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Compositional abstraction refinement
for control synthesis under lasso-shaped specifications

Pierre-Jean Meyer and Dimos V. Dimarogonas

Abstract— This paper presents a compositional approach to
specification-guided abstraction refinement for control synthesis
of a nonlinear system associated with a method to over-
approximate its reachable sets. The control specification consists
in following a lasso-shaped sequence of regions of the state
space. The dynamics are decomposed into subsystems with
partial control, partial state observation and possible over-
laps between their respective observed state spaces. A finite
abstraction is created for each subsystem through a refinement
procedure, which starts from a coarse partition of the state
space and then proceeds backwards on the lasso sequence to
iteratively split the elements of the partition whose coarseness
prevents the satisfaction of the specification. The composition
of the local controllers obtained for each subsystem is proved
to enforce the desired specification on the original system. This
approach is illustrated in a nonlinear numerical example.

I. INTRODUCTION

For model checking and control synthesis problems on
continuous systems under high-level specifications, a classi-
cal approach is to abstract the continuous dynamics into a
finite transition system [26]. Although both model checking
and abstraction fields have received significant attention, the
link between them is not as straightforward as it appears: due
to over-approximations involved in the abstraction procedure,
the unsatisfaction of the specification on an abstraction can-
not be propagated to the original system. This led to the in-
troduction of an interface layer named abstraction refinement
aiming at iteratively refining an initial coarse abstraction until
the specification is satisfied on the obtained refined abstrac-
tion. This topic has been extensively studied in the context of
model checking for hardware design, thus primarily focused
on verification problems (as opposed to control synthesis)
for large but finite systems [16], [23], [17], with the most
popular approach being based on CounterExample-Guided
Abstraction Refinement (CEGAR) [8], [4], [3], [12]. Later
work then also considered control problems [13], [10] and
infinite systems [7], [6], [27], [9].

In this paper, we present a method for specification-guided
abstraction refinement for control synthesis of continuous
systems. We consider a control specification consisting in
following a lasso-shaped sequence of regions of the state
space, which can be seen as a satisfying trace of a Linear
Temporal Logic formula [2]. A coarse abstraction of the
system is then initially considered and iteratively refined in
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its elements preventing the satisfaction of this specification.
In most continuous systems, exact computation of the reach-
able sets as in [13], [27] is not possible. We thus rely on
methods to efficiently compute over-approximations of the
reachable sets (for a given finite time), using for example
polytopes [5], oriented hyper-rectangles [25], ellipsoids [15],
zonotopes [11], level sets [20] or the monotonicity prop-
erty [24], which is considered in the examples of this paper.
Other relevant works with similar objectives include: [22]
which focuses on reach-avoid-stay control specifications and
computes abstractions based on infinite-time reachability of
neighbor states; and [21] which uses sets of finite prefixes
to describe abstractions of infinite behaviors.

A novelty compared to the mentioned literature is that
we combine the abstraction refinement approach with the
compositional framework from [18], thus widening the range
of applications to systems of larger dimensions. In this work,
the global dynamics are decomposed into subsystems with
partial control and partial observation of the state (with
possible overlaps on their respective state spaces), then the
abstraction refinement is applied to each subsystem and the
obtained local controllers are combined to control the origi-
nal system. A journal version of this approach was presented
in [19] with the main differences in the current submission
being: i) the refinement algorithm considers lasso-shaped
sequences as its specification (as opposed to finite sequences
in [19]); ii) the numerical application considers a nonlinear
system (as opposed to a linear one in [19]).

The structure of this paper is as follows. The problem
is formulated in Section II. Section III describes the general
method to obtain compositional abstractions. The abstraction
refinement algorithm to be applied to each subsystem is
presented in Section IV. Then, Section V provides the main
result that the local controllers can be composed to control
the original system. Finally, a numerical illustration of this
method is presented in Section VI.

II. PROBLEM FORMULATION

A. Notations
Let N, Z+ and R be the sets of positive integers, non-

negative integers and reals, respectively. For a, b ∈ Rn, the
interval [a, b] ⊆ Rn is defined as [a, b] = {x ∈ Rn | a ≤
x ≤ b} using componentwise inequalities. In this paper, a
decomposition of a system into subsystems is considered. As
a result, both scalar and set variables are used as subscript
of other variables, sets or functions:
• lower case letters and scalars give naming information

relating a variable, set or function to the subsystem of



corresponding index (e.g. xi and ui are the state and
input of the i-th subsystem Si);

• index sets denoted by capital letters are used to represent
the projection of a variable to the dimensions contained
in this set. Alternatively, we also use the operator πI to
denote the projection on the dimensions contained in I
(e.g. for x ∈ Rn and I ⊆ {1, . . . , n}, xI = πI(x)).

B. System description

We consider a discrete-time nonlinear control system
subject to disturbances described by

x+ = f(x, u, w), (1)

with state x ∈ X ⊆ Rn, bounded control and disturbance
inputs u ∈ U ⊆ Rp and w ∈W ⊆ Rq , respectively. The one
step reachable set of (1) from a set of initial states X ⊆ X
and for a subset of control inputs U ⊆ U is defined as

RS(X ,U) = {f(x, u, w) |x ∈ X , u ∈ U , w ∈W } . (2)

Throughout this paper, we assume that we are able to
compute over-approximations RS(X ,U) of the reachable set
defined in (2):

RS(X ,U) ⊆ RS(X ,U). (3)

Several methods exist for over-approximating reachable sets
for fairly large classes of linear and nonlinear systems, see
e.g. [5], [25], [15], [11], [20], [24].

System (1) can also be described as a non-deterministic
infinite transition system S = (X,U,−→) where
• X ⊆ Rn is the set of states,
• U ⊆ Rp is the set of inputs,
• a transition x

u−→ x′, equivalently written as x′ ∈
Post(x, u), exists if x′ ∈ RS({x}, {u}).

C. Specification

We assume that the state space X ⊆ Rn is an interval of
Rn and we consider a uniform partition P of X into smaller
identical intervals. To ensure that P is a partition, all intervals
(including X) are assumed to be half-closed. In what follows,
the elements of P are called cells of the state space. In this
paper, we focus on a control objective consisting in following
a lasso-shaped path ψ = ψpref .(ψsuff )

ω composed of two
strings of cells in P : a finite prefix path ψpref , followed by
a finite suffix path ψsuff repeated infinitely often.

Problem 1: Find a controller C : X → U such that the
system S follows the infinite path ψ = ψ(0)ψ(1)ψ(2) . . . ,
i.e. for any trajectory x : Z+ → X of the controlled system,
we have x(k) ∈ ψ(k) for all k ∈ Z+.

Although considering this particular type of control objec-
tives may seem restrictive, a wider range of control problems
can actually be covered from the observation that, given a
Linear Temporal Logic formula, at least one of its satisfying
traces takes the form of a lasso-shaped path as above [2].
Solving Problem 1 then also ensures that the controlled
system satisfies the corresponding formula from which the
lasso path ψ is derived.

III. COMPOSITIONAL ABSTRACTIONS

In this paper, Problem 1 is addressed with a composi-
tional abstraction refinement approach, where the system is
decomposed into subsystems before applying an abstraction
refinement algorithm to each of them. In this section, we
first present the general method adapted from [18] to obtain
compositional abstractions.

A. System decomposition

We decompose the dynamics (1) into m ∈ N subsystems.
Let (Ic1 , . . . , I

c
m) be a partition of the state indices {1, . . . , n}

and (J1, . . . , Jm) a partition of the control input indices
{1, . . . , p}. Subsystem i ∈ {1, . . . ,m} can then be described
using the following sets of indices:
• Ici represents the state components to be controlled;
• Ii ⊇ Ici are all the state components whose dynamics

are modeled in the subsystem;
• Ioi = Ii\Ici are the state components that are only

observed but not controlled;
• Ki = {1, . . . , n}\Ii are the unobserved state compo-

nents considered as external inputs to subsystem i;
• Ji are the input components actually used for control;
• Li = {1, . . . , p}\Ji are the remaining control compo-

nents considered as external inputs to subsystem i.
The role of all the index sets above can be summarized
as follows: for subsystem i ∈ {1, . . . ,m}, we model the
states xIi = (xIc

i
, xIo

i
) where xIc

i
are to be controlled using

the inputs uJi
and xIo

i
are only observed to increase the

precision of the subsystem while xKi
and uLi

are considered
as external disturbances. It is important to note that the
subsystems may share common modeled state components
(i.e. the sets Ii may overlap), though the sets of controlled
state components Ici and modeled control input components
Ji are assumed to be disjoints for two subsystems.

B. Subsystem’s abstraction

For each subsystem i ∈ {1, . . . ,m}, we want to create
a finite abstraction Si of the original system S, which
models only the state and input components xIi and uJi

,
respectively. Si will then be used to synthesize a local
controller focusing on the satisfaction of the specification
for the controlled state components xIc

i
using the modeled

control inputs uJi
. The general structure of the abstraction

Si = (Xi, Ui,−→
i
) is as follows.

• Xi is a partition of πIi(X) into a finite set of intervals
called symbols. It is initially taken equal to πIi(P ) and
will then be refined in Section IV.

• Ui is a finite subset of the projected control set πJi
(U).

• A transition si
ui−→
i

s′i, equivalently written as s′i ∈
Posti(si, ui), exists if s′i ∩ πIi(RSAG2

i (si, ui)) 6= ∅.
The set RSAG2

i (si, ui) ⊆ X represents an over-
approximation of the reachable set of (1) based on the partial
knowledge available to subsystem i. The remaining of this
section describes how this set is obtained.

The unmodeled inputs uLi
are known to be bounded in

πLi
(U). We also know that other subsystems will synthesize



controllers satisfying the specification for the unobserved and
uncontrolled state components (xKi and xIo

i
, respectively)

of subsystem i. This is formalized by the following assume-
guarantee obligations [14], which are assumptions that are
taken internally in each subsystem but do not imply any
additional constraints on the overall approach: the control
synthesis achieved in each subsystem is exploited to guaran-
tee that the obligations on other subsystems hold.

A/G Obligation 1: For all x ∈ X , i ∈ {1, . . . ,m} and
k ∈ Z+, if xIi ∈ πIi(ψ(k)), then xKi

∈ πKi
(ψ(k)).

A/G Obligation 2: For all i ∈ {1, . . . ,m}, si ∈ Xi and
k ∈ Z+, if si ⊆ πIi(ψ(k)), then for all ui ∈ Ui we have
πIo

i
(RSAG2

i (si, ui)) ⊆ πIo
i
(ψ(k + 1)).

Intuitively, if the state of subsystem i is in the projection
πIi(ψ(k)) of some cell ψ(k) ∈ P , then the unobserved states
xKi

also start from the projection πKi
(ψ(k)) of this cell

(A/G Obligation 1) and the uncontrolled states xIo
i

will reach
the next step πIo

i
(ψ(k + 1)) of ψ (A/G Obligation 2).

Given a symbol si ∈ Xi of Si with si ⊆ πIi(ψ(k)) and
a control value ui ∈ Ui, the set RSAG2

i (si, ui) ⊆ X is
obtained in the following two steps. We first compute an
intermediate set RSAG1

i (si, ui) ⊆ X using A/G Obligation 1
and the operator RS in (3) as follows,

RSAG1
i (si, ui) = RS(ψ(k)∩π−1Ii

(si), U∩π−1Ji
({ui})), (4)

resulting in a larger over-approximation of the reachable
set (2) where the unobserved variables xKi and uLi are
considered as bounded disturbances: given s ⊆ X such that
s ⊆ ψ(k) and a control input u ∈ U , (2), (3) and (4) give

RS(s, {u}) ⊆ RS(s, {u}) ⊆ RSAG1
i (πIi(s), πJi

(u)). (5)

Next, RSAG1
i (si, ui) is updated into RSAG2

i (si, ui) using
A/G Obligation 2:

RSAG2
i (si, ui) = RSAG1

i (si, ui)∩π−1Io
i
(πIo

i
(ψ(k+1))). (6)

The set RSAG2
i is thus the same set as the over-

approximation RSAG1
i , but without the states that violate the

specification on the uncontrolled state dimensions Ioi , since
they are known to be controlled by other subsystems. The
particular case where RSAG2

i = ∅ means that despite the
best control actions from other subsystems, the state of the
system will always be driven out of the targeted cell ψ(k+1).

IV. REFINEMENT ALGORITHM

For each subsystem i ∈ {1, . . . ,m}, starting from the
coarsest abstraction corresponding to the initial partition
Xi = πIi(P ), the abstraction refinement method presented
in this section aims at iteratively identifying elements of this
abstraction preventing the satisfaction of the specification
ψ for subsystem i and refining these elements to obtain a
more precise abstraction. The advantages of this specification
guided approach are thus to automatically refine the state
partition if the specification is not initially satisfied and to
avoid the computation of the whole abstraction when only a
small part is actually relevant to the specification.

Assumption 2: ψ = ψ(0)ψ(1) . . . ψ(r) for some r ∈ N.
For any k, l ∈ {0, . . . , r} such that k 6= l and for any
subsystem i ∈ {1, . . . ,m} we have πIi(ψ(k)) 6= πIi(ψ(l)).

For clarity of notations, this approach is presented in
Algorithm 1 in the particular case of Assumption 2 where
the desired lasso-shaped path ψ = ψpref .(ψsuff )

ω is finite
(i.e. ψsuff = ∅) and for each subsystem it does not visit the
same cell twice. The straightforward modifications required
to cover the general case without Assumption 2 are provided
at the end of this section.

Input: Partition P of X , discrete control set Ui,
Input: Cell sequence ψ = ψ(0) . . . ψ(r) ∈ P r+1,
Input: Partition projection Pi : P → 2Xi such that

Pi(σ) = {si ∈ Xi | si ⊆ πIi(σ)}.
Initialization: Xi = πIi(P ), V

r
i = {πIi(ψ(r))},

V r
iX = πIi(ψ(r)), Queue = ∅.

for k from r − 1 to 0 do
{V k

i , V
k
iX , Ci} = ValidSets (k, V k+1

iX )
Queue = AddToQueue (ψ(k))
while V k

i = ∅ do
ψ(j) = FirstInQueue (Queue)
forall si ∈ Pi(ψ(j))\V j

i do Xi = Split (si);
for l from j to k do
{V l

i , V
l
iX , Ci} = ValidSets (l, V l+1

iX )

return {Xi,
⋃r−1

k=0 V
k
i ⊆ Xi, Ci :

⋃r−1
k=0 V

k
i → Ui}

Algorithm 1: Refinement algorithm for subsystem i.

a) Inputs: Algorithm 1 is provided with the initial
partition P of the state space X , a finite set Ui of control
values for subsystem i as in Section III-B, the finite sequence
of cells ψ(0) . . . ψ(r) ∈ P r+1 defining the specification
ψ from Section II-C as in Assumption 2 and an operator
Pi : P → 2Xi giving the set of all symbols si ∈ Xi

included in the projection πIi(σ) of each cell σ ∈ P . For
each cell ψ(k) in the sequence ψ = ψ(0) . . . ψ(r) the goal
is to compute the subset V k

i ⊆ Pi(ψ(k)) of symbols that
are valid with respect to the specification ψ, i.e., that can
be controlled such that all successors are valid symbols of
the next cell ψ(k + 1). The set V k

iX then corresponds to the
projection of V k

i on the continuous state space πIi(X).
b) Initialization: The set of symbols Xi is initially

taken as the coarsest partition of the state space πIi(X)
(i.e. πIi(P )) and will be refined during the algorithm when
unsatisfaction of ψ is detected. We proceed backward on the
finite sequence ψ = ψ(0) . . . ψ(r) and thus take the final
cell ψ(r) as fully valid: V r

i = Pi(ψ(r)) = {πIi(ψ(r))}
and V r

iX = πIi(ψ(r)). We also initialize a priority queue
(Queue = ∅) which will be used to determine which cell of
P is to be refined at the next iteration of the algorithm.

c) External functions: Algorithm 1 calls four external
functions. The function ValidSets looks for the valid
symbols and their associated control inputs for a particular
step of the specification sequence. This function is detailed
in Algorithm 2 and explained in the next paragraph. Func-



tions AddToQueue and FirstInQueue deal with the
management of the priority queue and Split represents
the refinement of the partition. Although these 3 functions
offer significant degrees of freedom towards maximizing
the efficiency of the algorithm, this optimization problem is
beyond the scope of this paper and is left as future research.

Input: P , Ui, ψ and Pi from Input to Algorithm 1,
Input: Index k ∈ {0, . . . , r− 1} of considered cell ψ(k)
Input: Next cell’s valid set V k+1

iX .
V k
i = {si ∈ Pi(ψ(k)) | ∃ui ∈ Ui such that

∅ 6= πIi(RS
AG2
i (si, ui)) ⊆ V k+1

iX

}
V k
iX =

{
xi ∈ πIi(X)

∣∣ ∃si ∈ V k
i such that xi ∈ si

}
∀si ∈ V k

i , Ci(si) is chosen in{
ui ∈ Ui

∣∣ ∅ 6= πIi(RS
AG2
i (si, ui)) ⊆ V k+1

iX

}
return {V k

i , V
k
iX , Ci}

Algorithm 2: ValidSets. Computes the valid sets and
controller for subsystem i at step k of the specification ψ.

d) Valid sets: In the main loop of Algorithm 1, as-
suming we have previously found non-empty valid sets
(V k+1

i , . . . , V r
i ), we call the function ValidSets for step

k of the specification as in Algorithm 2. This function
first computes the valid set V k

i for step k by looking for
the symbols in Pi(ψ(k)) for which the over-approximation
RSAG2

i of the reachable set is both non-empty and contained
in the valid set V k+1

iX of the next cell ψ(k+1) for at least one
value of the discrete control input. Note that in this particular
call where the cell ψ(k) is visited for the first time, Pi(ψ(k))
contains a single element: πIi(ψ(k)). The set V k

iX is taken as
the projection of V k

i on the continuous state space πIi(X).
Then, the controller Ci associates each valid symbol in V k

i to
the first of such satisfying control values that has been found.
Algorithm 2 finally outputs V k

i , V k
iX and Ci to Algorithm 1.

Since the cell ψ(k) is considered here for the first time, we
add it to the priority queue with the function AddToQueue.

e) Refinement and update: If the valid set V k
i is empty,

we select (with function FirstInQueue) the first cell
ψ(j) of the priority queue and refine it. The refinement is
achieved by the function Split and consists in uniformly
splitting all the invalid symbols of Pi(ψ(j)) into a number
of identical subsymbols (e.g. 2 in each state dimension in
Ii). After this, we need to update the valid sets V j

i and
V j
iX and controller Ci for the refined cell ψ(j) using the
ValidSets function. The possibly larger valid set V j

iX

obtained after this refinement can then induce a larger valid
set at step j − 1, which in turns influences the following
steps. The refinement and update of the valid set at step j thus
requires an update (using function ValidSets) for all other
cells from ψ(j − 1) to ψ(k). The refined cell ψ(j) can then
be moved to any other position in the priority queue (here
assumed to be handled by the function FirstInQueue)
and these steps are repeated until V k

i 6= ∅.
f) Outputs: The algorithm provides three outputs. The

first one is the refined partition Xi for subsystem i. The
second one gathers the sets V k

i ⊆ Pi(ψ(k)) ⊆ Xi of valid

symbols for all k ∈ {0, . . . , r−1}. Finally, the controller Ci

associates a unique control value (since we stop looking as
soon as a satisfying control is found) to each valid symbol.

g) General case: The general case without Assump-
tion 2 can be covered by modifying Algorithm 1 as follows.
For duplicated cells πIi(ψ(k)) = πIi(ψ(l)) with k 6= l, we
need a controller Ci : Xi×{0, . . . , r} → Ui which now also
depends on the current position k ∈ {0, . . . , r} in ψ in order
to know which next cell ψ(k + 1) should be targeted.

When ψ = ψpref .(ψsuff )
ω is a lasso path with non-

empty suffix ψsuff = ψ(r + 1) . . . ψ(f), Algorithm 1 is
first called on ψsuff . This call is then repeated with the new
initialization [V f

i , V
f
iX , Ci] = ValidSets(f, V r+1

iX ) (i.e. the
last suffix cell ψ(f) must be driven towards the first suffix
cell ψsuff (r + 1)) until further calls of the ValidSets
function have no more influence on the sets V k

i for k ∈
{r + 1, . . . , f}. In this loop, the valid set of a refined suffix
cell ψ(k) needs to be reset to fully valid (V k

i = Pi(ψ(k)))
to avoid propagation of empty valid sets. A final call of
Algorithm 1 is then done for ψpref with the initialization
[V r

i , V
r
iX , Ci] = ValidSets(r, V r+1

iX ) (i.e. the last prefix cell
ψ(r) must be driven towards the first suffix cell ψ(r + 1)).

V. COMPOSITION

Algorithm 1 in Section IV is applied to each subsystem
i ∈ {1, . . . ,m} separately. In this section, we then show
that combining the controllers Ci of all subsystems results
in a global controller solving Problem 1 by ensuring that the
original system S follows the lasso-shaped sequence ψ.

A. Operator for partition composition

Due to the possible overlap of the state space dimensions
for two subsystems and the fact that the refined partitions
do not necessarily match on these common dimensions, we
first need to define an operator for the composition of sets
of symbols (either the refined partition Xi or the valid sets
V k
i obtained in Algorithm 1).
Given two refined sets Xi and Xj as obtained in Sec-

tion IV, we first introduce an intermediate operator u:

Xi uXj =

{
s ∈ πIi∪Ij (2X)

∣∣∣∣ ∃si ∈ Xi, πIi(s) ⊆ si,
∃sj ∈ Xj , πIj (s) ⊆ sj

}
,

followed by the main composition operator e defined as:

XieXj = XiuXj\{s ∈ XiuXj | ∃s′ ∈ XiuXj , s  s′}.

Intuitively, we first ensure that the set Xi uXj is at least as
fine as both partitions Xi and Xj , thus providing a covering
of πIi∪Ij (X):

⋃
s∈XiuXj

s = πIi∪Ij (X). Then, Xi u Xj is

converted into a partition XieXj of πIi∪Ij (X) by removing
all subsets strictly contained in another element of Xi uXj .

Proposition 3: If Xi and Xj are partitions of πIi(X)
and πIj (X), respectively, then Xi e Xj is a partition of
πIi∪Ij (X).

Proof: Let x ∈ πIi∪Ij (X). Since Xi and Xj are
partitions, there exists si ∈ Xi and sj ∈ Xj such that
πIi(x) ∈ si and πIj (x) ∈ sj , which implies that there exists



s ∈ Xi uXj such that x ∈ s. Then, the set Xi eXj is also
a covering since it only removes elements of XiuXj which
are strictly contained in other elements of Xi uXj .

Let now s, s′ ∈ XieXj such that x ∈ s∩s′. Since Xi and
Xj are partitions, we also know that si ∈ Xi and sj ∈ Xj

as defined above are unique. From Xi e Xj ⊆ Xi u Xj ,
we thus have πIi(s), πIi(s

′) ⊆ si and πIj (s), πIj (s
′) ⊆ sj ,

which implies that s∪s′ ∈ XiuXj . Therefore, s and s′ can
only be in Xi eXj if s = s′ = s ∪ s′.

B. Composed transition system

We now define the transition system Sc = (Xc, Uc,−→
c
)

as the composition of the abstractions Si obtained in Algo-
rithm 1 for each subsystem i ∈ {1, . . . ,m}. Sc contains the
following elements:
• Xc = X1 e · · · eXm is the composition of the refined

partitions for each subsystem. From Proposition 3, we
know that Xc is a partition of X .

From the definition of the operator u, the projection πIi(s)
of s ∈ Xc does not necessarily correspond to a symbol
of Xi. However, we know (see proof of Proposition 3)
that there exists a unique symbol si ∈ Xi containing this
projection. Therefore, for each i ∈ {1, . . . ,m}, we define the
decomposition function di : Xc → Xi such that di(s) = si
is the unique symbol si ∈ Xi satisfying πIi(s) ⊆ si.
• Uc = U1×· · ·×Um is the composition of the discretized

control sets (which is a simple Cartesian product since
they are defined on disjoint dimensions).

We can then introduce the controller Cc : Xc → Uc as the
composition of the controllers Ci : Xi → Ui obtained on the
abstraction of each subsystem in Algorithm 1:

∀s ∈ Xc, Cc(s) = (C1(d1(s)), . . . , Cm(dm(s))), (7)

which is then used to define the transition relation of Sc.
• ∀s, s′ ∈ Xc, u = Cc(s), s

u−→
c
s′ ⇐⇒

∀i ∈ {1, . . . ,m}, di(s)
uJi−→
i
di(s

′).

Intuitively, the transition s
u−→
c

s′, equivalently written as
s′ ∈ Postc(s, u), exists when the control input u ∈ Uc is
allowed by the local controllers Ci for all i ∈ {1, . . . ,m}
and when the transition in Sc can be decomposed (using
the decomposition functions di : Xc → Xi) into existing
transitions for all subsystems. Finally, we define the set
Uc(s) = {u ∈ Uc | Postc(s, u) 6= ∅}.

C. Main result

To control S with the controller Cc in (7), the systems
S = (X,U,−→) and Sc = (Xc, Uc,−→

c
) must satisfy the

following alternating simulation relation, adapted from [26].
Definition 4 (Alternating simulation): A map H : X →

Xc is an alternating simulation relation from Sc to S if it
holds: ∀x ∈ X, s = H(x), ∀uc ∈ Uc(s), ∃u ∈ U such that
∀x′ ∈ Post(x, u), H(x′) ∈ Postc(s, uc).

This definition means that for any pair (x, s) of matching
state and symbol and any control uc of the abstraction Sc,
there exists an equivalent control for the original system

S such that any behavior of S is matched by a behavior
of Sc. As a consequence, if a controller is synthesized so
that Sc satisfies some specification, then we know that there
exists a controller ensuring that S also satisfies the same
specification. We can show that such a relation can be found
when both Sc and S use the same controls u = Cc(s).

Theorem 5: The map H : X → Xc such that x ∈ s ⇔
H(x) = s is an alternating simulation relation from Sc to S.

Proof: Let x ∈ X , s = H(x) ∈ Xc and u ∈ Uc(s).
By definition of Sc, we have Uc(s) ⊆ {Cs(s)} for all s ∈
Xc. If Uc(s) = ∅, the condition in Definition 4 is trivially
satisfied. Otherwise, we have u = Cc(s) defined as in (7)
which implies that x ∈ ψ(k) for some k ∈ Z+. Let x′ ∈
Post(x, u), s′ = H(x′) and denote the decompositions of s
and s′ as si = di(s) and s′i = di(s

′) for all i ∈ {1, . . . ,m}.
By definition of the over-approximation operator RS in (3),
we have x′ ∈ RS(s, {u}). With the inclusion in (5) and the
fact that πIi(s) ⊆ si, we obtain x′ ∈ RSAG1

i (si, uJi) for all
i. If x′ ∈ ψ(k + 1), then x′Ii ∈ s′i ∩ πIi(RSAG2

i (si, uJi
))

and this intersection is thus non-empty, which implies that
s′i ∈ Posti(si, uJi

) for all i. Then, s′ ∈ Postc(s, u) by
definition of Sc. On the other hand, if x′ /∈ ψ(k + 1), then
there exists l ∈ {1, . . . , n} such that x′l /∈ πl(ψ(k + 1)) and
there exists a unique subsystem j ∈ {1, . . . ,m} such that
l ∈ Icj . Therefore we have x′Ic

j
/∈ πIc

j
(ψ(k + 1)) and then

πIc
j
(RSAG1

j (sj , uJj
)) * πIc

j
(ψ(k + 1)). This implies that

uJj /∈ Uj(sj) which contradicts the fact that u ∈ Uc(s).
Theorem 5 thus confirms that using A/G Obligations 1

and 2 is reasonable since it preserves the alternating sim-
ulation relation on the composition Sc while reducing the
conservatism of the over-approximations in each subsystem.

The next result immediately follows from the definition of
Sc (Uc(s) ⊆ {Cs(s)}) and the proof of Theorem 5 (if Cc(s)
exists, then Postc(s, Cc(s)) 6= ∅, i.e. Cc(s) ∈ Uc(s)).

Corollary 6: Uc(s) = {Cc(s)} for all s ∈ Xc.
These two results can then be exploited to solve Problem 1.
Theorem 7: Let x : Z+ → X be any trajectory of S from

an initial state x(0) ∈ X such that H(x(0)) ∈ V 0
1 e · · ·eV 0

m

and subject to the controller CX
c : X → U with CX

c (x) =
Cc(H(x)) for all x ∈ X . Then x(k) ∈ ψ(k) for all k ∈ Z+.

Proof: From Theorem 5, it is sufficient to prove that
the composed system Sc controlled by Cc in (7) follows
ψ if it starts at s0 = H(x(0)) ∈ V 0

1 e · · · e V 0
m. Let

k ∈ Z+ and s ∈ Xc such that s ∈ V k
1 e · · · e V k

m. The
control value Cc(s) in (7) is thus well defined since we
have di(s) ∈ V k

i for all i and Corollary 6 implies that
there exists s′ ∈ Postc(s, Cc(s)). By definition of Sc, this
implies that di(s′) ∈ Posti(di(s), Ci(di(s))) for all i. Then
Algorithm 2 gives that di(s′) ∈ V k+1

i for all i and it follows
that s′ ∈ V k+1

1 e · · · e V k+1
m , therefore s′ ⊆ ψ(k + 1).

If Algorithm 1 terminates in finite time for all subsystems
i, Theorem 7 thus defines a controller CX

c ensuring that the
continuous system S follows the desired path ψ. However, if
S follows ψ, we cannot guarantee that Algorithm 1 will find
partitions Xi for all subsystems i where ψ can be followed.



VI. NUMERICAL ILLUSTRATION

The use of intervals as the elements of the state partition
(required by the compositional approach in Section III)
particularly suits the computation of over-approximations of
the reachable set using the monotonicity property. The reader
is referred to [24], [1] for a description of monotone (control)
systems and to e.g. [18] for their use to over-approximate the
reachable set and create abstractions. In this section, we thus
consider the 8D nonlinear monotone system described by:

ẋ = Ax− βx3 + u, (8)

with state x ∈ R8, bounded control input u ∈ [−5, 5]8,
constant parameter β = 0.01 ∈ R and componentwise cubic
power x3. The diagonal elements of the matrix A ∈ R8×8

are equal to −0.8 and the remaining elements represent state
interactions and are shown in the directed graph of Figure 1.
To match the description of (1) in Section II-B, the system
(8) is then sampled with a period of 1.2 seconds.

1 2 3 4

5678

0.3 0.1 0.1

0.1 0.3

0.20.2

Fig. 1: State interactions in (8). A directed edge from node
i to node j is labeled with the value of ∂ẋj/∂xi.

In view of the state coupling shown in Figure 1, we
decompose the system (8) into 5 subsystems defined as
follows by their index sets Ii, Ici and Ji. We first take three
pairs I1 = Ic1 = J1 = {1, 2}, I2 = Ic2 = J2 = {4, 5}
and I3 = Ic3 = J3 = {6, 7} where all the observed states are
also controlled (Io1 = Io2 = Io3 = ∅). The last two subsystems
only aim at controlling a single state each, but also observe
an additional state: I4 = {2, 3}, Ic4 = J4 = {3}, Io4 = {2}
and I5 = {7, 8}, Ic5 = J5 = {8}, Io5 = {7}.

The considered state space X = [−9, 9]8 is partitioned
into 3 elements per dimension, thus resulting in a partition P
of 6561 cells. The control interval U = [−5, 5]8 is discretized
into 5 values per dimension ({−5,−2.5, 0, 2.5, 5}).

We consider a control objective initially formulated as the
Linear Temporal Logic formula �♦σ2 ∧�♦σ3 representing
the surveillance task of visiting infinitely often both partition
cells σ2 = [−3, 3]8 and σ3 = [3, 9]8. Assuming that the
initial state of the system is in the cell σ0 = [−9,−3]8,
this can then be reformulated as a lasso-shaped sequence
ψ = σ0.σ1.(σ2.σ3)

ω , where the second cell σ1 of the prefix
is [−3, 3] for the state dimensions 3 and 7 while it remains
[−9,−3] (as in σ0) on the other dimensions. Note that ψ
does not satisfy Assumption 2 due to both its non-empty
suffix and duplicated prefix cells (e.g. πI1(σ0) = πI1(σ1)).

Algorithm 1 is then applied to each subsystem, where the
Split function uniformly splits a symbol into 2 subsymbols
per dimension and the priority queue is handled as follows:
we only refine a cell when no coarser candidate exists, and
when more than one cell can be refined we prioritize the one
whose last refinement is the oldest. In Figure 2, we display

the resulting refined partitions and valid symbols for each
subsystem. Below, we detail the refinement process in the
case of subsystem 5 in Figure 2e. We start with the top right
cell πI5(σ3) as fully valid. For πI5(σ2) (center), no satisfying
control is found to drive the whole cell into πI5(σ3), so it is
split into 4 identical subsymbols, two of which are valid. We
loop back on the last cell πI5(σ3) of the suffix and find that
the whole cell can be controlled towards the valid symbols
of πI5(σ2). The valid set V 3

5 is thus unchanged by the last
call of ValidSets and Algorithm 1 is done with the suffix.

Since no satisfying control is found to bring the last cell
πI5(σ1) (bottom center) of the prefix to the valid symbols
of πI5(σ2), we then split πI5(σ1) into 4 subsymbols, 3 of
which are valid. Similarly, πI5(σ0) (bottom left) is split into 4
subsymbols since it cannot be controlled towards the valid set
of πI5(σ1). None of the obtained subsymbols of πI5(σ0) are
valid and we thus refine the next cell in the queue: πI5(σ1).
This refinement only splits into 4 subsymbols the unique
invalid symbol of πI5(σ1) (i.e. its top right symbol). All
new subsymbols are valid (they can be controlled towards
the valid set of πI5(σ2)), and an update of πI5(σ0) gives
that all 4 of its symbols are valid (V 0

5X = πI5(σ0)), thus
ending Algorithm 1.

Using Matlab on a laptop with a 2.6 GHz CPU and 8
GB of RAM, these results after applying Algorithm 1 to all
subsystems were obtained in 11.1 seconds. As a compari-
son, the same abstraction refinement algorithm applied in a
centralized way (no decomposition and a single abstraction
representing the whole system) was still in its first suffix call
of Algorithm 1 after more than 48 hours of computation.

VII. CONCLUSION

In this paper, we presented a novel approach to abstraction
creation and control synthesis in the form of a compositional
specification-guided abstraction refinement procedure. This
approach applies to nonlinear systems associated with a
method to over-approximate its reachable sets, and to lasso-
shaped specifications. The dynamics are decomposed into
subsystems representing partial descriptions of the system
and a finite abstraction is then created for each subsystem
through a refinement procedure starting from a coarse parti-
tion of the state space. Each refined abstraction is associated
with a local controller and the composition of these local
controllers enforces the specification on the original system.

Current efforts aim at maximizing the algorithm efficiency
using its degrees of freedom in the splitting strategy and the
management of the priority queue. We also work towards
combining this approach into a common framework with
plan revision methods.
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