B. Sumer and J. Gao, Theranostic nanomedicine for cancer, 2008.

, , 2016.

T. Lammers, S. Aime, W. E. Hennink, G. Storm, and F. Kiessling, Theranostic nanomedicine, vol.44, pp.1029-1038, 2011.

K. Cho, X. U. Wang, S. Nie, and D. M. Shin, Therapeutic nanoparticles for drug delivery in cancer, Clin. Cancer Res, vol.14, pp.1310-1316, 2008.

K. A. Whitehead, R. Langer, and D. G. Anderson, Knocking down barriers: advances in siRNA delivery, Nat. Rev. Drug Discov, vol.8, pp.129-138, 2009.

S. S. Lucky, K. C. Soo, and Y. Zhang, Nanoparticles in photodynamic therapy, Chem. Rev, vol.115, pp.1990-2042, 2015.

X. Huang, P. K. Jain, I. H. El-sayed, and M. A. El-sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles, Lasers Med. Sci, vol.23, pp.217-228, 2008.

A. Jordan, R. Scholz, P. Wust, H. Fähling, and R. Felix, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, J. Magn. Magn. Mater, vol.201, pp.413-419, 1999.

H. Meng, M. Liong, T. Xia, Z. Li, Z. Ji et al., Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line, ACS Nano, vol.4, pp.4539-4550, 2010.

C. Zhu, S. Jung, S. Luo, F. Meng, X. Zhu et al., Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA triblock copolymers, Biomaterials, vol.31, pp.2408-2416, 2010.

S. Mitragotri and J. Lahann, Physical approaches to biomaterial design, Nat. Mater, vol.8, pp.15-23, 2009.

Y. Yan, G. K. Such, A. P. Johnston, J. P. Best, and F. Caruso, Engineering Particles for Therapeutic Delivery: Prospects and Challenges, ACS Nano, vol.6, pp.3663-3669, 2012.

R. A. Petros and J. M. Desimone, Strategies in the design of nanoparticles for therapeutic applications, Nat. Rev. Drug Discov, vol.9, pp.615-627, 2010.

K. Ulbrich, K. Holá, V. ?ubr, A. Bakandritsos, J. Tu?ek et al., Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies, Chem. Rev, vol.116, pp.5338-5431, 2016.

S. Mura, J. Nicolas, and P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nat. Mater, vol.12, pp.991-1003, 2013.

M. A. Stuart, W. T. Huck, J. Genzer, M. Müller, C. Ober et al., others, Emerging applications of stimuli-responsive polymer materials, vol.9, pp.101-113, 2010.

S. Ganta, H. Devalapally, A. Shahiwala, and M. Amiji, A review of stimuli-responsive nanocarriers for drug and gene delivery, J. Controlled Release, vol.126, pp.187-204, 2008.

Y. Zhang, J. Yu, H. N. Bomba, Y. Zhu, and Z. Gu, Mechanical Force-Triggered Drug Delivery, Chem. Rev, 2016.

J. Barthes, D. Mertz, C. Bach, M. Metz-boutigue, B. Senger et al., Stretch-induced biodegradation of polyelectrolyte multilayer films for drug release, Langmuir, vol.28, pp.13550-13554, 2012.

C. Vogt, D. Mertz, K. Benmlih, J. Hemmerle, J. Voegel et al., Layer-by-layer enzymatic platform for stretched-induced reactive release, ACS Macro Lett, vol.1, pp.797-801, 2012.

R. Hergt, S. Dutz, and M. Zeisberger, Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia, Nanotechnology, vol.21, p.15706, 2009.

I. M. Obaidat, B. Issa, and Y. Haik, Magnetic properties of magnetic nanoparticles for efficient hyperthermia, Nanomaterials, vol.5, pp.63-89, 2015.

S. Dutz and R. Hergt, Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy, Int. J. Hyperthermia, vol.29, pp.790-800, 2013.

S. Laurent, S. Dutz, U. O. Häfeli, and M. Mahmoudi, Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles, Adv. Colloid Interface Sci, vol.166, pp.8-23, 2011.

B. Kozissnik, A. C. Bohorquez, J. Dobson, and C. Rinaldi, Magnetic fluid hyperthermia: Advances, challenges, and opportunity, Int. J. Hyperthermia, vol.29, pp.706-714, 2013.

B. P. Timko, T. Dvir, and D. S. Kohane, Remotely triggerable drug delivery systems, Adv. Mater, vol.22, pp.4925-4943, 2010.

C. S. Brazel, Magnetothermally-responsive nanomaterials: combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release, Pharm. Res, vol.26, pp.644-656, 2009.

J. Thévenot, H. Oliveira, O. Sandre, and S. Lecommandoux, Magnetic responsive polymer composite materials, Chem. Soc. Rev, vol.42, pp.7099-7116, 2013.

J. Liu, C. Detrembleur, S. Mornet, C. Jérôme, and E. Duguet, Design of hybrid nanovehicles for remotely triggered drug release: an overview, J. Mater. Chem. B, vol.3, pp.6117-6147, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01180261

A. Hervault and N. T. Thanh, Magnetic nanoparticle-based therapeutic agents for thermochemotherapy treatment of cancer, Nanoscale, vol.6, pp.11553-11573, 2014.

C. S. Kumar and F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv. Drug Deliv. Rev, vol.63, pp.789-808, 2011.

E. A. Périgo, G. Hemery, O. Sandre, D. Ortega, E. Garaio et al., Fundamentals and advances in magnetic hyperthermia, Appl. Phys. Rev, vol.2, p.41302, 2015.

N. Lee, D. Yoo, D. Ling, M. H. Cho, T. Hyeon et al., Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy, Chem. Rev, vol.115, pp.10637-10689, 2015.

M. Bikram and J. L. West, Thermo-responsive systems for controlled drug delivery, Expert Opin. Drug Deliv, vol.5, pp.1077-1091, 2008.

M. A. Ward and T. K. Georgiou, Thermoresponsive polymers for biomedical applications, Polymers, vol.3, pp.1215-1242, 2011.

A. Trabolsi, T. Skorjanc, F. Benyettou, and J. Olsen, Design of organic macrocycle-modified ironoxide nanoparticles for drug delivery, Chem.-Eur. J, 2017.

H. B. Na, I. C. Song, and T. Hyeon, Inorganic Nanoparticles for MRI Contrast Agents, Adv. Mater, vol.21, pp.2133-2148, 2009.

S. Laurent, D. Forge, M. Port, A. Roch, C. Robic et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev, vol.108, pp.2064-2110, 2008.

K. Maier-hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust et al., Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme, J. Neurooncol, vol.81, pp.53-60, 2007.

K. Maier-hauff, F. Ulrich, D. Nestler, H. Niehoff, P. Wust et al., Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme, J. Neurooncol, vol.103, pp.317-324, 2011.

A. Magforce, , 2016.

B. Thiesen and A. Jordan, Clinical applications of magnetic nanoparticles for hyperthermia, Int. J. Hyperthermia, vol.24, pp.467-474, 2008.

G. F. Goya, L. Asín, and M. R. Ibarra, Cell death induced by AC magnetic fields and magnetic nanoparticles: Current state and perspectives, Int. J. Hyperthermia, vol.29, pp.810-818, 2013.

A. E. Deatsch and B. A. Evans, Heating efficiency in magnetic nanoparticle hyperthermia, J. Magn. Magn. Mater, vol.354, pp.163-172, 2014.

J. Kolosnjaj-tabi, R. Di-corato, L. Lartigue, I. Marangon, P. Guardia et al., Singh, others, Heat-generating iron oxide nanocubes: subtle "destructurators" of the tumoral microenvironment, ACS Nano, vol.8, pp.4268-4283, 2014.

J. Lee, J. Jang, J. Choi, S. H. Moon, S. Noh et al., Exchange-coupled magnetic nanoparticles for efficient heat induction, Nat. Nanotechnol, vol.6, pp.418-422, 2011.

R. Hergt, S. Dutz, R. Müller, and M. Zeisberger, Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy, J. Phys. Condens. Matter, vol.18, p.2919, 2006.

G. Glöckl, R. Hergt, M. Zeisberger, S. Dutz, S. Nagel et al., The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia, J. Phys. Condens. Matter, vol.18, p.2935, 2006.

, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization, J. Appl. Phys, vol.109, p.83921, 2011.

F. Gazeau, M. Lévy, and C. Wilhelm, Optimizing magnetic nanoparticle design for nanothermotherapy, 2008.

, , 2016.

C. Blanco-andujar, A. Walter, G. Cotin, C. Bordeianu, D. Mertz et al., Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia, Nanomed, vol.11, pp.1889-1910, 2016.

R. E. Rosensweig, Heating magnetic fluid with alternating magnetic field, J. Magn. Magn. Mater, vol.252, pp.370-374, 2002.

R. Hergt and S. Dutz, Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy, J. Magn. Magn. Mater, vol.311, pp.187-192, 2007.

P. Guardia, R. Di-corato, L. Lartigue, C. Wilhelm, A. Espinosa et al., Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment, ACS Nano, vol.6, pp.3080-3091, 2012.

T. J. Daou, G. Pourroy, S. Begin-colin, J. M. Greneche, C. Ulhaq-bouillet et al., Hydrothermal synthesis of monodisperse magnetite nanoparticles, vol.18, pp.4399-4404, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00206075

J. S. Salazar, L. Perez, O. De-abril, L. Truong-phuoc, D. Ihiawakrim et al.,

S. Greneche, G. Begin-colin, and . Pourroy, Magnetic iron oxide nanoparticles in 10-40 nm range: Composition in terms of magnetite/maghemite ratio and effect on the magnetic properties, Chem. Mater, vol.23, pp.1379-1386, 2011.

B. Basly, G. Popa, S. Fleutot, B. P. Pichon, A. Garofalo et al., others, Effect of the nanoparticle synthesis method on dendronized iron oxides as MRI contrast agents, vol.42, pp.2146-2157, 2013.

E. Alphandery, S. Faure, O. Seksek, F. Guyot, and I. Chebbi, Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy, ACS Nano, vol.5, pp.6279-6296, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01547088

R. Hergt, R. Hiergeist, M. Zeisberger, D. Schüler, U. Heyen et al., Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools, J. Magn. Magn. Mater, vol.293, pp.80-86, 2005.

W. Baaziz, B. P. Pichon, C. Lefevre, C. Ulhaq-bouillet, J. Greneche et al., High Exchange Bias in Fe3-?O4@ CoO Core Shell Nanoparticles Synthesized by a One-Pot Seed-Mediated Growth Method, J. Phys. Chem. C, vol.117, pp.11436-11443, 2013.

X. Liu, B. P. Pichon, C. Ulhaq, C. Lefèvre, J. Grenèche et al., Systematic Study of Exchange Coupling in Core-Shell Fe3-?O4@ CoO Nanoparticles, vol.27, pp.4073-4081, 2015.

A. Sathya, P. Guardia, R. Brescia, N. Silvestri, G. Pugliese et al., Co x Fe3-x O4 Nanocubes for Theranostic Applications: Effect of Cobalt Content and Particle Size, vol.28, pp.1769-1780, 2016.

C. Martinez-boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias et al., Peiró, others, Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications, Sci. Rep, p.3, 2013.

P. Hugounenq, M. Levy, D. Alloyeau, L. Lartigue, E. Dubois et al., Gazeau, others, Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia, J. Phys. Chem. C, vol.116, pp.15702-15712, 2012.

L. Lartigue, P. Hugounenq, D. Alloyeau, S. P. Clarke, M. Lévy et al., Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents, ACS Nano, vol.6, pp.10935-10949, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00820693

A. Kostopoulou, K. Brintakis, M. Vasilakaki, K. N. Trohidou, A. P. Douvalis et al., Assembly-mediated interplay of dipolar interactions and surface spin disorder in colloidal maghemite nanoclusters, Nanoscale, vol.6, pp.3764-3776, 2014.

C. L. Dennis, A. J. Jackson, J. A. Borchers, P. J. Hoopes, R. Strawbridge et al., Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia, Nanotechnology, vol.20, p.395103, 2009.

C. L. Dennis, A. J. Jackson, J. A. Borchers, R. Ivkov, A. R. Foreman et al., The influence of collective behavior on the magnetic and heating properties of iron oxide nanoparticles, J. Appl. Phys, vol.103, pp.7-319, 2008.

B. Mehdaoui, R. P. Tan, A. Meffre, J. Carrey, S. Lachaize et al., Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results, Phys. Rev. B, vol.87, p.174419, 2013.

F. Burrows, C. Parker, R. F. Evans, Y. Hancock, O. Hovorka et al., Energy losses in interacting fine-particle magnetic composites, J. Phys. Appl. Phys, vol.43, p.474010, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00570718

P. De-la-presa, Y. Luengo, M. Multigner, R. Costo, M. P. Morales et al., Study of heating efficiency as a function of concentration, size, and applied field in ?-Fe2O3 nanoparticles, J. Phys. Chem. C, vol.116, pp.25602-25610, 2012.

D. Serantes, K. Simeonidis, M. Angelakeris, O. Chubykalo-fesenko, M. Marciello et al., Multiplying magnetic hyperthermia response by nanoparticle assembling, J. Phys. Chem. C, vol.118, pp.5927-5934, 2014.
DOI : 10.1021/jp410717m

URL : https://digital.csic.es/bitstream/10261/98925/1/accesoRestringido.pdf

A. Walter, C. Billotey, A. Garofalo, C. Ulhaq-bouillet, C. Lefèvre et al., Mastering the Shape and Composition of Dendronized Iron Oxide Nanoparticles To Tailor Magnetic Resonance Imaging and Hyperthermia, Chem. Mater, vol.26, pp.5252-5264, 2014.

H. G. Schild, Poly(N-isopropylacrylamide): experiment, theory and application, Prog. Polym. Sci, vol.17, p.90023, 1992.
DOI : 10.1016/0079-6700(92)90023-r

E. E. Makhaeva, L. T. Thanh, S. G. Starodoubtsev, and A. R. Khokhlov, Thermoshrinking behavior of poly (vinylcaprolactam) gels in aqueous solution, Macromol. Chem. Phys, vol.197, pp.1973-1982, 1996.

B. Jeong, S. W. Kim, and Y. H. Bae, Thermosensitive sol-gel reversible hydrogels, vol.54, pp.37-51, 2002.
DOI : 10.1016/j.addr.2012.09.012

L. Klouda and A. G. Mikos, Thermoresponsive hydrogels in biomedical applications, Eur. J. Pharm. Biopharm, vol.68, pp.34-45, 2008.
DOI : 10.1016/j.ejpb.2007.02.025

URL : http://europepmc.org/articles/pmc3163097?pdf=render

S. G. Hirsch and R. J. Spontak, Temperature-dependent property development in hydrogels derived from hydroxypropylcellulose, Polymer, vol.43, pp.123-129, 2002.
DOI : 10.1016/s0032-3861(01)00608-5

A. K. Gaharwar, J. E. Wong, D. Müller-schulte, D. Bahadur, and W. Richtering, Magnetic nanoparticles encapsulated within a thermoresponsive polymer, J. Nanosci. Nanotechnol, vol.9, pp.5355-5361, 2009.
DOI : 10.1166/jnn.2009.1265

J. A. Mackay and A. Chilkoti, Temperature sensitive peptides: Engineering hyperthermia-directed therapeutics, Int. J. Hyperthermia, vol.24, pp.483-495, 2008.

S. R. Macewan and A. Chilkoti, Applications of elastin-like polypeptides in drug delivery, J. Controlled Release, vol.190, 2014.

A. Dabbagh, B. J. Abdullah, H. Abdullah, M. Hamdi, and N. H. Kasim, Triggering Mechanisms of Thermosensitive Nanoparticles Under Hyperthermia Condition, J. Pharm. Sci, vol.104, pp.2414-2428, 2015.

K. Matyjaszewski and J. Xia, Atom transfer radical polymerization, Chem. Rev, vol.101, pp.2921-2990, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01564110

K. Matyjaszewski, Atom transfer radical polymerization (ATRP): current status and future perspectives, Macromolecules, vol.45, pp.4015-4039, 2012.
DOI : 10.1021/ma3001719

N. E. Kamber, W. Jeong, R. M. Waymouth, R. C. Pratt, B. G. Lohmeijer et al., Organocatalytic ring-opening polymerization, Chem. Rev, vol.107, pp.5813-5840, 2007.

A. Albertsson and I. K. Varma, Recent developments in ring opening polymerization of lactones for biomedical applications, Biomacromolecules, vol.4, pp.1466-1486, 2003.

R. T. Mayadunne, J. Jeffery, G. Moad, and E. Rizzardo, Living free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization): approaches to star polymers, Macromolecules, vol.36, pp.1505-1513, 2003.
DOI : 10.1021/ma021219w

C. L. Mccormick and A. B. Lowe, Aqueous RAFT polymerization: recent developments in synthesis of functional water-soluble (co) polymers with controlled structures, Acc. Chem. Res, vol.37, pp.312-325, 2004.

S. Louguet, B. Rousseau, R. Epherre, N. Guidolin, G. Goglio et al., Thermoresponsive polymer brush-functionalized magnetic manganite nanoparticles for remotely triggered drug release, Polym. Chem, vol.3, pp.1408-1417, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00817216

N. ?. Kne?evi?, E. Ruiz-hernández, W. E. Hennink, and M. Vallet-regí, Magnetic mesoporous silicabased core/shell nanoparticles for biomedical applications, RSC Adv, vol.3, pp.9584-9593, 2013.

C. Liu, J. Guo, W. Yang, J. Hu, C. Wang et al., Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release, J. Mater. Chem, vol.19, pp.4764-4770, 2009.

E. Guisasola, A. Baeza, M. Talelli, D. Arcos, and M. Vallet-regí, Design of thermoresponsive polymeric gates with opposite controlled release behaviors, RSC Adv, vol.6, pp.42510-42516, 2016.

J. Rubio-retama, N. E. Zafeiropoulos, C. Serafinelli, R. Rojas-reyna, B. Voit et al., Synthesis and characterization of thermosensitive PNIPAM microgels covered with superparamagnetic ?-Fe2O3 nanoparticles, Langmuir, vol.23, pp.10280-10285, 2007.

, Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes, Biomicrofluidics, vol.9, p.54113, 2015.

M. B. Yatvin, J. N. Weinstein, W. H. Dennis, and R. Blumenthal, Design of liposomes for enhanced local release of drugs by hyperthermia, Science, vol.202, pp.1290-1293, 1978.

J. N. Weinstein, R. L. Magin, M. B. Yatvin, and D. S. Zaharko, Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors, Science, vol.204, pp.188-191, 1979.

K. Maruyama, S. Unezaki, N. Takahashi, and M. Iwatsuru, Enhanced delivery of doxorubicin to tumor by long-circulating thermosensitive liposomes and local hyperthermia, Biochim. Biophys. Acta BBA-Biomembr, vol.1149, pp.209-216, 1993.

D. Needham and M. W. Dewhirst, The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors, Adv. Drug Deliv. Rev, vol.53, pp.285-305, 2001.

L. H. Lindner, M. E. Eichhorn, H. Eibl, N. Teichert, M. Schmitt-sody et al., Novel temperature-sensitive liposomes with prolonged circulation time, Clin. Cancer Res, vol.10, pp.2168-2178, 2004.

Q. Chen, A. Krol, A. Wright, D. Needham, M. W. Dewhirst et al., Tumor microvascular permeability is a key determinant for antivascular effects of doxorubicin encapsulated in a temperature sensitive liposome, Int. J. Hyperthermia, vol.24, pp.475-482, 2008.

T. M. Zagar, Z. Vujaskovic, S. Formenti, H. Rugo, F. Muggia et al., Diederich, others, Two phase I dose-escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (LTLD) and mild local hyperthermia in heavily pretreated patients with local regionally recurrent breast cancer, Int. J. Hyperthermia, vol.30, pp.285-294, 2014.

C. Sanson, O. Diou, J. Thévenot, E. Ibarboure, A. Soum et al., Doxorubicin Loaded Magnetic Polymersomes: Theranostic Nanocarriers for MR Imaging and Magneto-Chemotherapy, ACS Nano, vol.5, pp.1122-1140, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00567258

H. Oliveira, E. Pérez-andrés, J. Thevenot, O. Sandre, E. Berra et al., Magnetic field triggered drug release from polymersomes for cancer therapeutics, J. Controlled Release, vol.169, pp.165-170, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00926568

S. Hu, S. Chen, and X. Gao, Multifunctional Nanocapsules for Simultaneous Encapsulation of Hydrophilic and Hydrophobic Compounds and On-Demand Release, ACS Nano, vol.6, pp.2558-2565, 2012.

W. Chiang, C. Ke, Z. Liao, S. Chen, F. Chen et al., Pulsatile Drug Release from PLGA Hollow Microspheres by Controlling the Permeability of Their Walls with a Magnetic Field, Small, vol.8, pp.3584-3588, 2012.

S. D. Kong, M. Sartor, C. J. Hu, W. Zhang, L. Zhang et al., Magnetic field activated lipidpolymer hybrid nanoparticles for stimuli-responsive drug release, Acta Biomater, vol.9, pp.5447-5452, 2013.

A. M. Derfus, G. Von-maltzahn, T. J. Harris, T. Duza, K. S. Vecchio et al., Remotely Triggered Release from Magnetic Nanoparticles, Adv. Mater, vol.19, pp.3932-3936, 2007.

E. Ruiz-hernandez, A. Baeza, and M. Vallet-regí, Smart drug delivery through DNA/magnetic nanoparticle gates, ACS Nano, vol.5, pp.1259-1266, 2011.

M. Banchelli, S. Nappini, C. Montis, M. Bonini, P. Canton et al., Magnetic nanoparticle clusters as actuators of ssDNA release, Phys. Chem. Chem. Phys, vol.16, pp.10023-10031, 2014.

J. T. Dias, M. Moros, P. Pino, S. Rivera, V. Grazú et al., DNA as a molecular local thermal probe for the analysis of magnetic hyperthermia, Angew. Chem, vol.125, pp.11740-11743, 2013.

C. R. Thomas, D. P. Ferris, J. Lee, E. Choi, M. H. Cho et al., Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles, J. Am. Chem. Soc, vol.132, pp.10623-10625, 2010.

A. Riedinger, P. Guardia, A. Curcio, M. A. Garcia, R. Cingolani et al., Subnanometer local temperature probing and remotely controlled drug release based on azofunctionalized iron oxide nanoparticles, Nano Lett, vol.13, pp.2399-2406, 2013.

P. Saint-cricq, S. Deshayes, J. I. Zink, and A. M. Kasko, Magnetic field activated drug delivery using thermodegradable azo-functionalised PEG-coated core-shell mesoporous silica nanoparticles, Nanoscale, vol.7, pp.13168-13172, 2015.

T. T. N'guyen, H. T. Duong, J. Basuki, V. Montembault, S. Pascual et al., Davis, others, Functional Iron Oxide Magnetic Nanoparticles with Hyperthermia-Induced Drug Release Ability by Using a Combination of Orthogonal Click Reactions, Angew. Chem. Int. Ed, vol.52, pp.14152-14156, 2013.

S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama et al., Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods, Langmuir, vol.27, pp.14621-14626, 2011.

, Functionalized Nanoparticles for Magnetically-Guided, Heat-Induced Drug Delivery (12087) | Flintbox, 2016.

J. Liu, C. Detrembleur, A. Debuigne, M. De-pauw-gillet, S. Mornet et al., Poly (acrylic acid)-block-poly (vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release, Nanoscale, vol.5, pp.11464-11477, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00921276

T. J. Daou, J. M. Grenèche, G. Pourroy, S. Buathong, A. Derory et al., Coupling Agent Effect on Magnetic Properties of Functionalized Magnetite-Based Nanoparticles, Chem. Mater, vol.20, pp.5869-5875, 2008.

T. J. Daou, G. Pourroy, J. M. Greneche, A. Bertin, D. Felder-flesch et al., Water soluble dendronized iron oxide nanoparticles, pp.4442-4449, 2009.

M. Liong, H. Shao, J. B. Haun, H. Lee, and R. Weissleder, Carboxymethylated polyvinyl alcohol stabilizes doped ferrofluids for biological applications, Adv. Mater, vol.22, pp.5168-5172, 2010.

R. D. Palma, S. Peeters, M. J. Van-bael, H. Van-den-rul, K. Bonroy et al., Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible, Chem. Mater, vol.19, pp.1821-1831, 2007.

G. Hemery, E. Garanger, S. Lecommandoux, A. D. Wong, E. R. Gillies et al., Thermosensitive polymer-grafted iron oxide nanoparticles studied by in situ dynamic light backscattering under magnetic hyperthermia, J. Phys. Appl. Phys, vol.48, p.494001, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01361281

A. Hervault, A. E. Dunn, M. Lim, C. Boyer, D. Mott et al., Doxorubicin loaded dual pH-and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications, Nanoscale, 2016.

X. Wang, D. Mertz, C. Blanco-andujar, A. Bora, M. Ménard et al., Optimizing the silanization of thermally-decomposed iron oxide nanoparticles for efficient aqueous phase transfer and MRI applications, RSC Adv, vol.6, pp.93784-93793, 2016.

T. Lam, P. K. Avti, P. Pouliot, J. Tardif, É. Rhéaume et al., Surface engineering of SPIONs: role of phosphonate ligand multivalency in tailoring their efficacy, Nanotechnology, vol.27, p.415602, 2016.

C. Ghobril, G. Popa, A. Parat, C. Billotey, J. Taleb et al., A bisphosphonate tweezers and clickable PEGylated PAMAM dendrons for the preparation of functional iron oxide nanoparticles displaying renal and hepatobiliary elimination, Chem. Commun, vol.49, pp.9158-9160, 2013.

T. Blin, A. Kakinen, E. H. Pilkington, A. Ivask, F. Ding et al., Synthesis and in vitro properties of iron oxide nanoparticles grafted with brushed phosphorylcholine and polyethylene glycol, Polym. Chem, vol.7, pp.1931-1944, 2016.

R. Barbey, L. Lavanant, D. Paripovic, N. Schüwer, C. Sugnaux et al., Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications, Chem. Rev, vol.109, pp.5437-5527, 2009.

D. Mertz, C. J. Ochs, Z. Zhu, L. Lee, S. N. Guntari et al., Qiao, others, ATRP-mediated continuous assembly of polymers for the preparation of nanoscale films, Chem. Commun, vol.47, pp.12601-12603, 2011.

T. K. Goh, S. N. Guntari, C. J. Ochs, A. Blencowe, D. Mertz et al., Nanoengineered Films via Surface-Confined Continuous Assembly of Polymers, vol.7, pp.2863-2867, 2011.

J. O. Zoppe, N. C. Ataman, P. Mocny, J. Wang, J. Moraes et al., Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes, Chem. Rev, vol.117, pp.1105-1318, 2017.

A. Yao, Q. Chen, F. Ai, D. Wang, and W. Huang, Preparation and characterization of temperatureresponsive magnetic composite particles for multi-modal cancer therapy, J. Mater. Sci. Mater. Med, vol.22, p.2239, 2011.

M. Rahimi, A. Wadajkar, K. Subramanian, M. Yousef, W. Cui et al., In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery, Nanomedicine Nanotechnol. Biol. Med, vol.6, pp.672-680, 2010.

L. Zhu, Z. Huo, L. Wang, X. Tong, Y. Xiao et al., Targeted delivery of methotrexate to skeletal muscular tissue by thermosensitive magnetoliposomes, Int. J. Pharm, vol.370, pp.136-143, 2009.

G. Béalle, R. Di-corato, J. Kolosnjaj-tabi, V. Dupuis, O. Clément et al., Ultra magnetic liposomes for MR imaging, targeting, and hyperthermia, Langmuir, vol.28, pp.11834-11842, 2012.

R. Di-corato, G. Béalle, J. Kolosnjaj-tabi, A. Espinosa, O. Clement et al., Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes, ACS Nano, vol.9, pp.2904-2916, 2015.

M. Martina, J. Fortin, C. Ménager, O. Clément, G. Barratt et al., Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging, J. Am. Chem. Soc, vol.127, pp.10676-10685, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00162333

P. Pradhan, J. Giri, F. Rieken, C. Koch, O. Mykhaylyk et al., Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy, J. Controlled Release, vol.142, pp.108-121, 2010.

Y. Chen, A. Bose, and G. D. Bothun, Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating, ACS Nano, vol.4, pp.3215-3221, 2010.

K. Katagiri, Y. Imai, K. Koumoto, T. Kaiden, K. Kono et al., Magnetoresponsive OnDemand Release of Hybrid Liposomes Formed from Fe3O4 Nanoparticles and Thermosensitive Block Copolymers, Small, vol.7, pp.1683-1689, 2011.

E. Amstad, J. Kohlbrecher, E. Müller, T. Schweizer, M. Textor et al., Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes, Nano Lett, vol.11, pp.1664-1670, 2011.

S. Nappini, M. Bonini, F. Ridi, and P. Baglioni, Structure and permeability of magnetoliposomes loaded with hydrophobic magnetic nanoparticles in the presence of a low frequency magnetic field, Soft Matter, vol.7, pp.4801-4811, 2011.

G. Haran, R. Cohen, L. K. Bar, and Y. Barenholz, Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases, Biochim. Biophys. Acta BBA-Biomembr, vol.1151, issue.93, pp.90105-90114, 1993.

P. M. Peiris, L. Bauer, R. Toy, E. Tran, J. Pansky et al., Enhanced Delivery of Chemotherapy to Tumors Using a Multicomponent Nanochain with Radio-Frequency-Tunable Drug Release, ACS Nano, vol.6, pp.4157-4168, 2012.

W. Chiang, W. Huang, C. Chang, M. Shen, Z. Shih et al., Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging, J. Controlled Release, vol.168, pp.280-288, 2013.

T. Liu, K. Liu, D. Liu, S. Chen, and I. Chen, Temperature-Sensitive Nanocapsules for Controlled Drug Release Caused by Magnetically Triggered Structural Disruption, Adv. Funct. Mater, vol.19, pp.616-623, 2009.

M. B. Bannwarth, S. Ebert, M. Lauck, U. Ziener, S. Tomcin et al., Tailor-Made Nanocontainers for Combined Magnetic-Field-Induced Release and MRI, Macromol. Biosci, vol.14, pp.1205-1214, 2014.

S. Hu, C. Tsai, C. Liao, D. Liu, and S. Chen, Controlled rupture of magnetic polyelectrolyte microcapsules for drug delivery, Langmuir, vol.24, pp.11811-11818, 2008.

A. Z. Abbasi, L. Gutiérrez, L. L. Del-mercato, F. Herranz, O. Chubykalo-fesenko et al., A. Hernando, others, Magnetic capsules for NMR imaging: effect of magnetic nanoparticles spatial distribution and aggregation, J. Phys. Chem. C, vol.115, pp.6257-6264, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01563614

K. Katagiri, M. Nakamura, and K. Koumoto, Magnetoresponsive smart capsules formed with polyelectrolytes, lipid bilayers and magnetic nanoparticles, ACS Appl. Mater. Interfaces, vol.2, pp.768-773, 2010.

M. Nakamura, K. Katagiri, and K. Koumoto, Preparation of hybrid hollow capsules formed with Fe 3 O 4 and polyelectrolytes via the layer-by-layer assembly and the aqueous solution process, J. Colloid Interface Sci, vol.341, pp.64-68, 2010.

A. N. Zelikin, J. F. Quinn, and F. Caruso, Disulfide cross-linked polymer capsules: en route to biodeconstructible systems, Biomacromolecules, issue.7, pp.27-30, 2006.

G. K. Such, E. Tjipto, A. Postma, A. P. Johnston, and F. Caruso, Ultrathin, responsive polymer click capsules, Nano Lett, vol.7, pp.1706-1710, 2007.

J. Cui, Y. Yan, G. K. Such, K. Liang, C. J. Ochs et al., Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules, Biomacromolecules, vol.13, pp.2225-2228, 2012.

D. Mertz, P. Tan, Y. Wang, T. K. Goh, A. Blencowe et al., Bromoisobutyramide as an Intermolecular Surface Binder for the Preparation of Free-standing Biopolymer Assemblies, Adv. Mater, vol.23, pp.5668-5673, 2011.

D. Mertz, H. Wu, J. S. Wong, J. Cui, P. Tan et al., Ultrathin, bioresponsive and drugfunctionalized protein capsules, J. Mater. Chem, vol.22, pp.21434-21442, 2012.

D. Mertz, J. Cui, Y. Yan, G. Devlin, C. Chaubaroux et al., Blencowe, others, Protein capsules assembled via isobutyramide grafts: sequential growth, biofunctionalization, and cellular uptake, ACS Nano, vol.6, pp.7584-7594, 2012.

D. Mertz, C. Affolter-zbaraszczuk, J. Barthès, J. Cui, F. Caruso et al., Templated assembly of albumin-based nanoparticles for simultaneous gene silencing and magnetic resonance imaging, Nanoscale, vol.6, pp.11676-11680, 2014.

K. Kataoka, T. Matsumoto, M. Yokoyama, T. Okano, Y. Sakurai et al., Doxorubicin-loaded poly (ethylene glycol)-poly (?-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance, J. Controlled Release, vol.64, pp.143-153, 2000.

F. Kohori, K. Sakai, T. Aoyagi, M. Yokoyama, Y. Sakurai et al., Preparation and characterization of thermally responsive block copolymer micelles comprising poly (Nisopropylacrylamide-b-DL-lactide), J. Controlled Release, vol.55, pp.87-98, 1998.

J. E. Chung, M. Yokoyama, M. Yamato, T. Aoyagi, Y. Sakurai et al., Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly (Nisopropylacrylamide) and poly (butylmethacrylate), J. Controlled Release, vol.62, pp.115-127, 1999.

F. Kohori, K. Sakai, T. Aoyagi, M. Yokoyama, M. Yamato et al., Control of adriamycin cytotoxic activity using thermally responsive polymeric micelles composed of poly (N-isopropylacrylamide-co-N, N-dimethylacrylamide)-b-poly (D, L-lactide), vol.16, pp.195-205, 1999.

D. Neradovic, O. Soga, C. F. Van-nostrum, and W. E. Hennink, The effect of the processing and formulation parameters on the size of nanoparticles based on block copolymers of poly (ethylene glycol) and poly (N-isopropylacrylamide) with and without hydrolytically sensitive groups, Biomaterials, vol.25, pp.2409-2418, 2004.

H. Ai, C. Flask, B. Weinberg, X. Shuai, M. D. Pagel et al., MagnetiteLoaded Polymeric Micelles as Ultrasensitive Magnetic-Resonance Probes, Adv. Mater, vol.17, pp.1949-1952, 2005.

S. Lecommandoux, O. Sandre, F. Chécot, J. Rodriguez-hernandez, and R. Perzynski, Magnetic nanocomposite micelles and vesicles, vol.17, pp.712-718, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00392707

W. Agut, D. Taton, A. Brûlet, O. Sandre, and S. Lecommandoux, Depletion induced vesicle-to-micelle transition from self-assembled rod-coil diblock copolymers with spherical magnetic nanoparticles, Soft Matter, vol.7, pp.9744-9750, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00668996

C. Barbe, J. Bartlett, L. Kong, K. Finnie, H. Q. Lin et al., Silica particles: a novel drug-delivery system, Adv. Mater, vol.16, pp.1959-1966, 2004.

S. Hu, T. Liu, H. Huang, D. Liu, and S. Chen, Magnetic-sensitive silica nanospheres for controlled drug release, Langmuir, vol.24, pp.239-244, 2008.

S. Hu, S. Chen, D. Liu, and C. Hsiao, Core/Single-Crystal-Shell Nanospheres for Controlled Drug Release via a Magnetically Triggered Rupturing Mechanism, Adv. Mater, vol.20, pp.2690-2695, 2008.

Z. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart, and J. I. Zink, Mesoporous silica nanoparticles in biomedical applications, Chem. Soc. Rev, vol.41, pp.2590-2605, 2012.

P. Yang, S. Gai, and J. Lin, Functionalized mesoporous silica materials for controlled drug delivery, Chem. Soc. Rev, vol.41, pp.3679-3698, 2012.

F. Tang, L. Li, and D. Chen, Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery, Adv. Mater, vol.24, pp.1504-1534, 2012.

Y. Wang and H. Gu, Core-Shell-Type Magnetic Mesoporous Silica Nanocomposites for Bioimaging and Therapeutic Agent Delivery, Adv. Mater, vol.27, pp.576-585, 2015.

J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim et al., Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery, Angew. Chem. Int. Ed, vol.47, pp.8438-8441, 2008.

F. Ye, S. Laurent, A. Fornara, L. Astolfi, J. Qin et al., Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T2 contrast agent with tunable proton relaxivities, Contrast Media Mol. Imaging, vol.7, pp.460-468, 2012.
DOI : 10.1002/cmmi.1473

URL : http://europepmc.org/articles/pmc4530524?pdf=render

J. Shen, Q. He, Y. Gao, J. Shi, and Y. Li, Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism, Nanoscale, vol.3, pp.4314-4322, 2011.
DOI : 10.1039/c1nr10580a

J. Liu, C. Detrembleur, M. De-pauw-gillet, S. Mornet, L. Vander-elst et al., Heat-triggered drug release systems based on mesoporous silica nanoparticles filled with a maghemite core and phase-change molecules as gatekeepers, J. Mater. Chem. B, vol.2, pp.59-70, 2014.
DOI : 10.1039/c3tb21229g

URL : https://hal.archives-ouvertes.fr/hal-00923633

J. Lu, M. Liong, J. I. Zink, and F. Tamanoi, Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs, Small, vol.3, pp.1341-1346, 2007.
DOI : 10.1002/smll.200700005

M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm et al., Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery, vol.2, pp.889-896, 2008.

L. Yuan, Q. Tang, D. Yang, J. Z. Zhang, F. Zhang et al., Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery, J. Phys. Chem. C, vol.115, pp.9926-9932, 2011.

N. ?. Kne?evi?, I. I. Slowing, and V. S. Lin, Tuning the release of anticancer drugs from magnetic iron oxide/mesoporous silica core/shell nanoparticles, ChemPlusChem, vol.77, pp.48-55, 2012.

U. Bhardwaj and D. J. Burgess, A novel USP apparatus 4 based release testing method for dispersed systems, Int. J. Pharm, vol.388, pp.287-294, 2010.
DOI : 10.1016/j.ijpharm.2010.01.009

P. Costa and J. M. Lobo, Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci, vol.13, pp.123-133, 2001.
DOI : 10.1016/s0928-0987(01)00095-1

H. Kakwere, M. P. Leal, M. E. Materia, A. Curcio, P. Guardia et al., Functionalization of strongly interacting magnetic nanocubes with (thermo) responsive coating and their application in hyperthermia and heat-triggered drug delivery, ACS Appl. Mater. Interfaces, vol.7, pp.10132-10145, 2015.

N. Griffete, J. Fresnais, A. Espinosa, C. Wilhelm, A. Bée et al., Design of magnetic molecularly imprinted polymer nanoparticles for controlled release of doxorubicin under an alternative magnetic field in athermal conditions, Nanoscale, vol.7, pp.18891-18896, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01229896

D. Yoo, H. Jeong, S. Noh, J. Lee, and J. Cheon, Magnetically Triggered Dual Functional Nanoparticles for Resistance-Free Apoptotic Hyperthermia, Angew. Chem. Int. Ed, vol.52, pp.13047-13051, 2013.
DOI : 10.1002/ange.201306557

T. Li, C. Huang, P. Ruan, K. Chuang, K. Huang et al., In vivo anticancer efficacy of magnetite nanocrystal-based system using locoregional hyperthermia combined with 5-fluorouracil chemotherapy, Biomaterials, vol.34, pp.7873-7883, 2013.

Y. Xu, A. Karmakar, W. E. Heberlein, T. Mustafa, A. R. Biris et al., Multifunctional magnetic nanoparticles for synergistic enhancement of cancer treatment by combinatorial radio frequency thermolysis and drug delivery, Adv. Healthc. Mater, vol.1, pp.493-501, 2012.

M. W. Dewhirst, C. D. Landon, C. L. Hofmann, and P. R. Stauffer, Novel approaches to treatment of hepatocellular carcinoma and hepatic metastases using thermal ablation and thermosensitive liposomes, Surg. Oncol. Clin. N. Am, vol.22, pp.545-561, 2013.
DOI : 10.1016/j.soc.2013.02.009

URL : http://europepmc.org/articles/pmc3738918?pdf=render

M. Babincova, P. ?i?manec, V. Altanerova, ?. Altaner, and P. Babinec, AC-magnetic field controlled drug release from magnetoliposomes: design of a method for site-specific chemotherapy, Bioelectrochemistry, vol.55, pp.17-19, 2002.

M. D. Cuyper, M. Joniau, and M. , Eur. Biophys. J, vol.15, pp.311-319, 1988.

M. D. Cuyper and S. Valtonen, Investigation of the spontaneous transferability of a phospholipidpoly (ethylene glycol)-biotin derivative from small unilamellar phospholipid vesicles to magnetoliposomes, J. Magn. Magn. Mater, vol.225, pp.89-94, 2001.

L. D. Mayer, L. C. Tai, M. B. Bally, G. N. Mitilenes, R. S. Ginsberg et al., Characterization of liposomal systems containing doxorubicin entrapped in response to pH gradients, Biochim. Biophys. Acta BBA-Biomembr, vol.1025, pp.143-151, 1990.

J. Hanu?, M. Ullrich, J. Dohnal, M. Singh, and F. ?t?pánek, Remotely controlled diffusion from magnetic liposome microgels, Langmuir, vol.29, pp.4381-4387, 2013.

H. Guo, W. Chen, X. Sun, Y. Liu, J. Li et al., Theranostic magnetoliposomes coated by carboxymethyl dextran with controlled release by low-frequency alternating magnetic field, Carbohydr. Polym, vol.118, pp.209-217, 2015.

B. M. Discher, Y. Won, D. S. Ege, J. C. Lee, F. S. Bates et al., Polymersomes: tough vesicles made from diblock copolymers, Science, vol.284, pp.1143-1146, 1999.

H. Bermudez, A. K. Brannan, D. A. Hammer, F. S. Bates, and D. E. Discher, Molecular weight dependence of polymersome membrane structure, elasticity, and stability, Macromolecules, vol.35, pp.8203-8208, 2002.

M. Krack, H. Hohenberg, A. Kornowski, P. Lindner, H. Weller et al., Nanoparticle-loaded magnetophoretic vesicles, J. Am. Chem. Soc, vol.130, pp.7315-7320, 2008.

R. J. Hickey, A. S. Haynes, J. M. Kikkawa, and S. Park, Controlling the self-assembly structure of magnetic nanoparticles and amphiphilic block-copolymers: from micelles to vesicles, J. Am. Chem. Soc, vol.133, pp.1517-1525, 2011.

T. Ren, Q. Liu, H. Lu, H. Liu, X. Zhang et al., Multifunctional polymer vesicles for ultrasensitive magnetic resonance imaging and drug delivery, J. Mater. Chem, vol.22, pp.12329-12338, 2012.

B. Karagoz, J. Yeow, L. Esser, S. M. Prakash, R. P. Kuchel et al., An efficient and highly versatile synthetic route to prepare iron oxide nanoparticles/nanocomposites with tunable morphologies, Langmuir, vol.30, pp.10493-10502, 2014.

D. Bacinello, E. Garanger, D. Taton, K. C. Tam, and S. Lecommandoux, Tailored drug-release from multi-functional polymer-peptide hybrid vesicles, Eur. Polym. J, vol.62, pp.363-373, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01361862

L. Pourtau, H. Oliveira, J. Thevenot, Y. Wan, A. R. Brisson et al., Antibody-functionalized magnetic polymersomes: in vivo targeting and imaging of bone metastases using high resolution MRI, Adv. Healthc. Mater, vol.2, pp.1420-1424, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00926530

S. Hu, B. Liao, C. Chiang, P. Chen, I. Chen et al., Core-Shell Nanocapsules Stabilized by Single-Component Polymer and Nanoparticles for MagnetoChemotherapy/Hyperthermia with Multiple Drugs, Adv. Mater, vol.24, pp.3627-3632, 2012.

S. Carregal-romero, P. Guardia, X. Yu, R. Hartmann, T. Pellegrino et al., Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules, Nanoscale, vol.7, pp.570-576, 2015.

T. Liu, S. Hu, K. Liu, R. Shaiu, D. Liu et al., Instantaneous drug delivery of magnetic/thermally sensitive nanospheres by a high-frequency magnetic field, Langmuir, vol.24, pp.13306-13311, 2008.

H. Huang, S. Hu, C. Chian, S. Chen, H. Lai et al., Self-assembling PVA-F127 thermosensitive nanocarriers with highly sensitive magnetically-triggered drug release for epilepsy therapy in vivo, J. Mater. Chem, vol.22, pp.8566-8573, 2012.

R. Duncan, Polymer therapeutics as nanomedicines: new perspectives, Curr. Opin. Biotechnol, vol.22, pp.492-501, 2011.

R. Duncan and M. J. Vicent, Polymer therapeutics-prospects for 21st century: the end of the beginning, Adv. Drug Deliv. Rev, vol.65, pp.60-70, 2013.

L. Zhu, J. Ma, N. Jia, Y. Zhao, and H. Shen, Chitosan-coated magnetic nanoparticles as carriers of 5fluorouracil: preparation, characterization and cytotoxicity studies, Colloids Surf. B Biointerfaces, vol.68, pp.1-6, 2009.

S. Brulé, M. Levy, C. Wilhelm, D. Letourneur, F. Gazeau et al., Doxorubicin release triggered by alginate embedded magnetic nanoheaters: a combined therapy, Adv. Mater, vol.23, pp.787-790, 2011.

J. Liu, C. Detrembleur, A. Debuigne, M. De-pauw-gillet, S. Mornet et al., Glucose-, pH-and thermo-responsive nanogels crosslinked by functional superparamagnetic maghemite nanoparticles as innovative drug delivery systems, J. Mater. Chem. B, vol.2, pp.1009-1023, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00974021

A. R. Sivakumar-balasubramanian, Y. Nagaoka, S. Iwai, M. Suzuki, V. Kizhikkilot et al., Curcumin and 5-fluorouracil-loaded, folate-and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia, Int. J. Nanomedicine, vol.9, p.437, 2014.

C. Shi, C. Thum, Q. Zhang, W. Tu, B. Pelaz et al., Inhibition of the cancer-associated TASK 3 channels by magnetically induced thermal release of Tetrandrine from a polymeric drug carrier, J. Controlled Release, vol.237, pp.50-60, 2016.

H. Kim, E. Kim, S. W. Jeong, T. Ha, S. Park et al., Magnetic nanoparticle-conjugated polymeric micelles for combined hyperthermia and chemotherapy, Nanoscale, vol.7, pp.16470-16480, 2015.

D. Kim, E. A. Vitol, J. Liu, S. Balasubramanian, D. J. Gosztola et al., Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles, Langmuir, vol.29, pp.7425-7432, 2013.

S. Hu, D. Liu, W. Tung, C. Liao, and S. Chen, Surfactant-Free, Self-Assembled PVA-Iron Oxide/Silica Core-Shell Nanocarriers for Highly Sensitive, Magnetically Controlled Drug Release and Ultrahigh Cancer Cell Uptake Efficiency, Adv. Funct. Mater, vol.18, pp.2946-2955, 2008.

S. Hu, Y. Chen, T. Liu, T. Tung, D. Liu et al., Remotely nano-rupturable yolk/shell capsules for magnetically-triggered drug release, Chem. Commun, vol.47, pp.1776-1778, 2011.

A. Baeza, E. Guisasola, E. Ruiz-hernández, and M. Vallet-regí, Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles, Chem. Mater, vol.24, pp.517-524, 2012.

E. Bringas, Ö. Köysüren, D. V. Quach, M. Mahmoudi, E. Aznar et al., Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field, Chem. Commun, vol.48, pp.5647-5649, 2012.

T. Fontecave, M. Bourbousson, C. Chaneac, C. Wilhelm, A. Espinosa et al., Multifunctional core-shell hybrid nano-composites made using Pickering emulsions: a new design for therapeutic vectors, New J. Chem, vol.40, pp.4436-4446, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01492699

M. Iafisco, C. Drouet, A. Adamiano, P. Pascaud, M. Montesi et al., Superparamagnetic iron-doped nanocrystalline apatite as a delivery system for doxorubicin, J. Mater. Chem. B, vol.4, pp.57-70, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01451924

B. L. Caetano, C. Guibert, R. Fini, J. Fresnais, S. H. Pulcinelli et al., Magnetic hyperthermia-induced drug release from ureasil-PEO-?-Fe 2 O 3 nanocomposites, RSC Adv, vol.6, pp.63291-63295, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01358298

M. Yoshida, Y. Watanabe, M. Sato, T. Maehara, H. Aono et al., Feasibility of chemohyperthermia with docetaxel-embedded magnetoliposomes as minimally invasive local treatment for cancer, Int. J. Cancer, vol.126, pp.1955-1965, 2010.

L. Wang, J. Zhang, Y. An, Z. Wang, J. Liu et al., A study on the thermochemotherapy effect of nanosized As2O3/MZF thermosensitive magnetoliposomes on experimental hepatoma in vitro and in vivo, Nanotechnology, vol.22, p.315102, 2011.

J. Lee, K. Chen, S. Noh, M. A. Garcia, H. Wang et al., Cheon, others, On-demand drug release system for in vivo cancer treatment through selfassembled magnetic nanoparticles, Angew. Chem, vol.125, pp.4480-4484, 2013.

M. J. Jeon, C. Ahn, H. Kim, I. J. Chung, S. Jung et al., The intratumoral administration of ferucarbotran conjugated with doxorubicin improved therapeutic effect by magnetic hyperthermia combined with pharmacotherapy in a hepatocellular carcinoma model, J. Exp. Clin. Cancer Res, vol.33, p.1, 2014.

D. Kim, Y. Guo, Z. Zhang, D. Procissi, J. Nicolai et al., TemperatureSensitive Magnetic Drug Carriers for Concurrent Gemcitabine Chemohyperthermia, Adv. Healthc. Mater, vol.3, pp.714-724, 2014.

K. Hayashi, M. Nakamura, H. Miki, S. Ozaki, M. Abe et al., Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release, Theranostics, vol.4, p.834, 2014.