bounds over j12 by its triangle inequalities translate
into bounds on k12, so that actually the sum over k12 is finite. Hence, thanks to the finiteness of all the
sums and the uniqueness of the Clebsch-Gordan decomposition, we can safely swap the sum over k12 with
those over j12 and l12, obtaining

∞∑

k12=−∞

j1+j2∑

j12=max{|k12|,|j1−j2|}

l1+l2∑

l12=max{|k12|,|l1−l2|}
. . . =

j1+j2∑

j12=|j1−j2|

l1+l2∑

l12=|l1−l2|

min{j12,l12}∑

k12=−min{j12,l12}
. . . (38)

Finally comparing the with the Cartan decomposition (9), we read the desired result,

√
dj12

√
dl12 B4(ρi, ki; ji, li; j12, l12) = (−1)j1−j2+j3−j4−l1+l2−l3+l4

√
dj4
√
dl4 (39)

×
∫ ∞

−∞
dρ12

min{j12,l12}∑

k12=−min{j12,l12}
4(ρ2

12 + k2
12) χ̄(j1, j2, j12)χ̄(j12, j3, j4)χ(l1, l2, l12)χ(l12, l3, l4).

The 4-valent dipole amplitude includes thus a linear superposition of all admissible virtual irreps. Notice
that the function Fk12(ρ12) defined by the second line of (39), basically its integrand-summand, satisfies

Fk12(−ρ12) = F−k12(ρ12), (40)

a non-trivial property which follows from (22). Therefore, both the integrand and the summand are even
functions, and the integration domain can be restricted to positive ρ12 when numerically evaluating (39),
saving precious computing time at the bargain price of a factor of 2.

In a similar manner, one can extend to higher valence the relation between dipole amplitudes and squares
of generalised SL(2,C) Clebsch-Gordan coefficients. Knowing these precise relations between the dipole
amplitudes of interest in spin foam models and the χ coefficients will allow us to use existing results in the
literature to evaluate the spin foam amplitudes.
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3.3 Kerimov-Verdiev’s finite sums formula

Explicit evaluations of Clebsch-Gordan coefficients for unitary irreps of SL(2,C) have been studied in the
literature by many authors, and as we can see from the above construction, it boils down to evaluating the r
integral in (34) to compute the norm of χ, and to provide a scheme to determine the overall sign and phase,
since they are not always real. A simple way to evaluate the r integral, considered for instance in [23], is
to use (19) and the explicit definition of the hypergeometric function as an infinite series of monomials in
r. The r integral can then be performed analytically, and one obtains a triple infinite series of an Euler β
function. More interesting is an evaluation of the integral in terms of finite sums of Gamma functions, which
was derived by Kerimov and Verdiev [25]. Using their result requires some adaptations and some care, as
we now describe.

Let us introduce the shortcut notation

J =
∑

i

ji, K =
∑

i

ki, P =
∑

i

ρi. (41)

The result of [25], properly adapted as explained below, reads

χ(j1, j2, j3) =
(−1)

K+J
2

4
√

2π
x (ρi, ki)Γ( 1−iP+K

2 )Γ( 1−iP−K
2 )

√
dj1dj2dj3 κ(ρi, ki; ji), (42)

where:

κ(ρi, ki; ji) = (−1)−k1−k2e−i
(

Φ
ρ1
j1

+Φ
ρ2
j2
−Φ

ρ3
j3

)
(−1)j1−j2+j3

√
dj3

[
(j1 − k1)!(j2 + k2)!

(j1 + k1)!(j2 − k2)!

]1/2

(43)

×
min{j1,k3+j2}∑

n=−j1

[
(j1 − n)!(j2 + k3 − n)!

(j1 + n)!(j2 − k3 + n)!

]1/2 (
j1 j2 j3
n k3 − n −k3

)

×
j1∑

s1=max{k1,n}

j2∑

s2=max{−k2,n−k3}

(−1)s1+s2−k1+k2 (j1 + s1)!(j2 + s2)!

(j1 − s1)!(s1 − k1)!(s1 − n)!(j2 − s2)!(s2 + k2)!(k3 − n+ s2)!

× Γ( 1−i(ρ1−ρ2−ρ3)−K+2s1
2 )Γ( 1+i(ρ1−ρ2+ρ3)+K+2s2

2 )Γ( 1−i(ρ1+ρ2−ρ3)−k1+k2+k3−2n+2s1+2s2
2 )

Γ(1− iρ1 + s1)Γ(1− iρ2 + s2)Γ(1 + iρ3 + s1 + s2)Γ( 1−iP−k1+k2+k3−2n
2 )

,

an expressions which contains only finite sums, and

x (ρi, ki) =
Γ
( 1+iP−K)

2

)

|Γ
( 1+iP−K)

2

)
|

(44)

× Γ
( 1−i(−ρ1+ρ2+ρ3)−k1+k2+k3

2

)

|Γ
( 1−i(−ρ1+ρ2+ρ3)−k1+k2+k3

2

)
|

Γ
( 1−i(ρ1−ρ2+ρ3)+k1−k2+k3

2

)

|Γ
( 1−i(ρ1−ρ2+ρ3)+k1−k2+k3

2

)
|

Γ
( 1−i(−ρ1−ρ2+ρ3)−k1−k2+k3

2

)

|Γ
( 1−i(−ρ1−ρ2+ρ3)−k1−k2+k3

2

)
|
.

is an additional phase which makes the coefficients always real.
We did not attempt to rederive this remarkable formula, based on previous results by Naimark on

SL(2,C) generating functions [21] and a series of non-trivial manipulations using properties of integrals
of hypergeometric functions; we merely contented ourselves to perform a series of analytic and numerical
checks.10 Doing so we confirmed the general validity of the formula, but with a few minor changes which we
now discuss in details.

First of all, apart from trivial notational changes, our formula differs from the one in [25] by an additional
factor 1/(4

√
2π2), which comes from different normalisations of the Haar measure. Then, we needed three

minor corrections to the Kerimov-Verdiev’s formula.
The first concerns the choice of phases. In [25] they use Nρ

j := [Γ(j + iρ+ 1)/Γ(j − iρ+ 1)]1/2 instead of

our exp{iΦρj} given by (20). In other words, their boost matrices are precisely those called e(ρ,k) in Ruhl, see

10For the interested reader, we performed extensive numerical checks of three types: first, (49) versus the integral expression
(34); this checks the absolute value of (43) and the relative phases with li 6= ji. Second, (i-)reality of (43); this checks the phase
(44). Third, behaviour under permutations.
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footnote 8. But these, as discussed in that footnote and in [22], are not really good representations matrices,
albeit for rather trivial reasons of some wrong minus signs. One should rather use (20) with the absolute
value instead of the square root, as defined in [49, 50] and already used in the literature on Clebsch-Gordan
coefficients [23, 24, 52]. Accordingly, one has to correct also the phase term (44), switching from the use
of square roots in [25] to the absolute values used here. These changes in the phases affect the Kerimov-
Verdiev’s formula by an overall factor ein(ρi,ki,ji)π/2, and none of the steps in their derivation, as far as we
can tell.

The second correction concerns the reality of the coefficients. Neither the original formula with Nρ
j nor

the amended one with exp{iΦρj} (and the corresponding x(ρi, ki) phases in the two cases) give real values, but
either real or purely imaginary values. To achieve reality, and preserve (36) – which fixes the j-dependence
of the overall phase of the χ’s –, we need to add to the formula of [25] the phase (−1)(K+J)/2, explicit in
(42), plus an additional (−1)−k3 , which cancels a similar term in the original formula, leading to (43). This
missing phase may simply have been an omission: [25] refers to a previous paper [26] for the proof of reality,
a paper in russian initially unavailable to us. There a phase factor (−1)(k1+k2−k3)/2 does appear; it and the
(−1)J/2 factor may simply have been lost in the steps from [26] to [25], which include also a change of basis
and different conventions.11

The third and final correction concerns the upper bound on the n summation, which is given as j1 in [25].
This would actually be correct for the γ-simple irreps (3), but not in general: (j2 + k3 − n)! may introduce
a smaller bound, hence the amendment in (43) (a max{−j1,−j2 + k3} could also be specified for the lower
bound, but omitting this is harmless). This is certainly a minor mistake, but it can be frustrating to look
for when obtaining wrong numerical results from such a complex formula, and we think that pointing it out
is useful.

For the γ-simple irreps (3), one summation collapses to its maximal value s1 = j1, and it is possible to
use the explicit form of the 3jm-symbol to simplify (43) to

κ(γji, ji; ji) = e−i
(

Φ
γj1
j1

+Φ
γj2
j2
−Φ

γj3
j3

)
(−1)j1−j2+j3

√
dj3

∆(ji) a12! Γ
( 1−(1−iγ)a23

2

)

Γ(1 + (1− iγ)j1)

j1∑

n=−j1

(−1)j1+n(j2 + j3 − n)!

(j1 − n)!(j2 − j3 + n)!

×
∑

s

(−1)j2+s

(j2 − s)!(j3 − n+ s)!

Γ
(

1+J−iγa12
2 + s− n

)
Γ
(

1+J+iγa13
2 + s

)

Γ
(

1+a23−iγJ
2 − n

)
Γ(1− iγj2 + s)Γ(1 + iγj3 + j1 + s2)

, (45)

where

a12 = j1 + j2 − j3, etc., ∆(ji) =

( ∏
i(2ji)!

(j1 + j2 + j3 + 1)!
∏
i<j aij !

)1/2

. (46)

Once again, we can compare the complexity of the EPRL model with the much simpler Barrett-Crane model,
for which

χ(ρi, 0; 0) =
1

4
√

2ρ1ρ2ρ3
(47)

×
(

sinhπρ1 sinhπρ2 sinhπρ3

cosh π
2 (ρ1 + ρ2 + ρ3) cosh π

2 (−ρ1 + ρ2 + ρ3) cosh π
2 (ρ1 − ρ2 + ρ3) cosh π

2 (ρ1 + ρ2 − ρ3)

)1/2

.

Another interesting way of evaluating the coefficients is to use recursion relations, a procedure that can
certainly also help speeding up spin foam calculations. This approach was developed in [24]. While the
norm of the coefficients so obtained coincides with the ones above, the phase conventions are different, hence
some care is needed in using the results of [24]. For the interested reader, we describe in Appendix B.2 the
detailed comparison.

3.4 Dipole amplitudes with the finite sums formula

To complete this Section, we apply the amended Kerimov-Verdiev formula to express the dipole amplitudes
with the r integrals analytically solved. This is a simple exercise, but it is useful to have explicit formulas

11With [26] initially unaccessible, the additional (−1)−k3 was missing in the first version of this paper, available on the
arXives, resulting in Clebsch-Gordan coefficients which are real for k3 ∈ N, and purely imaginary for k3 ∈ N + 1/2.
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handy. Specifically, some of the phases simplify, and we can use the basic identity

∣∣Γ
(

1−iP+K
2

)∣∣2 ∣∣Γ
(

1−iP−K
2

)∣∣2 =
2π2

cosh(πP ) + cos(πK)
(48)

to remove some Gamma functions. For the 3-valent dipole amplitude we have, starting from (36), applying
(42) and paying attention to the various phase factors,

B3(ρi, ki; ji; li) = (−1)
J−L

2
π

16

3∏

i=1

√
djidli

κ(ρi, ki; ji)κ(ρi, ki; li)

cosh(πP ) + cos(πK)
. (49)

The reality of this expression is by no means manifest, and indeed, the phase prefactor shows that the rest
of the expression can still be purely imaginary.

For the 4-valent one we proceed in the same way, starting from (39) this time, and we get

B4(ρi, ki; ji, li; j12, l12) = (−1)
J−L

2 (−1)j12−l12
π2

25
dj12dl12

4∏

i=1

√
djidli

∫ ∞

0

dρ12

min{j12,l12}∑

k12=−min{j12,l12}
(ρ2

12 + k2
12)

× κ(j1, j2, j12)κ(j3, j4, j12)κ(l1, l2, l12)κ(l3, l4, l12)

[cos(π(k1 + k2 + k12)) + cosh(π(ρ1 + ρ2 + ρ12))][cos(π(k3 + k4 + k12)) + cosh(π(ρ3 + ρ4 + ρ12))]
, (50)

where we used the fact that the integrand is even, as explained above, and a permutation symmetry of the
χ’s to rearrange the terms, see (B.27) and (B.32).

We see that the Kerimov-Verdiev formula allows us to express the 3-valent dipole amplitude in terms
of finite sums. The 4-valent amplitude still requires an integration, the one over the virtual irrep ρ12.
Trading the r integral for the one over ρ12 turns out to be convenient. When we use these formulas in the
EPRL model, we simply have to restrict the face irreps to the γ-simple conditions (3). However, nothing
restricts the virtual irreps ρ12 and k12, which are free to take arbitrary values admitted by the Clebsch-
Gordan decomposition. Hence, we have introduced in this way new, virtual irreps which are off-shell of the
simplicity constraints. The existence of non-simple irreps in the EPRL model, albeit virtual ones, was not
expected to us, and it would be of valuable interest to understand their geometrical and physical meaning.
Remarkably though, numerical investigations reported below show that both labels are strongly peaked on
the corresponding simple values, ρo12 = γj12 and ko12 = j12. The situation is thus somewhat reminiscent of
off-shell propagation in Feynman amplitudes, where virtual particles can have off-shell momenta, but the
amplitudes are peaked on the on-shell values. From a practical viewpoint, the peakedness has the important
consequence that the expression (50) remains much faster to evaluate than the r-integral one (10), in spite
of containing an indefinite integration itself.

This concludes the main body of analytic results of the paper. We then proceeded to test numerically both
formulas (49) and (50) against the integral expressions (34) and (10). These numerical studies highlighted
many interesting properties of these amplitudes, and are reported in the next two Sections.

4 Numerical studies: 3-valent case

In this and the following Section, we report on numerical studies of the 3-valent and 4-valent dipole amplitudes
(16). We restrict attention here to the γ-simple irreps (3), those directly relevant for spin foams. Although
the 3-valent case is rarely considered in spin foams, as the quantum geometry associated to it has zero 3-
volume, it is useful to consider it first for its simplicity: There are no intertwiner degrees of freedom, and the
dipole amplitude Bγ3 (ji, li) = B3(γji, ji; ji, li) is determined by the spins only. At fixed spins, the r integrals
in (34) can be performed with Wolfram’s Mathematica, and give elementary trigonometric functions, for
instance

Bγ3 ( 1
2 ,

1
2 , 1; 1

2 ,
1
2 , 1) =

γ(1 + 4γ2)

8(1 + γ2)3
coth2(

πγ

2
) tanh(πγ), Bγ3 (1, 1, 1; 1, 1, 1) =

27γ(4 + 9γ2) cosh3(πγ2 )

256(1 + γ2)3 sinh( 3
2πγ)

,
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and

Bγ3 (1, 1, 1; 1, 2, 2) =
9
√

5γ(4 + 9γ2)

2048(1 + γ2)3

(
3 coth(

πγ

2
)− coth(

3πγ

2
)
)
.

These expressions can be derived also from the finite sums formula (49).12 As (49) shows, the number
of terms grows with increasing spins. In spite of its complexity, the expression in terms of finite sums
is useful for analytical manipulations, and we found it to be much faster to evaluate numerically using
Wolfram’s Mathematica: For instance, computing the first thousand non-zero values of B3 with spins up
to 6 takes us about 20 minutes using the integral representation (34), and only 20 seconds using the finite
sums expression (49). Some explicit values are reported in Appendix C, comparing evaluation times with
the two methods. This said about computing times, we should also add that we are by no means experts on
Wolfram’s Mathematica nor coding in general, and it is quite likely that the numerical integration can be
largely optimised. The numerical evaluations are also a way to explicitly check the correct equivalence of (34)
and (49), including the overall sign. The two main results emerging from the numerical investigations are
the peakedness of the amplitude on the minimal spin configurations li = ji, and the asymptotic behaviour
for homogeneously large spins.

4.1 Peakedness on the minimal configurations

Recall that in the dipole amplitudes we have li = ji + ∆li,∆li ∈ N,∀i. To investigate the relative weight
of non-minimal configurations, we considered homogeneous shifts ∆li = ∆l ∀i, and numerically evaluated
the ratio Bγ3 (ji; ji + ∆l)/Bγ3 (ji; ji) as a function of ∆l, for various choices of γ and ji. In almost all cases
considered, the behaviour shows a clear peak at the spin-diagonal values ∆l = 0, and a monotonic or
oscillating decay. See Fig. 3 for a set of representative examples. The only minor exception we observed
occurred at large γ and small ji, see top-right panel of Fig. 3, where the peak is at a small but non-zero ∆l,
before the decaying behaviour sets in. Although we could not push the numerics beyond the values shown,
it is reasonable to imagine that the observed behaviour of the j = 10 and j = 20 lines moves towards a
local maximum, smaller that 1, before decreasing again, something like a long period oscillation. So that
the maximum at non-zero ∆l moves to the right and well beneath the value 1 as ji are increased. We found
similar situations in all large γ investigated case for which the shifted peak is initially present at small spins.
Similarly for oscillating decays like at non equal spins in the Figure, increasing γ can increase the amplitude
of the oscillations for small ji (although we did not observe situations where it goes above 1), and increasing
ji the effect is strongly reduced, restoring the same qualitative decay as in the pictures. Hence, we conclude
that the peakedness at the minimal-configurations is a generic feature of the amplitude at large spins, and
valid also for small spins at at small γ.

Concerning the decay itself, it is in general roughly power-law. For the simplest case with all spins equal,
a best fit gives a power-law decay ∆l−1/2, see Fig. 4. Another way to expose this peakedness is to study the
large spin asymptotics for diagonal and non-diagonal configurations, as we show next.

4.2 Large spin asymptotics

We report first the asymptotic behaviour of the spin-diagonal configurations. Evaluation in this case is
significantly faster, especially using the finite sums formula, and it becomes manageable to go up to spins
of order 102 in less than an hour. These numerical investigations show that Bγ3 (Nji;Nji) can have two

12To get a flavour for this, recall that Γ functions are related to trigonometric functions, for instance |Γ(iy)|2 = π/y sinh(πy),

|Γ(n+ 1 + iy)|2 =
π

y sinh(πy)

n∏
k=0

(k2 + y2), |Γ( 2n+3+iy
2

)|2 =
π

22n cosh(πy/2)

n∏
k=0

[(2k + 1)2 + y2].
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Figure 3: (In color in the online version) Study of the peakedness of Bγ3 (ji, li) on the ‘spin-diagonal’ configurations

li = ji. Top panels: cases with equal spins, the plots show Bγ3 (j, j, j, j + ∆l, j + ∆l, j + ∆l)/Bγ3 (j, j, j) with different

values of j (shown in different colours), γ = 1 (left) and γ = 10 (right). For γ = 1, the spin-diagonal configurations

dominate at all studied spins, and the decay is a power law, see Fig. 4. For smaller γ the plots are very similar. On

the other hand, local maxima can appear for γ > 1. For small spins the maximum can even exceed 1, thus shifting the

actual peak of the ratio. This we observed only for small spins. Notice that here the amplitude vanishes identically

for ∆l odd, due to symmetries of the Clebsch-Gordan coefficients. Bottom panels: examples with non-equal spins,

Bγ3 (j, j+1, j+2, j+∆l, j+1+∆l, j+2+∆l)/Bγ3 (j, j+1, j+2) with γ = 1 (left), and Bγ3 (j, j+2, j+3, j+∆l, j+2+

∆l, j+3+∆l)/Bγ3 (j, j+2, j+3) with γ = 7/2 (right). The values for odd increments are this time non-zero, although

they can be 2 orders of magnitude smaller and indistinguishable on the plots. Oscillations and negative values are

shown in these cases, and the power-law peakedness at least for large spins is manifest.
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Figure 4: (In color in the online version) Fit of the fall-off in ∆l of Bγ3 (ji; ji + ∆l) for the simplest configuration,

all spins equal. The same function of the top-left panel of Fig. 3 is here shown on a log-log plot, and together with

the numerical best fits: 1.1∆l−1/2 for j = 1 and 1.8∆l−1/2 for j = 2.

different power law decays,

Bγ3 (Nji;Nji) ∼ c1(γ, ji)N
−3/2 if

∑

i

ji = 2n+ 1, (51)

Bγ3 (Nji;Nji) ∼ c2(γ, ji)N
−1 if

∑

i

ji = 2n, (52)
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see Fig. 5 for examples. Experience with saddle point analysis of this type of integrals (e.g. [5]) suggests
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Figure 5: (In color in the online version) Left panel: Asymptotic behaviour of Bγ3 (j, j, j) as a function of j,

for γ = 1, on a log-log plot. The numerical evaluations are the (blue) dots, the (red) line is a best fit using data

j ∈ [50, 70], which gives 0.0388 j−3/2. Right panel: Asymptotic behaviour of Bγ3 (j, 2j, 3j), again for γ = 1, and fit

0.0154 j−1.

0.5 1 2 5

0.1

0.01

0.001

�

c1(�, ji = 1)

Figure 6: Behaviour of the numerical coefficient of the fit for Bγ3 (j, j, j; j, j, j) at spins of order 40, for varying γ,

versus the asymptotic formula found in [27]. Log–log plot.

that these two behaviours can be explained by a degenerate Hessian in the second case, probably related to
the existence of aligned directions in the phase space. We also investigated the dependence of the coefficient
c1 on γ, see Fig. 5. This matches the result (1 + γ2)−3/2 of [27] (see (60) below), although the precise
numerical agreement is slightly short. The discrepancy could be due to the spins in our numerics not being
high enough.

Next, we considered the asymptotic behaviour for non diagonal cases with different spins but all ho-
mogeneously rescaled, that is Bγ3 (Nji;Nli). The numerical evaluations are a bit slower, but can still be
done efficiently using the finite sums expression. A variety of different behaviours is now possible, including
power laws and exponential decays, with or without oscillations. In no case we found a behaviour as slow as
j−3/2, thus providing further evidence for the peakedness of the amplitude on the diagonal configurations.
A representative selection of various cases is shown in Fig. 7.

Clearly, these numerical studies point out the existence of an interesting zoo of different behaviours, and
plead for an analytic investigation. At least for the case of diagonal configurations, a useful tool would be the
use of spinors. For instance, using the generating function of Wigner’s 3jm-symbols [57] (see also [58, 59])
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Figure 7: Examples of asymptotic behaviour in the non-diagonal case, showing a variety of different possibilities,

mixing power laws and exponential decays with or without oscillations. In the former case, we have added an inter-

polating line to help the visualisation. Top-left: power-law damping ∼ j−2 with oscillations; top-right: oscillations

and exponential decay (notice a rescaling by exp(5j/6) has been artificially added to enhance the visibility of the plot);

bottom-left: also oscillations and exponential decay, but always with positive values (and again an artificial rescaling);

bottom-right: exponential decay without oscillations.

and the spinorial formalism for SL(2,C) as in [9, 41], (34) can be written as

Bγ3 (ji) = ∆(ji)∆(li)

∫ ∞

0

dµ(r)

3∏

i=1

∫
dµ(ζi)

∫
dµ(ζ ′i)

∫
dµ(ωi)

||ωi||2 d(r, |ω1
i |2/||ωi||2)

eS(r,ωi,ζi,ζ
′
i), (53)

with all the integrals over CP 1 with its SU(2)-invariant measure dµ(z), and

S(r, ωi, ζi, ζ
′
i) =

3∑

i=1

ji

[
ln
〈ζi|e

r
2σ3 |ωi〉2〈ωi|ζ ′i〉2

d(r, |ω1
i |2/||ωi||2)1+iγ

+ ln
[ζi|ζi+̂1〉[ζi+̂2|ζi〉

[ζi+̂1|ζi+̂2〉
+ ln

〈ζ ′
i+̂1
|ζ ′i]〈ζ ′i|ζ ′i+̂2

]

〈ζ ′
i+̂2
|ζ ′
i+̂1

]

]
. (54)

Here |ω〉 ∈ C2 is a spinor, ||ω||2 = |ω0|2 + |ω1|2, d(r, t) is defined in (A.4) in the Appendix, |ζ〉 := n(ζ)| 12 ,−〉,
|ζ] := n(ζ)| 12 ,+〉 are Perelemov’s coherent states in the fundamental representation, and finally +̂ is a sum
modulo 3. A more detailed analytic study of the asymptotic scaling is postponed to future work [60].

5 Numerical studies: 4-valent case

The 4-valent dipole amplitude (10) is the case of most common interest in LQG and spin foams, and we
study it in details in this Section, restricting again attention to the simple irreps (3). For short-hand, we will
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denote it Bγ4 (ji; li; j12, l12) := B4(ρi, ki; ji; li; j12, l12), consistently with (10). It is the simplest amplitude
with non-trivial intertwiners, and geometrically, it corresponds to a quantum tetrahedron being boosted
among adjacent frames: The two sets ji and li describe the four areas of the tetrahedron in the two frames
connected by a boost, and the two intertwiners, say j12 and l12, describe the quantum intrinsic shape of the
tetrahedron.13 Again, we performed numerical simulations using both the r-integral expression (10) and the
one obtained using Kerimov-Verdiev’s finite sums formula (50): our numerical studies served first as a test
ground to check the equivalence of the two expressions, and then to study various properties and asymptotic
behaviours of the amplitude. Anticipating on the results presented in details below, the amplitudes are
dominated by the minimal li = ji configurations and by diagonal intertwiners, and show a power-law decay
N−3/2 for large spins:

√
dj12

√
dl12B

γ
4 (Nji;Nji; j12, l12) ∼ c(γ, ji, j12)N−3/2δj12l12 . (55)

The dimensional factors on the left are added for convenience since our 4jm-symbols used in B4 are not
normalised. These numerics confirm the results of [27], where this leading order estimate was obtained with
a saddle point analysis. The decay away the non-minimal configurations is again roughly power law, and
the square of the 3-valent case, that is

Bγ4 (ji; ji + ∆l; j12, l12) ∼ ∆l−1. (56)

For the suppressed, non-minimal configurations li 6= ji, the large spin asymptotics can have various be-
haviours, including exponential fall-offs and oscillations, and can be peaked at non-equal values of the
intertwiners. The peak on the intertwiner labels, whether equal (minimal spins) or not (non-minimal spins),
is generically sharper at small γ, and broader at large γ.

5.1 Off-shell peakedness

As anticipated below (50), the numerical evaluation of (50) for simple irreps is still faster than that of (10),
in spite the fact that both contain an infinite integration. This is because the integrand in the case of (50) is
significantly localised. In fact, both the integrand and the summand in (50) turn out to be strongly peaked
on the values that would solve the γ-simple conditions, as we now report.

To study the peakedness in ρ12, we considered the integrand of (50), defined including the summation
over k12, for various configurations. See Fig. 8 for examples. We generically observed an oscillating behaviour
of the integrand, with a clear principal peak. For diagonal intertwiners, j12 = l12, the principal peak lies
at approximately γj12; the precise location of the maximum and shape of the peak depend on the values of
the spins and of γ: It is sharper for the minimal configurations li = ji, and broader for very non minimal
ones; It broadens also as γ is increased. For non-diagonal intertwiners (that have suppressed amplitudes),
the integrand is still peaked, this time on values which lie in between j12 and l12, typically closer to the
smaller of the two, and the secondary peaks become more important.

To study the peakedness in k12, we considered the summand of (50), defined including the integral over
ρ12. For all considered cases, minimal or non-minimal spins, diagonal or non-diagonal intertwiners, small or
large γ, the plots show an exponential peak at the maximally allowed value k12 = min{j12, l12}. See Fig. 9
for examples.

Finally, notice also from the pictures that both the integrand and the summand are even functions, as
expected from (40).

5.2 Peakedness on diagonal intertwiner labels

Again, it is possible to compute explicit analytic values of (10) at fixed spins with Mathematica. For example,
the first two configurations with all spin equals, ji = li = j, give

Bγ4 (ji = 1
2 , li = 1

2 ; j12, l12) = δj12l12
4

15π

4πγ(1− γ4)
(
coth(πγ)− 2 tanh

(
πγ
2

))
+ 15γ2(2− γ2)− 3

(1 + γ2)4
(57)

13We recall this is half the information needed to characterise the classical intrinsic shape, see e.g. [61] for more on the
polyhedral picture of intertwiners.
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Figure 8: (In color in the online version) Plots of the integrand of (50) for simple irreps, showing the approximate

peakedness of the virtual irrep ρ12 on γj12, for l12 = j12, as well as the parity of the integrand in ρ12, a consequence

of (40). The spins, intertwiners and γ values used are reported above each plot. Top panels: A minimal configuration

with all spins equal 2 and γ = 1, varying j12 = l12 = i = (1, 2, 3) (left, maxima at 1.27, 2.07, 2.93); or keeping

j12 = l12 = 1 and varying γ (right, maxima at 1.27, 2.12, 2.76). Bottom panels: A non-minimal configuration with

all spins different, again with γ = 1 varying j12 = l12 = i = (1, 2, 3) (left, maxima at 1.31, 1.76, 2.35), or with

j12 = l12 = 1 and varying γ (right, maxima at 1.31, 2.46, 3.57). For the suppressed non-diagonal configurations with

l12 6= j12, not shown here, the position of the peak lies typically between the two values, much closer to the minimal

one.

and

Bγ4 (ji = 1, li = 1; j12, l12) = δj12l12 fj12,l12(γ) + δj12,l12±2 fj12,l12(γ), (58)

fj12,l12(γ) =
4πγ p1

j12l12
(γ) (3 coth(πγ)− tanh(πγ)) + p2

j12l12
(γ)

560πγ4(1 + γ2)4(j12 + 1)(2j12 + 1)(l12 + 1)(2l12 + 1)
, (59)

where pij12l12(γ) are even polynomials of order 8 in γ which we do not report here. A plot of fj12l12(γ), see left
panel of Fig. 10, shows that these coefficients are much larger for diagonal intertwiner labels, j12 = l12, than
for the only admissible non-diagonal value. Notice also from the picture that the diagonal values appear to
have a clear hierarchy among them. This reflects the lack of normalisation of the intertwiners, and it would
mainly wash out if we multiply B4 by

√
dj12

√
dl12 . The peakedness on diagonal intertwiner labels, sharp

at small γ and broader at large γ, turns out by numerical explorations to be a generic characteristic of the
minimal configurations, see right panel of Fig. 10 for an example. This diagonal behaviour is suggestive that
the integral over r has a saddle point at r = 0, as indeed estimated in [27] and used to derive (56) analytically.
Notice that the Kronecker delta would be the exact result for an ordinary SU(2) dipole amplitude. Since
our numerical investigations show that the next-to-leading order to (56) is suppressed for small γ, the EPRL
model appears to resembles the more and more an SU(2) theory in this limit.

On the other hand, the peak can move away from diagonal intertwiners for non-minimal configurations,
see Fig. 11. But since the non-minimal configurations are sub-dominant (see next Subsection), these contri-
butions are also next-to-leading order, and the overall dominant behaviour remains (56).
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Figure 9: (In color in the online version) Plots of the summand of (50) for simple irreps, showing the peakedness

of the virtual irrep k12 on min{j12, l12}. We report a configuration with equal spins (left panel) and one with different

spins (right panel), for both diagonal and non diagonal intertwiners. Both on a log plot, these examples show an

exponential peakedness on the maximally allowed value.
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Figure 10: (In color in the online version) Peakedness on equal intertwiners shown for ji ≡ li ≡ 6. Left panel:

Behaviour of (59) for different values of (j12, l12), log–log plot. We see that the non-diagonal intertwiner configuration

is suppressed. The apparent different magnitudes of the diagonal ones is mainly due to the lack of normalisation of

the 4jm-symbol. Right panel: Peakedness on equal intertwiners shown for the example ji ≡ li ≡ 6, l12 = 6, showing

how it flattens as γ increases.

5.3 Peakedness on the minimal configurations

The next result we want to show is that as for the 3-valent amplitude, the 4-valent amplitude is also
dominated by the minimal configurations li = ji. See Fig. 12, where for convenience we kept the interwiner
labels fixed. The observed behaviour is qualitatively similar to the 3-valent case. In particular, we have a
nice power-law drop-off in the case of equal spins, and oscillations for non equal configurations. For the equal
spin case, taking the smallest possible spins to keep reasonable computing times, the plots in Fig.13 show
a decay like ∆l−1, consistent with the square of the 3-valent case. This time we did not observe shifted
maxima for large γ as in the 3-valent case, see Fig. 3. On the other hand, qualitatively similar figures were
observed for non-diagonal intertwiners. Since these are subdominant contributions anyways, we refrain from
showing these plots here.

5.4 Large spin asymptotics

For equal spins and at fixed intertwiners, the large spin behaviour of the amplitude shows a clear power-law
fall-off, see Fig. 14. The different powers shown in the plots reflect the lack of normalisation of the 4jm
symbol, see (B.26); if we rescale B4 as in (56), all diagonal intertwiner contributions scale like N−3/2. The
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Figure 11: (In color in the online version) Variation of the peak as non minimal configurations are considered:

Increasing li from their minimal value the peak lowers in magnitude and may also shift to non diagonal values of the

intertwiners.
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Figure 12: (In color in the online version) Peakedness of Bγ4 (ji; li; j12, l12) on the minimal configurations li = ji,

with fixed intertwiners. Left panel: cases with equal spins, the plots show Bγ4 (j, j, j, j; j + ∆l, j + ∆l, j + ∆l, j +

∆l; 0, 0)/Bγ4 (j, j, j, j; j, j, j, j; 0, 0) with different values of j (shown in different colours), γ = 1. Right panel: example

with non-equal spins, Bγ4 (j, j, j+1, j+2; j+∆l, j+∆l, j+1+∆l, j+2+∆l; 1, 1)/Bγ4 (j, j, j+1, j+2; j, j, j+1, j+2; 1, 1)
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Figure 13: (In color in the online version) Fit of the fall-off in ∆l of Bγ4 (ji; ji + ∆l; 0, 0) for the simplest

configuration, all spins equal and zero intertwiners. The same function of the left panel of Fig. 12 is here shown on

a log-log plot, and together with the numerical best fits: 1.3∆l−1 for j = 1 and 1.9∆l−1 for j = 2.

figure also shows clearly the suppression of amplitudes with non-diagonal intertwiner labels, which are at
least one order of magnitude smaller.
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Figure 14: (In color in the online version) Asymptotic behaviour of Bγ4 for two minimal spin configurations

li ≡ ji, for different intertwiner labels j12 and l12, and corresponding fits. The exponential suppressed case (0j) is

not reported on the second plot. Other configurations show similar behaviours.
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Figure 15: (In color in the online version) Left panel: Behaviour of the numerical coefficient of the fit for

Bγ4 (ji = j; li = j; j12, l12) on a log–log plot, for varying γ and two different diagonal interwiner configurations, in

triangles. For comparison we plotted c1(γ) for Bγ3 (ji = j; li = j), round dots. Right panel: Example of oscillating,

exponential decay for a non-minimal spin configuration. The plot shows exp(3/2j)Bγ4 (ji = j; j, j, j, 2j; j12, l12) as a

function of j, for γ = 6/5 and three different values of intertwiners. The artificial rescaling by exp(3/2j) is made

for ease of visualisation only. We observe that in this subdominant non-minimal case, diagonal or non-diagonal

intertwiner labels can have the same scaling.

We also studied the dependence of the coefficient c(γ, ji, j12) of (56) on γ, for equal spins and different
values of the intertwiners, see left panel of Fig. 15. For j12 = l12 = 0 this is basically the same as for
the 3-valent asymptotics (51), reported for comparison in the picture. Increasing the intertwiners appears
to only introduce a constant shift, thus suggesting that c(γ, ji, j12) = c̃(γ, ji)f(j12). In [27] the following
estimate was given:

√
dj12

√
dl12B

γ
4 (Nji;Nji; j12, l12) ∼ 1

(4π)2

[
6π

(1 + γ2)N
∑
i ji

]3/2

δj12l12 . (60)

Our numerical analysis clearly confirms the N−3/2 scaling and peak on diagonal intertwiners. As for the
(γ, ji, j12) dependence, while this formula worked with good accuracy in the (non-degenerate) B3 case, it
appears to be less accurate in the case of B4, at least at relatively small spins: We performed checks with
spins of order 30, and the formula was typically off by a factor of order 1. See for instance in the left panel
of Fig. 15 the matching of the equal spins scalings of B3 and B4 with j12 = l12 = 0, whereas a relative ratio
(4/3)3/2 ∼ 1.54 would be expected from (60). The (1+γ2)−3/2 appears to be in good qualitative agreement,
but further numerics also suggest an additional explicit dependence on j12, with the accuracy of the formula
improving for large j12. More work will be needed to establish whether this is a limitation of (60), or simply
the fact that we did not push the asymptotic behaviour to high enough spins.14

14The estimate (60) was on the other hand derived for arbitrary valence, and we run some numerical tests with the 5-valent
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For the non-minimal spin configurations, again the situation is richer, with exponential decays and
oscillations also present. Furthermore, in this sub-dominant configurations the amplitudes are no more
necessarily peaked at diagonal values of the intertwiners, see right panel of Fig. 15.

6 Scaling behaviour of the simplified EPRL model

To control the properties of a spin foam model under refinement and rescaling, it is necessary to know its
scaling properties when all spins are large. Not much is known in this context, with explicit results basically
boiling down to the Euclidean estimate at γ = 0 of [62], the Lorentzian self-energy analysis of [63]. As
an application of the results here exposed, in particular the factorisation property (15) and the observed
asymptotic scalings (51) and (56), we provide in this Section a simple estimate of the large spin scaling of the
simplified model on a fixed foam. The result is useful to study divergences and renormalisation properties,
and preliminary to the more refined estimate of the degree of divergence, which further requires studying
how many of the bulk spin summations are unbounded and diverge. Here we are merely studying how the
whole amplitude rescales as all the spins become large, and not the way the regularised amplitude scales
with a cut-off. We restrict attention to the simplified model: extending our analysis the the full model will
require deepening and extending the control on the sub-dominance of the non-minimal configurations. We
discuss two specific examples: first, the case of a foam with all edges 3-valent, a case possibly of not direct
relevance to quantum gravity models for the vanishing of quantum 3-volumes, but simpler and of interest of
tensor models. Then, all 4-valent, the standard case. In both cases we will consider a closed 2-complex, the
generalisation to an open one with boundary is straightforward.

If we assume that all edges are 3-valent, all vertices of the foam must have even-valued valence, say 2nv,
to allow a correct routing of all the strands. A vertex of valence 2nv has amplitude given by a 3nvj-symbol,15

whose asymptotic behaviour is [57]
{3nvj} ∼ (j−3/2)nv−1. (61)

Then, if we restrict attention to the simplified model, we can use the asymptotic behaviour exposed in
(51). Clearly it is the slower behaviour that matters when investigating the overall scaling, therefore we can
assume the second term to be dominant. Each edge contains two dipole amplitudes, and thus tributes a
scaling factor N−2. Collecting the results, we have

ZEPRLsC3 ∼ NF−2E−3/2
∑
v(nv−1) = Nχ−5/2E+V/2, (62)

where we used the fact that
∑
v 2nv = 2E, and introduced the Euler characteristic of the 2-complex,

χ = F − E + V . In the special case of all 4-valent vertices, E = 2V and the scaling reduces to

ZEPRLsC3 ∼ Nχ−9/2V . (63)

In the case of a standard foam with 4-valent edges, there is no restriction on the valence of the vertices,
and any nvj-symbol can appear. To estimate the edge amplitude. Using (56), it is easy to see that the two
sums over the k intertwiners in (13) have a single dominant contribution, scaling like N−3 in the spins jf .
As for the intertwiner label ie, we trade this for coherent states following [5], and keep track only of the
rescaling of the spins. Hence,

ZEPRLsC4 ∼ NF−3E−3/2
∑
v(nv−1) = Nχ−5E+V/2, (64)

Assuming all 5-valent vertices as in the simplicial case (1), 2E = 5V and the scaling reduces to

ZEPRLsC4 ∼ Nχ−12V . (65)

These scalings have immediate applications to estimate the relative weights and divergences of different
foams, and we expect them together with their extension to the full EPRL model to play an important role
in future developments concerning, refining, resumming and renormalising spin foams.

dipole amplitude, confirming that for the minimal configurations li = ji, the leading order large spin behaviour is diagonal in
the two pairs of intertwiners, and scales like N−3/2.

15The precise symbol will depend on the specific routing of the strands; however the scaling behaviour is always the same.
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7 Conclusions

Spin foam models for Euclidean signature are typically described performing all the group integrals and
expressing the amplitudes in terms of contracted Clebsch-Gordan coefficients. In this paper we have shown
how to extend this reformulation to Lorentzian models based on SL(2,C), and more specifically to the EPRL
model. The procedure has two steps. First, using the Cartan decomposition, part of the integrals can be
immediately performed in terms of SU(2) coefficients, generating familiar SU(2) nj-symbols at the vertices,
and isolating the non-compactness in boost integrals associated with the edges of the spin foam. This gives a
geometric picture of the Lorentzian EPRL model in terms of Euclidean polytopes linked by boosts – weighted
by the Immirzi parameter, and makes manifest and exact the separation of intrinsic and extrinsic variables
emerging at the saddle point analysis of [9]. Second, using a formula derived in [25] to explicitly perform the
boost integrals, in terms of finite sums of Gamma functions. The formulation makes the numerical evaluation
of the model much faster, but also allows to develop new analytic tools, exploiting the explicit factorisation
in SU(2) amplitudes and the off-shell behaviour of the virtual Lorentz irreps, or asymptotic properties of the
Gamma functions resolving the edge amplitude, or using formulas like (53) to apply the spinorial techniques
that have already led to a number of useful results in spin foam models [33, 64, 41, 65, 66].

In the course of our analysis we also considered a simplified model in which only the intertwiners are
boosted, and not the spins. This is a strong truncation, motivated mainly by the desire to streamline some
calculations, but the numerical investigations performed show that the main contribution to the amplitudes
come from the minimal ‘spin-diagonal’ configurations, thus suggesting that the simplified model may be a
good approximation to the full model in certain regimes. Another result of our numerics is that the half-edge
dipole amplitude in the ‘spin-diagonal’ configurations is peaked on diagonal intertwiners and falls off like
N−3/2, for arbitrary valence (except 3 when a degenerate case also appears), confirming an analytic result
obtained in [27] using a saddle point calculation. We then used these scalings to estimate the overall scaling
of two different classes of generic foams. The various peakedness properties are found to depend sensibly on
the Immirzi parameter γ, and the generic trend is that the peaks are sharper for small γ, and broader for
large γ.

The analysis pursued here has been also the occasion to review and at places extend results of the
literature on SL(2,C) coefficients for unitary irreps of the principal series. We have showed how the phases
for the boost matrix elements can be chosen to guarantee reality of the edge amplitudes and more in general
of integrals of tensor products, and characterise and compare the various phase choices in the literature. We
have provided a definition of generalised SL(2,C) Clebsch-Gordan coefficients, and the SL(2,C) equivalent
of Wigner’s 3jm symbol.

We hope that our results provide new stimulus to improve the numerical and analytic understanding of
the EPRL model and of Lorentzian models in general, with physical calculations like radiative corrections
[63] or tunnelling amplitudes [20] in mind.
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A Boost matrix elements for general unitary irreps

To provide an explicit parametrization of the SL(2,C) unitary irreps, it is convenient to use the Cartan
decomposition h = ue

r
2σ3v−1, and write

D
(ρ,k)
jmln(h) =

∑

p

D(j)
mp(u)d

(ρ,k)
jlp (r)D(l)

pn(v−1), (A.1)

where D
(j)
mn(u) are the Wigner matrices for SU(2), and

D
(ρ,k)
jmln(e

r
2σ3) ≡ δmnD(ρ,k)

jmlm(e
r
2σ3) := δmnd

(ρ,k)
jlm (r) (A.2)
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are the matrix elements of a boost in the z direction. The SU(2) Wigner matrices can be found in all SU(2)
literature. The z-boost matrices have also been extensively studied (e.g. [21, 49, 22, 51]), and are canonical
up to a phase. This phase difference turns out to be important when evaluating Clebsch-Gordan coefficients,
in particular the phase can be chosen as to guarantee that all dipole amplitudes Bn, and in general all
group-average integrals of tensor products, are real. Since this is a delicate point, we discuss it in details,
reviewing the choices present in the literature.

The d(ρ,k) matrix elements can be written in integral form (see e.g. [22]),

d
(ρ,k)
jlp (r) = eiψ

ρ
jl

√
dj
√
dl

∫ 1

0

dt

d(r, t)1−iρ d
(j)
kp (2t− 1)d

(l)
kp

(
2
te−r

d(r, t)
− 1

)
, (A.3)

where eiψ
ρ
jl parametrises the freedom in the phase,

d(r, t) = te−r + (1− t)er, (A.4)

and d
(j)
mn(2t− 1) are the little Wigner matrices with 2t− 1 = cosβ, explicitly

d(j)
mn(cosβ) =

∑

k

(−1)k+j−n
√

(j +m)!(j −m)!(j + n)!(j − n)!

k!(k +m+ n)!(j −m− k)!(j − n− k)!
(cos

β

2
)2k+m+n(sin

β

2
)2j−2k−m−n.

Using this expression, the integral over t can be given in terms of hypergeometric functions:

d
(ρ,k)
jlp (r) = eiψ

ρ
jl(−1)j−l

√
dj
√
dl

(j + l + 1)!
[(j + k)!(j − k)!(j + p)!(j − p)!(l + k)!(l − k)!(l + p)!(l − p)!]1/2 (A.5)

× e−(k−iρ+p+1)r
∑

s,t

(−1)s+te−2tr(k + p+ s+ t)!(j + l − k − p− s− t)!
s!(j − k − s)!(j − p− s)!(k + p+ s)!t!(l − k − t)!(l − p− t)!(k + p+ t)!

× 2F1[l + 1− iρ, k + p+ 1 + s+ t, j + l + 2, 1− e−2r],

which can also be rewritten as an infinite series in powers of e−r [51]. As used in the main text, there is
only one summation in the simple case j = k (corresponding to s = 0), and only one term in the “diagonal”
elements l = j (corresponding to t = 0).

The matrix elements have a number of symmetries under conjugation, sign flips and permutations, see
[22].16 The one that is relevant to report here for the reality of the dipole amplitudes is the symmetry linking
complex conjugation to the parity map m 7→ −m:

d
(ρ,k)
jlm (r) = e−2iψρjl

Γ(j + iρ+ 1)

Γ(j − iρ+ 1)

Γ(l − iρ+ 1)

Γ(l + iρ+ 1)
d

(ρ,k)
jl−m(r). (A.6)

Using the property of the Wigner matrices relating conjugation to parity, namely

D
(j)
mn(g) = (−1)m−nD(j)

−m−n(g), (A.7)

(A.6) implies

D
(ρ,k)
jmln = e2iαρjl(−1)m−nD(ρ,k)

j−ml−n (A.8)

with

e2iαρjl = e−2iψρjl
Γ(j + iρ+ 1)

Γ(j − iρ+ 1)

Γ(l − iρ+ 1)

Γ(l + iρ+ 1)
. (A.9)

16The phase ψρjl = 0 in [22]. We also adapted the notation of Ruhl’s monograph to the one most used in the modern literature,

that is ρ = ρRuhl/2, k = mRuhl/2. For experts in spin foams, we point out that the k mapping is opposite to the one used in [9],
leading to a γ 7→ −γ flip in the amplitudes. Finally, notice also that Ruhl’s parametrization of Wigner’s d(j) matrices differs
by a factor (−1)m−n from the one most commonly used nowadays [57]. This does not affect however the explicit evaluation
(A.5).
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Let us now study the reality of the dipole amplitudes. Starting from (31) in the main text, and taking
its complex conjugate, we get
∫
D

(ρ1,k1)
j1m1l1n1

D
(ρ2,k2)
j2m2l2n2

D
(ρ3,k3)
j3m3l3n3

= e
2i
(
α
ρ1
j1l1

+α
ρ2
j2l2
−αρ3j3l3

)
(−1)m1+m2−m3−n1−n2+n3 (A.10)

×
∫
D

(ρ1,k1)
j1−m1l1−n1

D
(ρ2,k2)
j2−m2l2−n2

D
(ρ3,k3)
j3−m3l3−n3

=

= e
2i
(
α
ρ1
j1l1

+α
ρ2
j2l2
−αρ3j3l3

)
(−1)m1+m2−m3−n1−n2+n3 χ̄(j1, j2, j3)χ(l1, l2, l3)Cj−mj1−m1j2−m2

Cl3−n3

l1−n1l2−n2

= e
2i
(
α
ρ1
j1l1

+α
ρ2
j2l2
−αρ3j3l3

)
(−1)J−L χ̄(j1, j2, j3)χ(l1, l2, l3)Cjmj1m1j2m2

Cl3n3

l1n1l2n2
,

where in the last line we used (B.19) and the recoupling conditions on the magnetic indices. Looking at the
right-hand side of (31) we see that the integrals are generically complex, and that a sufficient and minimal
choice for their reality is

e2iαρjl = (−1)j−l. (A.11)

This property can be obtained choosing the phase

eiψ
ρ
jl = (−1)−

j−l
2 eiΦ

ρ
j e−iΦ

ρ
l = (−1)−

j−l
2

Γ(j + iρ+ 1)

|Γ(j + iρ+ 1)|
Γ(l − iρ+ 1)

|Γ(l + iρ+ 1)| , (A.12)

which leads to the expression (23) used in the main text.17 Accordingly,

d
(ρ,k)
jlm (r) = (−1)j−ld(ρ,k)

jl−m(r), (A.13)

and

D
(ρ,k)
jmln = (−1)j−l+m−nD(ρ,k)

j−ml−n. (A.14)

Using then (A.14), one shows in the same way that all invariant tensors obtained from group averaging are
real, in particular the dipole amplitudes (16) defined in the main text. With this choice, it also follows
immediately (specialising (A.10) to ji = li) that χ(ji) is either real or purely imaginary.

On the other hand, the phase choice in Ruhl’s monography is ψρjl = 0, in agreement with the original
phase conventions by Naimark [21]. While this parametrization has a simpler integral expression (A.3),
it has the disadvantage of giving complex dipole amplitudes. It is immediate to see that the two phase
choices ψρjl = 0 and (A.12) are related by a unitary transformation, thus preserving the faithfulness of the
representation and making our phase choice (A.12) perfectly admissible. Furthermore, our choice merely

adds a factor (−1)−
j−l
2 to the one of [49, 50],

eiψ
ρ
jl = eiΦ

ρ
j e−iΦ

ρ
l =

Γ(j + iρ+ 1)

|Γ(j + iρ+ 1)|
Γ(l − iρ+ 1)

|Γ(l − iρ+ 1)| , (A.15)

already largely used in the literature on Clebsch-Gordan coefficients [23, 24, 52, 25]. This choice is sufficient
to make the χi either real or purely imaginary (more on this below in Section B.2), on the other hand,

e2iαρjl = 1 in (A.8) and the dipole amplitudes are also real or purely imaginary.
Finally, notice that the choice (A.14) corresponds to taking the parity tensor to be real and coincident

with the SU(2) one, that is,

ε
(ρ,k)
jmj′m′ = (−1)j−mδjj′δm,−m′ , (A.16)

unlike in [22] where it carries the phase here reabsorbed in ψρjl.
For completeness, we report also the symmetry properties relating negative irrep labels to the positive

ones:

d
(−ρ,k)
jlm (r) = (−1)j−ld(ρ,k)

jlm (r), d
(ρ,−k)
jlm (r) = d

(ρ,k)
jl−m(r). (A.17)

We respect to Ruhl’s choice ψρjl = 0, the first has picked up an extra phase (−1)j−l, and the second is
unchanged. Using these two properties and (A.13), the property (22) in the main text follows.

17The minus sign in front of j−l
2

here may look confusing at first, compared to (23), but notice the factor (−1)j−l that pops
up in going from the integral representation (A.3) to the hypergeometric representation.
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B Clebsch-Gordan coefficients, definitions and conventions

B.1 (Generalised) SU(2) Clebsch-Gordan coefficients

To fix our notations and conventions, we briefly review here some properties of Clebsch-Gordan coefficients
for SU(2). We restrict attention to those more directly relevant to the calculations of the paper, and we
refer the reader to [57] for a complete list of symmetries and properties of these symbols.

We use the standard [57] phase conventions for the SU(2) Clebsch-Gordan coefficients Cjmj1m1j2m2
, and

their relation to Wigner’s 3jm-symbols given by
(

j1 j2 j
m1 m2 m

)
=

(−1)j1−j2−m√
dj

Cj−mj1m1j2m2
, (B.18)

which has the advantage of more symmetric behaviour under permutations and sign flips. For instance, a
property we will use below is

(
j1 j2 j
−m1 −m2 −m

)
= (−1)j1+j2+j3

(
j1 j2 j
m1 m2 m

)
. (B.19)

The generalised coefficients for the coupling of three angular momenta are given by

Cj12jmj1m1j2m2j3m3
= Cj12m12

j1m1j2m2
Cjmj12m12j3m3

, (B.20)

where m12 = m1 +m2, and correspondingly one can define a generalised Wigner 4jm-symbol as

(
j1 j2 j3 j
m1 m2 m3 m

)(j12)

=
(−1)j1−j2+j3+m

√
dj12

√
dj

Cj12j,−mj1m1j2m2j3m3
(B.21)

=
∑

m12

(−1)j12−m12

(
j1 j2 j12

m1 m2 m12

)(
j12 j3 j
−m12 m3 m

)
.

The scheme can be straightforwardly extended to an arbitrary number n of external legs, iterating the step
above and introducing n − 3 extra recoupling labels j12, j123, etc. We can define in this way the general
symbol

(
ji
mi

)({i})
=

∑

m12,m123,...

(−1)j12−m12+j123−m123+... (B.22)

×
(

j1 j2 j12

m1 m2 m12

)(
j12 j3 j123

−m12 m3 m123

)(
j123 j4 j
−m123 m4 m

)
. . . ,

where {i} stands for the set of n− 3 virtual spins. In the main text we used this symbol also for the cases
n = 3, 4, as a shorthand notation.

With these definitions and the conventional definitions of Wigner’s matrices for SU(2), D
(j)
mn(g), we have

∫
dgDj1

m1n1
Dj2
m2n2

Dj3
m3n3

=

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
n1 n2 n3

)
, (B.23)

∫
dgDj1

m1n1
Dj2
m2n2

Dj3
m3n3

Dj4
m4n4

=
∑

j12

dj12

(
j1 j2 j3 j4
m1 m2 m3 m4

)(j12)(
j1 j2 j3 j4
n1 n2 n3 n4

)(j12)

, (B.24)

and so on for more general symbols.
We will also use the fact that the symbols satisfy the following orthogonality properties,

∑

m1,m2

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 l3
m1 m2 n3

)
=
δj3l3δm3n3

dj3
, (B.25)

∑

mi

(
j1 j2 j3 j
m1 m2 m3 m

)(j12)(
j1 j2 j3 j
m1 m2 m3 m

)(l12)

=
δj12l12
dj12

. (B.26)
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Notice from the second equation above that unlike the basic 3jm-symbol, the 4jm-symbol we defined is not
normalised. In the literature one also finds a normalised 4jm-symbol, obtained multiplying the right-hand
side of (B.21) by

√
dj12 . We chose the non-normalised convention because it is the one that corresponds to

a 4-valent node in the SU(2) graphical calculus (e.g. [57]).

B.2 (Generalised) SL(2,C) Clebsch-Gordan coefficients

As in the SU(2) case, the SL(2,C) Clebsch-Gordan coefficients have limited symmetries, and dimensional
factors may appear under permutations of the labels. For instance, from (33) in the main text, it follows
that

χ(j1, j3, j2) = (−1)J+f(ρi,ki)

√
dj3
dj2

χ(j1, j2, j3), (B.27)

with f(ρi, ki) depending on the phase conventions for the χ’s. It can be then useful to define a more
symmetric symbol, an SL(2,C) version of Wigner’s 3jm-symbol, as

(
ρ1, k1 ρ2, k2 ρ3, k3

j1 j2 j3

)
= (−1)j1−j2+j3

√
dj3 χ(j1, j2, j3). (B.28)

This symbol is invariant under permutations up to a phase, for instance,
(
ρ1, k1 ρ3, k3 ρ2, k2

j1 j3 j2

)
= (−1)−j1+j2+j3+f(ρi,ki)

(
ρ1, k1 ρ2, k2 ρ3, k3

j1 j2 j3

)
. (B.29)

With this definition, starting from (31) and using (A.14), we have
∫
dhD

(ρ1,k1)
j1m1l1n1

D
(ρ2,k2)
j2m2l2n2

D
(ρ3,k3)
j3m3l3n3

=

(
ρ1, k1 ρ2, k2 ρ3, k3

j1 j2 j3

)(
ρ1, k1 ρ2, k2 ρ3, k3

l1 l2 l3

)
(B.30)

×
(

j1 j2 j3
m1 m2 m3

)(
l1 l2 l3
n1 n2 n3

)
,

in analogy with (B.23).
For the generalised coefficient coming from the recoupling of three irreps, we proceed as in the SU(2)

case, and define

Cρ12k12ρkjmρ1k1j1m1ρ2k2j2m2ρ3k3j3m3
:=
∑

j12

Cρ12k12j12m12

ρ1k1j1m1ρ2k2j2m2
Cρkjmρ12k12j12m12ρ3k3j3m3

=
∑

j12

χ(j1, j2, j12)χ(j12, j3, j)C
j12m12

j1m1j2m2
Cjmj12m12j3m3

, (B.31)

where j1 + j2 ≥ j12 ≥ max{|k12|, |j1 − j2|}. Changing the recoupling basis goes as for SU(2), with the
relevant {6ρ, 6k}-symbol given using (B.30) and (B.28) by

{6ρ, 6k} =
∑

ji

{6ji}
(
ρ1, k1 ρ2, k2 ρ3, k3

j1 j2 j3

)(
ρ1, k1 ρ5, k5 ρ6, k6

j1 j5 j6

)

×
(
ρ4, k4 ρ2, k2 ρ6, k6

j4 j2 j6

)(
ρ4, k4 ρ5, k5 ρ3, k3

j4 j5 j3

)
.

The factorisation of this symbol is just a toy example of the factorisation (15) for the case of a tetrahedral
vertex graph.

The relation between the generalised coefficient and the group-averaged tensor product is obtained as in
the SU(2) case,
∫
dhD

(ρ1,k1)
j1m1l1n1

D
(ρ2,k2)
j2m2l2n2

D
(ρ3,k3)
j3m3l3n3

D
(ρ4,k4)
j4m4l4n4

=

∫ ∞

−∞
dρ12

∑

k12

4(ρ2
12 + k2

12)

×
∑

j12,l12

C̄j12m12

j1m1j2m2
C̄j4m4

j12m12j3m3
Cl12n12

l1n1l2n2
Cl4n4

l12n12l3n3
χ(j1, j2, j12)χ(j12, j3, j4)χ(l1, l2, l12)χ(l12, l3, l4),
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from which (39) in the main text follows using (A.14).
We conclude with a discussion on the phases of the coefficients χ. With the choice (42) based on [25], the

coefficients are always real. The downside is that we do not know explicitly the behaviour under permutations
(B.27). Numerical investigations show that the function f(ρi, ki) depends non-trivially on ρi, and we did
not try to evaluate it analytically, because it is irrelevant to our scopes: it never enter permutations of the
dipole amplitudes, where each χ appears with a conjugate χ with same (ρi, ki) labels. The only permutation
that is easy to identify is the swap of the first two entries, which gives

χ(j2, j1, j3) = (−1)J+Kχ(j1, j2, j3). (B.32)

An alternative procedure to fix the phase was proposed in [24], based on the use of recursion relations
to generate the χ’s, and on fixing by hand the phase of the seed coefficients so that they are always real
and, when possible, positive. The authors of [24] use Naimark’s basis amended by (20). With this choice,
the boost raising and lowering coefficients are generically complex. Hence, even choosing real seeds, they
obtain χ’s which are either real or purely imaginary. The phases under permutations are then explicitly
known, they do not depend on ρi, but they do depend on whether the ki’s are triangular or not, because this
changes the choice of seed (For triangular ki’s, one can take the minimal coefficients ki = ji as seed, whereas
for non-triangular ki’s one minimises the j of the exceeding k then completes to one of the smallest possible
spin configurations available). Notice that with this procedure it is not possible to give a closed formula for
the phase.

Finally, real raising and lowering boost matrix elements can be obtained rescaling the basis vectors by
(−1)(k+j)/2, as we did in our paper. This leads to a straightforward modification of the recursion relations
derived in [24], and once this is taken into account, the latter are applicable to the expression (42). Of
course, the phase generated in this way will be consistent with the phase of (42) and not with that of [24].
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C Some explicit values and comparative times

j1 j2 j3 l1 l2 l3 B3 j1 j2 j3 l1 l2 l3 B3 j1 j2 j3 l1 l2 l3 B3

1 1 1 1 1 1 0.0396 1 1 2 2 2 3 0 1 2 3 3 3 3 0.00668
1 1 1 1 1 2 0 1 1 2 2 3 3 0.00631 1 3 3 1 3 3 0.0127
1 1 1 1 2 2 0.0295 1 1 2 3 3 3 0 1 3 3 2 3 3 0
1 1 1 1 2 3 -0.00612 1 2 2 1 2 2 0.0191 1 3 3 3 3 3 -0.00405
1 1 1 1 3 3 0.0215 1 2 2 1 2 3 0.00211 2 2 2 2 2 2 0.0125
1 1 1 2 2 2 0 1 2 2 1 3 3 0.0171 2 2 2 2 2 3 0
1 1 1 2 2 3 0.0261 1 2 2 2 2 2 0 2 2 2 2 3 3 0.00896
1 1 1 2 3 3 0 1 2 2 2 2 3 0.0112306 2 2 2 3 3 3 0
1 1 1 3 3 3 0.0246 1 2 2 2 3 3 0 2 2 3 2 2 3 0.0107
1 1 2 1 1 2 0.0284 1 2 2 3 3 3 0.00726 2 2 3 2 3 3 -0.00181
1 1 2 1 2 2 -0.0109 1 2 3 1 2 3 0.0169 2 2 3 3 3 3 0.00490
1 1 2 1 2 3 0.0247 1 2 3 1 3 3 -0.00626 2 3 3 2 3 3 0.00824
1 1 2 1 3 3 -0.00857 1 2 3 2 2 3 0.00796 2 3 3 3 3 3 0
1 1 2 2 2 2 0.00319 1 2 3 2 3 3 0.000224 3 3 3 3 3 3 0.00644

(j12, l12) j : 1 2 3 4 5 6 7 8 9 10
(0, 0) 0.0236 0.00878 0.00485 0.00318 0.00229 0.00175 0.00140 0.00115 0.000967 0.000829

(j � 1, j + 1) 0.000260 0.0000712 0.0000297 0.0000154 9.06 10�6 5.85 10�6 4.02 10�6 2.9 10�6 2.17 10�6 1.67 10�6

(j, j) 0.00765304 0.0016 0.000604 0.000298 0.000171 0.000109 0.0000742 0.0000531 0.0000396 0.0000304

1

Table 1: Some explicit integer values of B3(γji, ji; ji, li), for γ = 1.2, obtained with Mathematica. Generating this

table takes about 10 seconds with the integral formula and less than half a second with the finite sums formula.

j1 j2 j3 l1 l2 l3 B3 j1 j2 j3 l1 l2 l3 B3

1/2 1/2 1 1/2 1/2 1 0.0765 1/2 3/2 2 3/2 3/2 3 0.0223
1/2 1/2 1 1/2 3/2 2 0.0676 3/2 3/2 2 3/2 3/2 2 0.0177
1/2 1/2 1 3/2 3/2 2 0 3/2 3/2 2 3/2 3/2 3 0
1/2 1/2 1 3/2 3/2 3 0.0671 3/2 3/2 3 3/2 3/2 3 0.0164
1/2 3/2 2 1/2 3/2 2 0.0312 1/2 3/2 2 3/2 3/2 2 0.0116

Table 2: Some explicit half-integer values of B3(γji, ji; ji, li), for γ = 1.2, obtained with Mathematica. Generating

this table takes about 1 second with the integral formula and less than .1 seconds with the finite sums formula.

j1 j2 j3 l1 l2 l3 B3 j1 j2 j3 l1 l2 l3 B3 j1 j2 j3 l1 l2 l3 B3

1 1 1 1 1 1 0.0396 1 1 2 2 2 3 0 1 2 3 3 3 3 0.00668
1 1 1 1 1 2 0 1 1 2 2 3 3 0.00631 1 3 3 1 3 3 0.0127
1 1 1 1 2 2 0.0295 1 1 2 3 3 3 0 1 3 3 2 3 3 0
1 1 1 1 2 3 -0.00612 1 2 2 1 2 2 0.0191 1 3 3 3 3 3 -0.00405
1 1 1 1 3 3 0.0215 1 2 2 1 2 3 0.00211 2 2 2 2 2 2 0.0125
1 1 1 2 2 2 0 1 2 2 1 3 3 0.0171 2 2 2 2 2 3 0
1 1 1 2 2 3 0.0261 1 2 2 2 2 2 0 2 2 2 2 3 3 0.00896
1 1 1 2 3 3 0 1 2 2 2 2 3 0.0112306 2 2 2 3 3 3 0
1 1 1 3 3 3 0.0246 1 2 2 2 3 3 0 2 2 3 2 2 3 0.0107
1 1 2 1 1 2 0.0284 1 2 2 3 3 3 0.00726 2 2 3 2 3 3 -0.00181
1 1 2 1 2 2 -0.0109 1 2 3 1 2 3 0.0169 2 2 3 3 3 3 0.00490
1 1 2 1 2 3 0.0247 1 2 3 1 3 3 -0.00626 2 3 3 2 3 3 0.00824
1 1 2 1 3 3 -0.00857 1 2 3 2 2 3 0.00796 2 3 3 3 3 3 0
1 1 2 2 2 2 0.00319 1 2 3 2 3 3 0.000224 3 3 3 3 3 3 0.00644

(j12, l12) j : 1 2 3 4 5 6 7 8 9 10
(0, 0) 0.0236 0.00878 0.00485 0.00318 0.00229 0.00175 0.00140 0.00115 0.000967 0.000829

(j � 1, j + 1) 0.000260 0.0000712 0.0000297 0.0000154 9.06 10�6 5.85 10�6 4.02 10�6 2.9 10�6 2.17 10�6 1.67 10�6

(j, j) 0.00765304 0.0016 0.000604 0.000298 0.000171 0.000109 0.0000742 0.0000531 0.0000396 0.0000304

1

Table 3: Some explicit integer values of B4(γji, ji; ji, ji), for γ = 1.2, obtained with Mathematica. Generating this

table takes about 90 minutes with the integral formula and less than 6 minutes with the finite sums formula.
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