S. Thuret, L. Moon, and F. Gage, Therapeutic interventions after spinal cord injury, Nature Reviews Neuroscience, vol.76, issue.8, pp.628-671, 2006.
DOI : 10.1038/nrn1955

A. Hejcl, J. Sedy, M. Kapcalova, D. Toro, T. Amemori et al., HPMA-RGD Hydrogels Seeded with Mesenchymal Stem Cells Improve Functional Outcome in Chronic Spinal Cord Injury, Stem Cells and Development, vol.19, issue.10, pp.1535-1581, 2010.
DOI : 10.1089/scd.2009.0378

A. Hopkins, D. Laporte, L. Tortelli, F. Spedden, E. Staii et al., Silk Hydrogels as Soft Substrates for Neural Tissue Engineering, Advanced Functional Materials, vol.267, issue.41, pp.5140-5189, 2013.
DOI : 10.1002/adfm.201300435

A. Hurtado, L. Moon, V. Maquet, B. Blits, R. Jerome et al., Poly (d,l-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord, Biomaterials, vol.27, issue.3, pp.430-472, 2006.
DOI : 10.1016/j.biomaterials.2005.07.014

S. Woerly, V. Doan, N. Sosa, J. De-vellis, and A. Espinosa-jeffrey, Prevention of gliotic scar formation by NeuroGel? allows partial endogenous repair of transected cat spinal cord, Journal of Neuroscience Research, vol.147, issue.2, pp.262-72, 2004.
DOI : 10.1002/jnr.10774

H. Nomura, C. Tator, and M. Shoichet, Bioengineered Strategies for Spinal Cord Repair, Journal of Neurotrauma, vol.23, issue.3-4, pp.496-507, 2006.
DOI : 10.1089/neu.2006.23.496

K. Straley, C. Foo, and S. Heilshorn, Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries, Journal of Neurotrauma, vol.27, issue.1, pp.1-19, 2010.
DOI : 10.1089/neu.2009.0948

H. Von-recum, R. Cleek, S. Eskin, and A. Mikos, Degradation of polydispersed poly(l-lactic acid) to modulate lactic acid release, Biomaterials, vol.16, issue.6, pp.441-448, 1995.
DOI : 10.1016/0142-9612(95)98816-W

Y. Zhong and R. Bellamkonda, Biomaterials for the central nervous system, Journal of The Royal Society Interface, vol.38, issue.6, pp.957-75, 2008.
DOI : 10.1016/j.brainres.2007.02.024

S. Gautier, M. Oudega, M. Fragoso, P. Chapon, G. Plant et al., Poly(?-hydroxyacids) for application in the spinal cord: Resorbability and biocompatibility with adult rat Schwann cells and spinal cord, Journal of Biomedical Materials Research, vol.20, issue.4, pp.642-54, 1998.
DOI : 10.1002/(SICI)1097-4636(19981215)42:4<642::AID-JBM22>3.0.CO;2-K

M. Oudega, S. Gautier, P. Chapon, M. Fragoso, M. Bates et al., Axonal regeneration into Schwann cell grafts within resorbable poly(??-hydroxyacid) guidance channels in the adult rat spinal cord, Biomaterials, vol.22, issue.10, pp.1125-1161, 2001.
DOI : 10.1016/S0142-9612(00)00346-X

C. Patist, M. Mulder, S. Gautier, V. Maquet, R. Jerome et al., Freeze-dried poly(d,l-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord, Biomaterials, vol.25, issue.9, pp.1569-82, 2004.
DOI : 10.1016/S0142-9612(03)00503-9

A. Pego, A. Poot, D. Grijpma, and J. Feijen, Biodegradable elastomeric scaffolds for soft tissue engineering, Journal of Controlled Release, vol.87, issue.1-3, pp.69-79, 2003.
DOI : 10.1016/S0168-3659(02)00351-6

V. Maquet, D. Martin, F. Scholtes, R. Franzen, J. Schoenen et al., Poly(?,?-lactide) foams modified by poly(ethylene oxide)???block???poly(?,?-lactide) copolymers and a-FGF: in vitro and in vivo evaluation for spinal cord regeneration, Biomaterials, vol.22, issue.10, pp.1137-1183, 2001.
DOI : 10.1016/S0142-9612(00)00357-4

A. Bakshi, O. Fisher, T. Dagci, B. Himes, I. Fischer et al., Mechanically engineered hydrogel scaffolds for axonal growth and angiogenesis after transplantation in spinal cord injury, Journal of Neurosurgery: Spine, vol.1, issue.3, pp.322-331, 2004.
DOI : 10.3171/spi.2004.1.3.0322

A. Hejcl, P. Lesny, M. Pradny, J. Michalek, P. Jendelova et al., Biocompatible hydrogels in spinal cord injury repair, Physiol Res, vol.57, pp.121-153, 2008.

B. Clement, T. Trimaille, O. Alluin, D. Gigmes, K. Mabrouk et al., Convenient Access to Biocompatible Block Copolymers from SG1-Based Aliphatic Polyester Macro-Alkoxyamines, Biomacromolecules, vol.10, issue.6, pp.1436-1481, 2009.
DOI : 10.1021/bm900003f

URL : https://hal.archives-ouvertes.fr/hal-00399455

B. Clement, P. Decherchi, F. Feron, D. Bertin, D. Gigmes et al., Poly(D,L-Lactide)-block-Poly(2-Hydroxyethyl Acrylate) Block Copolymers as Potential Biomaterials for Peripheral Nerve Repair: in vitro and in vivo Degradation Studies, Macromolecular Bioscience, vol.28, issue.9, pp.1175-84, 2011.
DOI : 10.1002/mabi.201100067

URL : https://hal.archives-ouvertes.fr/hal-01460291

M. Ho, P. Kuo, H. Hsieh, T. Hsien, L. Hou et al., Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods, Biomaterials, vol.25, issue.1, pp.129-167, 2004.
DOI : 10.1016/S0142-9612(03)00483-6

D. Basso, M. Beattie, and J. Bresnahan, A Sensitive and Reliable Locomotor Rating Scale for Open Field Testing in Rats, Journal of Neurotrauma, vol.12, issue.1, pp.1-21, 1995.
DOI : 10.1089/neu.1995.12.1

V. Pertici, C. Pin-barre, M. Felix, J. Laurin, J. Brisswalter et al., A new method to assess weight-bearing distribution after central nervous system lesions in rats, Behavioural Brain Research, vol.259, pp.78-84, 2014.
DOI : 10.1016/j.bbr.2013.10.043

URL : https://hal.archives-ouvertes.fr/hal-01475744

V. Pertici, J. Amendola, J. Laurin, D. Gigmes, L. Madaschi et al., The Use of Poly(N-[2-Hydroxypropyl]-Methacrylamide) Hydrogel to Repair a T10 Spinal Cord Hemisection in Rat: A Behavioural, Electrophysiological and Anatomical Examination, ASN Neuro, vol.49, issue.2, pp.149-66, 2013.
DOI : 10.1016/S0361-9230(99)00072-6

URL : https://hal.archives-ouvertes.fr/hal-01460474

J. Piantino, J. Burdick, D. Goldberg, R. Langer, and L. Benowitz, An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury, Experimental Neurology, vol.201, issue.2, pp.359-67, 2006.
DOI : 10.1016/j.expneurol.2006.04.020

C. Henderson, E. Bloch-gallego, and W. Camu, Purified embryonic motoneurons, Neural cell culture: a practical approach, 1995.

V. Arce, A. Garces, B. De-bovis, P. Filippi, C. Henderson et al., Cardiotrophin-1 requires LIFR?? to promote survival of mouse motoneurons purified by a novel technique, Journal of Neuroscience Research, vol.8, issue.1, pp.119-145, 1999.
DOI : 10.1002/(SICI)1097-4547(19990101)55:1<119::AID-JNR13>3.0.CO;2-6

J. Karp, M. Shoichet, and J. Davies, Bone formation on two-dimensional poly(DL-lactideco-glycolide ) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro, J Biomed Mater Res A, vol.64, pp.388-96, 2003.

Y. Teng, E. Lavik, X. Qu, K. Park, J. Ourednik et al., Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells, Proceedings of the National Academy of Sciences, vol.99, issue.5, pp.3024-3033, 2002.
DOI : 10.1073/pnas.052678899

S. Woerly, Restorative surgery of the central nervous system by means of tissue engineering using Neurogel implants, Neurosurg Rev, vol.23, pp.59-77, 2000.

B. Cloud, B. Ball, B. Chen, A. Knight, J. Hakim et al., Hemisection spinal cord injury in rat: The value of intraoperative somatosensory evoked potential monitoring, Journal of Neuroscience Methods, vol.211, issue.2, pp.179-84, 2012.
DOI : 10.1016/j.jneumeth.2012.08.024

S. Shibuya, T. Yamamoto, and T. Itano, Glial and axonal regeneration following spinal cord injury, Cell Adhesion & Migration, vol.23, issue.1, pp.99-106, 2009.
DOI : 10.1038/416636a

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2675156

H. Li, T. Fuhrmann, Y. Zhou, and P. Dalton, Host reaction to poly(2-hydroxyethyl methacrylate) scaffolds in a small spinal cord injury model, Journal of Materials Science: Materials in Medicine, vol.21, issue.2, pp.2001-2012, 2013.
DOI : 10.1007/s10856-013-4956-8