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High magnetic field equilibria for the Fokker-Planck-Landau

equation

Mihai Bostan ∗

(March 8, 2015)

Abstract

The subject matter of this paper concerns the equilibria of the Fokker-Planck-Landau equa-

tion under the action of strong magnetic fields. Averaging with respect to the fast cyclotronic

motion when the Larmor radius is supposed finite, leads to a integro-differential version of the

Fokker-Planck-Landau collision kernel, combining perpendicular space coordinates (with respect

to the magnetic lines) and velocity. We determine the equilibria of this gyroaveraged Fokker-

Planck-Landau kernel and derive the macroscopic equations describing the evolution around these

equilibria, in the parallel direction.

Keywords: Finite Larmor radius approximation, Fokker-Planck-Landau equation, H-theorem.

AMS classification: 35Q75, 78A35, 82D10.

1 Introduction

We investigate the transport of charged particles under the action of strong magnetic fields, which is

motivated by the magnetic confinement for tokamak plasmas. We neglect the self-consistent electro-

magnetic field, but we take into account the interactions between particles. The external electric field

E = −∇xΦ is fixed, and the external magnetic field writes

Bε =
B(x)

ε
d(x), |d| = 1

where ε > 0 is a small parameter, destinated to converge to 0, in order to describe strong magnetic

fields. The scalar function φ stands for the electric potential, B(x) > 0 is the rescaled magnitude of

the magnetic field and d(x) denotes its direction.

The presence density fε = fε(t, x, v) ≥ 0 of a population of charged particles with mass m and

charge q satisfies

∂tf
ε + v · ∇xfε +

q

m
(E + v ∧Bε) · ∇vfε = Q(fε, fε), (t, x, v) ∈ R+ × R3 × R3 (1)
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fε(0, x, v) = f in(x, v), (x, v) ∈ R3 × R3. (2)

Here Q denotes the Fokker-Planck-Landau collision kernel cf. [21, 13, 14]

Q(f, f)(v) = divv

{∫
R3

σ(|v − v′|)S(v − v′)[f(v′)∇vf(v)− f(v)∇v′f(v′)] dv′
}

where σ > 0 stands for the scattering cross section and S(w) = I − w⊗w
|w|2 is the orthogonal projection

on the plane of normal w 6= 0. The interpretation of the density fε is straightforward : the number of

charged particles contained at time t inside the infinitesimal volume dxdv around the point (x, v) of

the position-velocity phase space is given by fε(t, x, v)dxdv. The equation (1) describes the evolution

of the density fε due to the transport and to the particle interactions.

The behavior of (1), (2) without collisions, when ε↘ 0, is now well understood [20, 24, 15, 3, 4, 5,

6]. It reduces to homogenization analysis and can be solved using the concept of two-scale convergence

[17, 18, 16].

Gyroaveraged collision operators have been proposed in [25, 11, 12, 19]. The main difficulty lies on

the relaxation of the distribution function towards a equilibrium. Many of these gyroaveraged collision

operators fail to relax to equilibria, in particular those obtained by linearization around Maxwellians

(which are not gyrokinetic equilibria, at least in the finite Larmor radius regime). Very recently,

the averaging techniques developped in [3, 4, 5] have been extended to the collisional framework.

Gyroaveraged collision kernels have been proposed for the relaxation Boltzmann operator, the Fokker-

Planck and Fokker-Planck-Landau operators [7, 8, 9, 10].

There are mainly two asymptotic regimes describing the transport of charged particles under

strong magnetic fields : the guiding center, and the finite Larmor radius approximations. In the

guiding center approximation, the ratio between the perpendicular and parallel spatial lengths is

much smaller (and thus neglected) with respect to the ratio between the cyclotronic period and the

observation time unit. In this case, any Larmor circle reduces to its center. Therefore, the particle

positions are left invariant at the cyclotronic time scale, the magnetic field becomes locally uniform,

and the gyroaverage plays only in the perpendicular velocity space. For these reasons, the derivation

of the guiding center approximation is relatively simple, and explicit models are available for general

tridimensional magnetic geometry [5, 6, 10]. The situation is quite different for the finite Larmor

radius approximation. In this case, we assume that the ratio between the perpendicular and parallel

spatial lengths is small, remaining of the same order as the ratio between the cyclotronic period and

the observation time unit
L⊥
L‖

=
Tc
Tobs

= ε << 1.

The particles move on small Larmor circles, the position is not anymore left invariant at the cyclotronic

scale, the magnetic field is no more locally uniform, and the gyroaverage combines now position and

velocity. Think that the average of a particle position, which is the Larmor center, depends not only

on the initial position, but also on the initial perpendicular velocity. This fact will impact a lot the

structure of the Fokker-Planck-Landau kernel. Indeed, after average, the collision kernel will be not

anymore local in space and the equilibria will be given by profile in velocity and perpendicular position.
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The computations require much effort, and most of the times, the limit models are not completely

explicit. Generally we start analyzing the case of uniform magnetic fields, eventually we generalize

these results by linearization around the Larmor center (since the magnetic field does not change a

lot along a Larmor radius). The finite Larmor radius regime provides a more realistic description for

the tokamak plasmas.

In this paper we concentrate on the finite Larmor radius approximation. Assuming that the

magnetic field is homogeneous and stationary

Bε =

(
0, 0,

B

ε

)
for some constant B > 0, the equation (1) becomes

∂tf
ε +

1

ε
(v1∂x1f

ε + v2∂x2f
ε) + v3∂x3f

ε +
q

m
E · ∇vfε +

ωc
ε

(v2∂v1f
ε − v1∂v2fε) = Q(fε, fε) (3)

where ωc = qB/m stands for the rescaled cyclotronic frequency. When ε is small, the density fε

writes as a combination between a dominant density f and corrections of orders ε, ε2, ...

fε = f + εf1 + ε2f2 + ... (4)

Plugging (4) into (3) and using the notations x = (x1, x2), v = (v1, v2), ⊥v = (v2,−v1) yield

T f := v · ∇xf + ωc
⊥v · ∇vf = 0 (5)

∂tf + v3∂x3
f +

q

m
E · ∇vf + T f1 = Q(f, f) (6)

...

where T is the linear operator defined in L2(R3 × R3) by

T u = divx,v(u b), b = (v, 0, ωc
⊥v, 0), ωc =

qB

m

for any function u in the domain

D(T ) = {u(x, v) ∈ L2(R3 × R3) : divx,v(u b) ∈ L2(R3 × R3)}.

At any time t the density f(t, ·, ·) remains constant along the flow (X,V )(s;x, v) associated to the

transport operator v · ∇x + ωc
⊥v · ∇v

dX

ds
= V (s),

dX3

ds
= 0,

dV

ds
= ωc

⊥V (s),
dV3
ds

= 0, (X,V )(0;x, v) = (x, v) (7)

and therefore, at any time t, the density f(t, ·, ·) depends only on the invariants of (7)

f(t, x, v) = g

(
t, x1 +

v2
ωc
, x2 −

v1
ωc
, x3, r = |v|, v3

)
.

The time evolution for f comes by (6), after eliminating f1. The antisymmetry of T ensures that the

range of T is orthogonal to its kernel, which allows us to get rid of f1 in (6) by taking the orthogonal

projection onto ker T

Projker T

{
∂tf + v3∂x3

f +
q

m
E · ∇vf

}
= Projker T {Q(f, f)} , (t, x, v) ∈ R+ × R3 × R3. (8)
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Actually taking the orthogonal projection on ker T reduces to averaging along the characteristic flow

of T in (7) cf. [3, 4, 5]. This flow is Tc = 2π
ωc

periodic and writes

V (s) = R(−ωcs)v, X(s) = x+
⊥v

ωc
−
⊥V (s)

ωc
, X3(s) = x3, V3(s) = v3

where R(α) stands for the rotation of angle α

R(α) =

 cosα − sinα

sinα cosα

 .

For any function u ∈ L2(R3 × R3), the average operator is defined by

〈u〉 (x, v) =
1

Tc

∫ Tc

0

u(X(s;x, v), V (s;x, v)) ds

=
1

2π

∫ 2π

0

u

(
x+

⊥v

ωc
−
⊥{R(α)v}

ωc
, x3, R(α)v, v3

)
dα. (9)

We introduce the notation eiϕ for the R2 vector (cosϕ, sinϕ). If the vector v writes v = |v|eiϕ, then

R(α)v = |v|ei(α+ϕ) and the expression for 〈u〉 becomes

〈u〉 (x, v) =
1

2π

∫ 2π

0

u

(
x+

⊥v

ωc
−
⊥{|v|ei(α+ϕ)}

ωc
, x3, |v|ei(α+ϕ), v3

)
dα

=
1

2π

∫ 2π

0

u

(
x+

⊥v

ωc
−
⊥{|v|eiα}

ωc
, x3, |v|eiα, v3

)
dα.

The properties of the average operator (9) are summarized below (see Propositions 2.1, 2.2 in [5] for

proof details). We denote by ‖ · ‖ the standard norm of L2(R3 × R3).

Proposition 1.1 The average operator is linear and continuous. Moreover it coincides with the

orthogonal projection on the kernel of T i.e.,

〈u〉 ∈ ker T and

∫
R3

∫
R3

(u− 〈u〉)ϕ dvdx = 0, ∀ ϕ ∈ ker T . (10)

Remark 1.1 Notice that (X,V ) depends only on s and (x, v) and thus the variational characterization

in (10) holds true at any fixed (x3, v3) ∈ R2. Indeed, for any ϕ ∈ ker T , (x3, v3) ∈ R2 we have∫
R2

∫
R2

(uϕ)(x, v) dvdx =
1

Tc

∫ Tc

0

∫
R2

∫
R2

u(x, v)ϕ(X(−s;x, v), x3, V (−s;x, v), v3) dvdxds

=
1

Tc

∫ Tc

0

∫
R2

∫
R2

u(X(s;x, v), x3, V (s;x, v), v3)ϕ(x, v) dvdxds

=

∫
R2

∫
R2

〈u〉 (x, v)ϕ(x, v) dvdx.

We have the orthogonal decomposition of L2(R3×R3) into invariant functions along the characteristics

(7) and zero average functions

u = 〈u〉+ (u− 〈u〉),
∫
R3

∫
R3

(u− 〈u〉) 〈u〉 dvdx = 0.

Notice that T ? = −T and thus the equality 〈·〉 = Projker T implies

ker 〈·〉 = (ker T )⊥ = (ker T ?)⊥ = Range T .

In particular Range T ⊂ ker 〈·〉. Actually we show that Range T is closed, which will give a solvability

condition for T u = w (cf. [5], Propositions 2.2).
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Proposition 1.2 The restriction of T to ker 〈·〉 is one to one map onto ker 〈·〉. Its inverse belongs to

L(ker 〈·〉 , ker 〈·〉) and we have the Poincaré inequality

‖u‖ ≤ 2π

|ωc|
‖T u‖, ωc =

qB

m
6= 0

for any u ∈ D(T ) ∩ ker 〈·〉.

A very useful result when averaging transport operators is given by the folowing commutation formula

between divergence and average (cf. Proposition 3.3 [8]).

Proposition 1.3 For any smooth field ξ = (ξx, ξv) ∈ R6 we have the equality

〈divx,vξ〉 = divx

{〈
ξx +

⊥ξv
ωc

〉
+

〈
ξv ·

⊥v

|v|

〉
v

ωc|v|
−
〈
ξv ·

v

|v|

〉 ⊥v

ωc|v|

}
+ ∂x3

〈ξx3
〉

+ divv

{〈
ξv ·

⊥v

|v|

〉 ⊥v

|v|
+

〈
ξv ·

v

|v|

〉
v

|v|

}
+ ∂v3 〈ξv3〉 .

In particular we have for any smooth field ξx ∈ R3

〈divxξx〉 = divx 〈ξx〉

and for any smooth field ξv ∈ R3

〈divvξv〉 = divx

{〈⊥ξv
ωc

〉
+

〈
ξv ·

⊥v

|v|

〉
v

ωc|v|
−
〈
ξv ·

v

|v|

〉 ⊥v

ωc|v|

}
+ divv

{〈
ξv ·

⊥v

|v|

〉 ⊥v

|v|
+

〈
ξv ·

v

|v|

〉
v

|v|

}
+ ∂v3 〈ξv3〉 .

Coming back to (8), on the one hand, averaging ∂t + v3∂x3
+ q

mE · ∇v leads to another transport

operator. This is a straightforward consequence of the commutation formula between the divergence

and average in Proposition 1.3. For the presentation clarity, the proof of this result is sketched in

Appendix A.

Proposition 1.4 Assume that the electric field derives from a smooth potential i.e., E = −∇xφ.

Then for any f ∈ C1
c (R3 × R3) ∩ ker T we have〈

∂tf + v3∂x3f +
q

m
E · ∇vf

〉
= ∂tf +

〈 ⊥E〉
B

· ∇xf + v3∂x3f +
q

m
〈E3〉 ∂v3f. (11)

On the other hand, the average of the Fokker-Planck-Landau kernel i.e., 〈Q〉 (f, f) := 〈Q(f, f)〉

writes cf. Proposition 4.10 in [9]

ω−2c 〈Q〉 (f, f)(x, v) = (12)

divωcx,v

{∫
R2

∫
R3

4∑
i=1

f(x′, x3, v
′)ξi(x, v, x′, v′)⊗ ξi(x, v, x′, v′)∇ωcx,vf(x, v) dv′dx′

}

−divωcx,v

{∫
R2

∫
R3

4∑
i=1

f(x, v)ξi(x, v, x′, v′)⊗ εiξi(x′, v′, x, v)∇ωcx′,v′f(x′, x3, v
′) dv′dx′

}
.

Up to our knowledge, the above averaged Fokker-Planck-Landau kernel has never been reported in the

plasma physics literature, before [9]. Its calculation relies on gyroaveraging differential operators and
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velocity convolutions. Some results regarding the behavior of the gyroaverage with respect to velocity

convolutions have been obtained in [10] (in the framework of the guiding center approximation).

The operator in (12) is completely explicit. We indicate below the expressions for the vector fields

entering it. Notice that their derivation is not of all trivial. The reader may refer to [9] for details.

Nevertheless, we are using these expressions in order to determine the equilibria of the averaged

Fokker-Planck-Landau kernel.

The notation divωcx,v stands for the divergence with respect to the variables ωcx and v (like that

all variables entering the divergence are homogeneous). Here ε1 = ε2 = −1, ε3 = ε4 = 1 and the

explicit formulae of the fields (ξi)1≤i≤4 are given by

ξ1(x, v, x′, v′) = {σχ}1/2 r′ sinϕ (v3 − v′3)

|z|
√
|z|2 + (v3 − v′3)2

(
(v, 0)

|v|
,

( ⊥v, 0)

|v|

)
ξ2(x, v, x′, v′) = {σχ}1/2

[
r − r′ cosϕ

|z|

(
(v, 0)

|v|
,

( ⊥v, 0)

|v|

)
+

(
(⊥z, 0)

|z|
, 0

)]
ξ3(x, v, x′, v′) = {σχ}1/2 r

′ sinϕ

|z|

(
( ⊥v, 0)

|v|
,− (v, 0)

|v|

)
ξ4(x, v, x′, v′)

{σχ}1/2
=

(r′ cosϕ− r)(v3 − v′3)

|z|
√
|z|2 + (v3 − v′3)2

(
( ⊥v, 0)

|v|
,− (v, 0)

|v|

)
+

(
(v3 − v′3) (z,0)

|z| ,−|z|e3
)

√
|z|2 + (v3 − v′3)2

where v3, v
′
3 ∈ R, r = |v|, r′ = |v′|, z = (ωcx+ ⊥v)− (ωcx′ +

⊥v′), σ = σ
√
|z|2 + (v3 − v′3)2, the angle

ϕ ∈ (0, π) satisfies

|z|2 = r2 + (r′)2 − 2rr′ cosϕ, |r − r′| < |z| < r + r′

and

χ(r, r′, z) =
1{|r−r′|<|z|<r+r′}

π2
√
|z|2 − (r − r′)2

√
(r + r′)2 − |z|2

, r, r′ ∈ R+, z ∈ R2.

For every r, r′ ∈ R+, χ(r, r′, z)dz is a probability measure on R2∫
R2

χ(r, r′, z) dz = 1, r, r′ ∈ R+.

This measure characterizes the interaction between the Larmor circles of centers x+
⊥v
ωc
, x′+

⊥v′

ωc
and

radii |v||ωc| ,
|v′|
|ωc| , and charges only the circle pairs having non empty intersection i.e.,

| |v| − |v′| |
|ωc|

<

∣∣∣∣x+
⊥v

ωc
−
(
x′ +

⊥v′

ωc

)∣∣∣∣ < |v|+ |v′||ωc|
.

More exactly, the measure χ appears when averaging integrals with respect to v (see Proposition 4.2

in [8]) for details) 〈∫
R3

f(x, v′) dv′
〉

(x, v) = ω2
c

∫
R2

∫
R3

χ(r, r′, z)f(x′, x3, v
′) dv′dx′

for any f = f(x, v) ∈ ker T .

Clearly, the kernel 〈Q〉 in (12) is a integro-differential operator in (x, v) (observe that there is no

derivative with respect to x3 since ξix3
= 0, 1 ≤ i ≤ 4) and therefore will satisfy the mass, momentum

and kinetic energy balances only globally in (x, v). Indeed, the averaged kernel writes as a divergence
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with respect to (x, v) and therefore there is no reason why its integral with respect to v vanishes. Only

the integral with respect to (x, v) balances, assuming that the integrand has nice decay at infinity.

Similarly, the averaged Fokker-Planck-Landau kernel will decrease the entropy f ln f globally in (x, v).

Finally, combining (8), (11), (12) leads to the following model for the dominant density f = limε↘0 f
ε

in (4)

∂tf +

〈 ⊥E〉
B

· ∇xf + v3∂x3f +
q

m
〈E3〉 ∂v3f = 〈Q〉 (f, f) (13)

with

〈Q〉 (f, f) =

ω2
cdivωcx,v

{∫
R2

∫
R3

4∑
i=1

f(x′, x3, v
′)ξi(x, v, x′, v′)⊗ ξi(x, v, x′, v′)∇ωcx,vf(x, v) dv′dx′

}

−ω2
cdivωcx,v

{∫
R2

∫
R3

4∑
i=1

f(x, v)ξi(x, v, x′, v′)⊗ εiξi(x′, v′, x, v)∇ωcx′,v′f(x′, x3, v
′) dv′dx′

}
.

We concentrate on the equilibria of 〈Q〉, which are local in x3, but global in (x, v). For doing that

we establish a H-theorem. Thanks to the H theorem satisfied by 〈Q〉 (see Theorem 2.1 for precise

statements and notations), the positive equilibria of 〈Q〉 are determined by the constraints

ξi · ∇ ln f − εi(ξi)′ · ∇′ ln f ′ = 0, 1 ≤ i ≤ 4.

It happens that the densities above are parametrized by six quantities ρ > 0, u = (u1, u2, u3) ∈

R3,K > 0,K +G > 0

ρ =

∫
R2

∫
R3

f(x, v) dvdx, ρu =

∫
R2

∫
R3

(ωcx+ ⊥v)f(x, v) dvdx, ρu3 =

∫
R2

∫
R3

v3f(x, v) dvdx

ρK =

∫
R2

∫
R3

|v|2 + (v3 − u3)2

2
f(x, v) dvdx, ρG =

∫
R2

∫
R3

|ωcx+ ⊥v − u|2 − |v|2

2
f(x, v) dvdx

which are linear combinations of the moments of f with respect to the average collision invariants (cf.

Proposition 2.1)

1, ωcx+ ⊥v, v3,
|v|2

2
,
|ωcx+ ⊥v|2 − |v|2

2
.

Clearly ρ represents the total number of particles in the phase space (x, v) and u3 is the mean parallel

velocity in (x, v). The mean perpendicular velocity do not enter the numbers parametrizing these

equilibria. Indeed, any density f satisfying the constraint T f = 0 has zero mean perpendicular

velocity ∫
R2

∫
R3

vf(x, v) dvdx =

∫
R2

∫
R3

〈v〉 f(x, v) dvdx = (0, 0).

The role of the mean perpendicular velocity is played by the displacement of the mean Larmor center

over one cyclotronic period

u =
2π

Tc

∫
R2

∫
R3

(
x+

⊥v
ωc

)
f(x, v) dvdx∫

R2

∫
R3 f(x, v) dvdx

7



The moment in the definition of ρu is associated to the Larmor center x +
⊥v
ωc

which is balanced by

the kernel 〈Q〉 ∫
R2

∫
R3

(
x+

⊥v

ωc

)
〈Q〉 (f, f) dvdx = 0.

The parameter K is related to the kinetic energy |v|2/2 which remains balanced by 〈Q〉. The parameter

G corresponds to a new collision invariant (|ωcx+ ⊥v|2 − |v|2)/2 i.e.,∫
R2

∫
R3

|ωcx+ ⊥v|2 − |v|2

2
〈Q〉 (f, f) dvdx = 0

and characterizes the gyrokinetic framework. Indeed, in the absence of the magnetic field, that is if

ωc = 0, then u = (0, 0) and G vanishes.

The equilibria appear as Maxwellians of the form

f =
ρω2

c

(2π)5/2 µ
2θ3/2

µ−θ

exp

(
−|v|

2 + (v3 − u3)2

2θ

)
exp

(
−|ωcx+ ⊥v − u|2 − |v|2

2µ

)
(14)

where θ and µ are uniquely determined by imposing the moment equalities defining K and G

µθ

µ− θ
+
θ

2
= K, µ− µθ

µ− θ
= G, µ > θ > 0.

At a first glance, these equilibria may appear very complicated. The point is that the average operator

combine position and velocity in such a way that, at equilibrium, the particle density satisfy given

profiles in velocity and perpendicular position.

Determining the equilibria of 〈Q〉 is a crucial issue for understanding the behavior of the tokamak

plasmas, in the gyrokinetic approximation. The complete characterization of these equilibria is far to

be obvious since they are no more local in space and depend on a larger set of parameters, including

several new moments associated to new collision invariants. In particular we focus on the dissipation

mechanisms, the main goal being the derivation of fluid models, much easier to understand and to

simulate numerically. Once we have determined the equilibria of 〈Q〉, we can search for the dynamics

in (13) near local (in (t, x3)) equilibria. In other words we concentrate on strongly collisional regimes

of (13) and we obtain a Euler type system of six equations and six unknowns in the parallel direction.

Up to our knowledge, this result has not been reported yet and represents a first research work in this

direction. This Euler system represents a new hyperbolic model, enjoying new features, coming from

the averaging process with respect to the fast cyclotronic motion. Its study could be very important for

a better comprehension of classical fluid mechanics, combined with fast rotations or, more generally,

when fast oscillations play an important role. For simplicity we discard here all technical difficulties

related to the smoothness of the solution of (13), the validity of the Hilbert expansion we are using,

etc. We restrict ourselves to formal computations and write down the expected macroscopic limit

model in the parallel direction.

Theorem 1.1 Assume that the electric field is parallel and depends only on the time and the parallel

space coordinate E = (0, 0, E3(t, x3)) and let f in ∈ ker T be a positive smooth density with rapid decay
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at infinity. For any τ > 0 the density fτ stands for the solution (assumed smooth and having nice

decay at infinity) of the problem

∂tf
τ + v3∂x3

fτ +
q

m
E3(t, x3)∂v3f

τ =
1

τ
〈Q〉 (fτ , fτ ), (t, x, v) ∈ R+ × R3 × R3 (15)

fτ (t = 0, x, v) = f in(x, v) ≥ 0, (x, v) ∈ R3 × R3.

Therefore the leading order term in the expansion fτ = f + τf1 + ... (i.e., f = limτ↘0 f
τ ) is a local

equilibrium (see (14)) parametrized by the functions ρ = ρ(t, x3) > 0, u = u(t, x3), θ = θ(t, x3) >

0, µ = µ(t, x3) > θ(t, x3) > 0, which satisfy the system of conservation laws

∂tρ+ ∂x3
(ρu3) = 0, ∂t(ρu) + ∂x3

(ρ(u3u+ (0, 0, θ)))− ρ q
m

(0, 0, E3) = 0, (t, x3) ∈ R+ × R

∂t

[
ρ

(
µθ

µ− θ
+
θ

2
+

(u3)2

2

)]
+ ∂x3

[
u3ρ

(
µθ

µ− θ
+

3θ

2
+

(u3)2

2

)]
− q

m
E3ρu3

=∂t

[
ρ

(
µθ

µ− θ
+
θ

2

)]
+ ∂x3

[
ρu3

(
µθ

µ− θ
+
θ

2

)]
+ ρθ∂x3u3 = 0, (t, x3) ∈ R+ × R

∂t

[
ρ

(
µ− µθ

µ− θ

)]
+ ∂x3

[
ρu3

(
µ− µθ

µ− θ

)]
= 0, (t, x3) ∈ R+ × R

and the initial conditions

ρ(0, x3) =

∫
R2

∫
R3

f in(x, v) dvdx, ρ(0, x3)u(0, x3) =

∫
R2

∫
R3

(ωcx+ ⊥v, v3)f in(x, v) dvdx

ρ(0, x3)

(
µ(0, x3)θ(0, x3)

µ(0, x3)− θ(0, x3)
+
θ(0, x3)

2

)
=

∫
R2

∫
R3

|v|2 + (v3 − u3(0, x3))2

2
f in(x, v) dvdx

ρ(0, x3)

(
µ(0, x3)− µ(0, x3)θ(0, x3)

µ(0, x3)− θ(0, x3)

)
=

∫
R2

∫
R3

|ωcx+ ⊥v − u(0, x3)|2 − |v|2

2
f in dvdx.

The solution (ρ, u, θ, µ) also verifies

∂t

(
ρ ln

ρ(µ− θ)
µ2θ3/2

)
+ ∂x3

(
ρu3 ln

ρ(µ− θ)
µ2θ3/2

)
= 0, (t, x3) ∈ R+ × R.

For numerical simulations it is useful to write simplified versions of the averaged Fokker-Planck-

Landau kernel which preserve the equilibria and the relaxation property towards these equilibria.

The key point is to consider first order approximation near the equilibria, by neglecting all second

order fluctuation terms around these equilibria. The averaged collision kernel 〈Q〉 being quadratic,

the computation of the first order approximation L follows in a natural way, leading to a complete

explicit formula. In particular we check that L has exactly the same equilibria as 〈Q〉.

Theorem 1.2 For any positive density f = f(x, v) we denote by Ef the equilibrium of 〈Q〉 having the

same moments as f∫
R2

∫
R3

(f − Ef )ϕ(x, v) dvdx = 0, ϕ ∈ {1, ωcx+ ⊥v, v3, |v|2/2, (|ωcx+ ⊥v|2 − |v|2)/2}.

The linearized of 〈Q〉 (f, f) around the equilibrium Ef writes

ω−2c L(f) =

4∑
i=1

divωcx,v

∫
R2

∫
R3

EfE ′f

{
ξi · ∇

(
f

Ef

)
− εi(ξi)′ · ∇′

(
f ′

E ′f

)}
ξi dv′dx′.

Moreover, the following statements hold

9



1. For any two functions f = f(x, v), ϕ = ϕ(x, v) we have∫
R2

∫
R3

L(f)ϕ dvdx = −ω
2
c

2

4∑
i=1

∫
R2

∫
R3

∫
R2

∫
R3

EfE ′f

{
ξi · ∇

(
f

Ef

)
− εi(ξi)′ · ∇′

(
f ′

E ′f

)}
×
{
ξi · ∇ϕ− εi(ξi)′ · ∇′ϕ′

}
dv′dx′ dvdx. (16)

2. For any positive density f we have the inequality∫
R2

∫
R3

f

Ef
L(f) dvdx ≤ 0 (17)

with equality iff

ξi · ∇
(
f

Ef

)
− εi(ξi)′ · ∇′

(
f ′

E ′f

)
= 0, 1 ≤ i ≤ 4.

3. The positive equilibria of L are the positive equilibria of 〈Q〉

f > 0, L(f) = 0⇔ f = Ef .

As usual, it is possible to further simplify the average Fokker-Planck-Landau operator, using its BGK

approximation LBGK = −(f − Ef ), whose behavior regarding the equilibria is very similar to that of

〈Q〉 (see Theorem 5.1).

Our paper is organized as follows. In Section 2 we investigate the main properties of the average

Fokker-Planck-Landau collision operator. In particular we characterize its equilibria, thanks to a H

type theorem. These equilibria are computed in Section 3. They are special Maxwellians depending

on six parameters, which correspond to six moments. Section 4 is devoted to the fluid model near

gyrokinetic equilibria, when the collisions dominate the transport. Simplified versions of the averaged

Fokker-Planck-Landau collision operator are studied in the last section (the linearized around equi-

libria and the BGK approximation). Some technical proofs and computations have been postponed

to the Appendix.

2 The averaged Fokker-Planck-Landau collision operator

In this section we present the main properties of the operator 〈Q〉 (f, f) := 〈Q(f, f)〉, whose expression

(12) has been obtained in [9] for any density f = f(x, v) satisfying the constraint T f = 0. The main

goal is how to determine the equilibria of 〈Q〉. These equilibria are local in x3 (since 〈Q〉 is local in

x3) and we expect that they are special Maxwellians depending on the velocity v, but also on the

perpendicular spatial coordinates x1, x2. We will see that the set of these equilibria is parametrized

by six numbers

ρ(x3) =

∫
R2

∫
R3

f(x, v) dvdx (18)

ρ(x3)u(x3) =

∫
R2

∫
R3

(ωcx+ ⊥v)f(x, v) dvdx (19)

ρ(x3)u3(x3) =

∫
R2

∫
R3

v3f(x, v) dvdx (20)

10



ρ(x3)K(x3) =

∫
R2

∫
R3

|v|2 + (v3 − u3)2

2
f(x, v) dvdx (21)

ρ(x3)G(x3) =

∫
R2

∫
R3

|ωcx+ ⊥v − u|2 − |v|2

2
f(x, v) dvdx. (22)

Clearly u3 represents the mean parallel velocity, u/ωc is the mean Larmor circle center and K repre-

sents the temperature. Notice that the mean perpendicular velocity vanishes for any density satisfying

the constraint T f since∫
R2

∫
R3

vf(x, v) dvdx =

∫
R2

∫
R3

〈v〉 f(x, v) dvdx = (0, 0).

Therefore the mean perpendicular velocity will not enter the parameter family characterizing the

equilibria. The interpretation of the quantity in (22) comes by observing that the Larmor circle power

with respect to the mean Larmor center u/ωc is∣∣∣∣x+
⊥v

ωc
− u

ωc

∣∣∣∣2 − |v|2|ωc|2
and thus 2G/ω2

c is the mean Larmor circle power with respect to the mean Larmor center. The

quantities in (18), (19), (20), (21), (22) are the moments of f with respect to the functions in the set

C =

{
1, ωcx+ ⊥v, v3,

|v|2 + (v3 − u3)2

2
,
|ωcx+ ⊥v − u|2 − |v|2

2

}
.

All the functions in C are balanced by 〈Q〉. This is a consequence of the balances satisfied by Q and

the definition of 〈Q〉, as the average of Q.

Proposition 2.1 For any function f = f(x, v) ∈ ker T we have∫
R2

∫
R3

〈Q〉 (f, f) dvdx = 0,

∫
R2

∫
R3

(ωcx+ ⊥v, v3) 〈Q〉 (f, f) dvdx = (0, 0, 0)

∫
R2

∫
R3

|v|2 + (v3 − u3)2

2
〈Q〉 (f, f) dvdx = 0∫

R2

∫
R3

|ωcx+ ⊥v − u|2 − |v|2

2
〈Q〉 (f, f) dvdx = 0.

Proof. Observe that any function ϕ ∈ C belongs to ker T , since it depends only on the invariants

of T , that is only on ωcx + ⊥v, x3, |v|, v3. Therefore, for any such function we can write, thanks to

Remark 1.1 ∫
R2

∫
R3

ϕ 〈Q〉 (f, f) dvdx =

∫
R2

∫
R3

ϕ 〈Q(f, f)〉 dvdx =

∫
R2

∫
R3

ϕ Q(f, f) dvdx. (23)

Notice also that any function ϕ ∈ C writes as a linear combination of 1, v, |v|2/2, with coefficients

depending only on x. Therefore the mass, momentum and kinetic energy balances of the Fokker-

Planck-Landau kernel guarantee that∫
R3

ϕ(x, v) Q(f, f) dv = 0, x ∈ R3. (24)

Our conclusion follows from (23) and (24).
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We are looking now for the equilibria of 〈Q〉. The crucial point is to establish a H type theorem for

the kernel 〈Q〉. Most of the results in the sequel are valid for all densities f , not necessarily in the

kernel of T , but with respect to some particular extension of 〈Q〉 to the space of all densities f . It

happens that the good choice is to define 〈Q〉 (f, f) by the same formula as in (12). The particular

structure of the fields (ξi)1≤i≤4 allows us to obtain the following characterization of the kernel 〈Q〉 in

the distribution sense cf. Proposition 4.11 [9].

Theorem 2.1 Consider two functions f = f(x, v) > 0, ϕ = ϕ(x, v) (not necessarily in the kernel of

T ).

1. For any x3 ∈ R we have∫
R2

∫
R3

〈Q〉 (f, f)ϕ dvdx = −ω
2
c

2
× (25)

4∑
i=1

∫
R2

∫
R3

∫
R2

∫
R3

ff ′(ξi · ∇ ln f − εi(ξi)′∇′ ln f ′)(ξi · ∇ϕ− εi(ξi)′∇′ϕ′) dv′dx′ dvdx

where

f = f(x, v), f ′ = f ′(x′1, x
′
2, x3, v

′)

∇ϕ = ∇ωcx,vϕ(x, v), ∇′ϕ′ = ∇ωcx′,v′ϕ(x′1, x
′
2, x3, v

′)

ξi = ξi(x1, x2, v, x
′
1, x
′
2, v
′), (ξi)′ = ξi(x′1, x

′
2, v
′, x1, x2, v).

2. For any positive density f we have the inequality∫
R2

∫
R3

ln f 〈Q〉 (f, f) dvdx ≤ 0

with equality iff

ξi · ∇ ln f − εi(ξi)′ · ∇′ ln f ′ = 0, 1 ≤ i ≤ 4. (26)

3. The positive equilibria of the averaged Fokker-Planck-Landau kernel i.e., f > 0, 〈Q〉 (f, f) = 0

are the positive functions verifying (26).

Proof. 1. Notice that for any 1 ≤ i ≤ 4 we have ξi · (e3, 0) = 0 and therefore the operator divωcx,v

acts only in (x1, x2, v). Thus, for any fixed x3 ∈ R we can perform integration by parts with respect

to (x1, x2, v). ∫
R2

∫
R3

〈Q〉 (f, f)ϕ dvdx = −
4∑
i=1

ω2
c

∫
R2

∫
R3

∫
R2

∫
R3

ff ′ (27)

×
{

(ξi · ∇ϕ)(ξi · ∇ ln f)− εi(ξi · ∇ϕ)((ξi)′ · ∇′ ln f ′)
}

dv′dx′ dvdx.

Performing the change of variables (x′1, x
′
2, v
′)↔ (x1, x2, v) yields∫

R2

∫
R3

〈Q〉 (f, f)ϕ dvdx = −
4∑
i=1

ω2
c

∫
R2

∫
R3

∫
R2

∫
R3

ff ′ (28)

×
{

((ξi)′ · ∇′ϕ′)((ξi)′ · ∇′ ln f ′)− εi((ξi)′ · ∇′ϕ′)(ξi · ∇ ln f)
}

dvdx dv′dx′.
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Combining (27), (28) one gets by Fubini theorem∫
R2

∫
R3

〈Q〉 (f, f)ϕ dvdx = −ω
2
c

2

4∑
i=1

∫
R2

∫
R3

∫
R2

∫
R3

ff ′T i dv′dx′ dvdx

where

T i =
(
ξi · ∇ϕ− εi(ξi)′ · ∇′ϕ′

) (
ξi · ∇ ln f − εi(ξi)′ · ∇′ ln f ′

)
, 1 ≤ i ≤ 4.

2. Applying (25) with ϕ = ln f yields∫
R2

∫
R3

ln f 〈Q〉 (f, f) dvdx = −ω
2
c

2

4∑
i=1

∫
R2

∫
R3

∫
R2

∫
R3

ff ′

×
(
ξi · ∇ ln f − εi(ξi)′ · ∇′ ln f ′

)2
dv′dx′ dvdx ≤ 0, x3 ∈ R

with equality iff ξi · ∇ ln f − εi(ξi)′ · ∇′ ln f ′ = 0, 1 ≤ i ≤ 4.

3. Consider f a positive equilibrium of 〈Q〉. Therefore we have the equality∫
R2

∫
R3

ln f 〈Q〉 (f, f) dvdx = 0

and by the previous assertion we deduce (26). Conversely, let f be a positive density satisfying (26).

Then, for any function ϕ we have, thanks to (25)∫
R2

∫
R3

ϕ 〈Q〉 (f, f) dvdx = 0

implying that 〈Q〉 (f, f) = 0.

Remark 2.1 It is remarkable that the extension we have considered for 〈Q〉 (to the space of all positive

densities) still satisfies the balances stated in Proposition 2.1. This can be checked directly, thanks to

(25), verifying that for any ϕ ∈ C

ξi · ∇ϕ− εi(ξi)′ · ∇′ϕ′ = 0, 1 ≤ i ≤ 4.

Actually, as ξi · ∇x3 = ξi · (e3, 0)/ωc = 0, 1 ≤ i ≤ 4, it is enough to do it for the functions

1, ωcx+ ⊥v, v3,
|v|2

2
,
|ωcx+ ⊥v|2 − |v|2

2
.

For example, let us verify that

ξi · ∇|v|
2

2
− εi(ξi)′ · ∇′

|v′|2

2
= 0, 1 ≤ i ≤ 4.

The above condition is trivially satisfied for i ∈ {1, 2}. For i = 3 we have

ξ3 · ∇|v|
2

2
− ε3(ξ3)′ · ∇′ |v

′|2

2
= −{σχ}1/2 r

′ sinϕ

|z|
r + {σχ}1/2 r sinϕ

|z|
r′ = 0.

Finally, when i = 4 we obtain

ξ4 · ∇|v|
2

2
− ε4(ξ4)′ · ∇′ |v

′|2

2

= {σχ}1/2
{
− (r′ cosϕ− r)(v3 − v′3)r + |z|2v3

|z|
√
|z|2 + (v3 − v′3)2

+
(r cosϕ− r′)(v′3 − v3)r′ + |z|2v′3

|z|
√
|z|2 + (v3 − v′3)2

}

= {σχ}1/2 v3 − v′3
|z|
√
|z|2 + (v3 − v′3)2

[
r2 + (r′)2 − 2rr′ cosϕ− |z|2

]
= 0.
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Remark 2.2 The previous balances follow also by the argument below. Any local (in x) Maxwellian

f(x, v) = exp(α(x)|v|2 + β(x) · v + γ(x)) which belongs to ker T is a equilibrium for 〈Q〉, since

〈Q〉 (f, f) = 〈Q(f, f)〉 = 〈0〉 = 0.

We deduce by the third statement of Theorem 2.1 that

ξi · ∇ϕ− εi(ξi)′ · ∇′ϕ′ = 0, 1 ≤ i ≤ 4

for any function ϕ(x, v) = α(x)|v|2 + β(x) · v + γ(x) in the kernel of T , and in particular for the

functions

1, ωcx+ ⊥v, v3,
|v|2

2
,
|ωcx+ ⊥v|2 − |v|2

2
=
ω2
c |x|2 − 2ωc(

⊥x · v)

2
.

We conclude by the first statement in Theorem 2.1.

3 The equilibria of the averaged Fokker-Planck-Landau col-

lision operator

We determine now the positive equilibria of 〈Q〉 by solving (26) for any 1 ≤ i ≤ 4. We recall that

ψ1 = x1 +
v2
ωc
, ψ2 = x2 −

v1
ωc
, ψ3 = x3, ψ4 = |v|, ψ5 = v3

is a family of independent invariants for T = v · ∇x + ωc
⊥v · ∇v. We start solving the equation

(26) which corresponds to i = 1. Then we restrict this set of solutions by imposing successively the

equation (26) with i = 2, i = 3 and i = 4. It is the only place where we use the explicit form of the

vector fields (ξi)1≤i≤4, entering the expression of 〈Q〉. These computations are a little bit tedious, but

finally they will provide the product of Maxwellians realizing the equilibria of 〈Q〉, parametrized by

the moments ρ, u,K,G. Moreover, we should pay attention to the fact that the probability measure

χ enters as a factor any vector field (ξi)1≤i≤4 and therefore each equality in (26) is non trivial only

on the support of χ, that is, only for pairs of Larmor circles having non empty intersection. All these

proofs are postponed to Appendix A. For another proof, which avoid the explicit computation of the

vector fields (ξi)1≤i≤4, we refer to Proposition 3.5. For simplicity we do not care about the regularity

of the solutions. All the derivatives are understood in the classical sense and we are looking for smooth

solutions.

Proposition 3.1 The positive densities satisfying

ξ1 · ∇ ln f + (ξ1)′ · ∇′ ln f ′ = 0 (29)

are those in the kernel of T .

Proposition 3.2 The positive densities satisfying (29) and

ξ2 · ∇ ln f + (ξ2)′ · ∇′ ln f ′ = 0 (30)
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are those of the form

f(x, v) = exp

(
α(x3)

2

∣∣∣∣x+
⊥v

ωc

∣∣∣∣2 + β(x3) ·
(
x+

⊥v

ωc

)
+ λ(x3, |v|, v3)

)

for some functions α : R→ R, β = (β1, β2) : R→ R2, λ : R× R+ × R→ R.

Solving for i = 3 in (26), we will determine the particular form of the function λ(x3, |v|, v3).

Proposition 3.3 The positive densities satisfying (29), (30) and

ξ3 · ∇ ln f − (ξ3)′ · ∇′ ln f ′ = 0 (31)

are of the form

f(x, v) = exp

(
α(x3)

2

∣∣∣∣x+
⊥v

ωc

∣∣∣∣2 + β(x3) ·
(
x+

⊥v

ωc

)
+ γ(x3)

|v|2

2
+ µ(x3, v3)

)

for some functions α, γ : R→ R, β : R→ R2, µ : R2 → R.

It remains to determine the function µ(x3, v3). This will be done by solving (26) with i = 4, and we

deduce that µ is a quadratic function of v3, with coefficients depending on x3.

Proposition 3.4 The positive densities satisfying (29), (30), (31) and

ξ4 · ∇ ln f − (ξ4)′ · ∇′ ln f ′ = 0 (32)

are of the form

f(x, v) = exp

{
α(x3)

2

∣∣∣∣x+
⊥v

ωc

∣∣∣∣2 + β(x3) ·
(
x+

⊥v

ωc

)
+ γ(x3)

|v|2

2

+

(
γ(x3) +

α(x3)

ω2
c

)
(v3)2

2
+ δ(x3)v3 + η(x3)

}
for some functions α, γ, δ, η : R→ R, β : R→ R2.

We present now an alternative proof of the results stated in Propositions 3.1, 3.2, 3.3, 3.4. This

approach does not require neither the exact computation of the averaged Fokker-Planck-Landau

collision kernel, nor the resolution of (26).

Proposition 3.5 The positive densities f in the kernel of T satisfying 〈Q〉 (f, f) = 0 are of the form

ln f(x, v) =
α(x3)

2

∣∣∣∣x+
⊥v

ωc

∣∣∣∣2 + β(x3) ·
(
x+

⊥v

ωc

)
+ γ(x3)

|v|2

2
(33)

+

(
γ(x3) +

α(x3)

ω2
c

)
(v3)2

2
+ δ(x3)v3 + η(x3)

for some functions α, γ, δ, η : R→ R, β : R→ R2.

Proof. Clearly any positive density f in (33) is a Maxwellian satisfying the constraint T f = 0 and

〈Q〉 (f, f) = 〈Q(f, f)〉 = 〈0〉 = 0.
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Conversely, let us consider a positive density f satisfying T f = 0, 〈Q〉 (f, f) = 0 and observe that for

any x3 ∈ R we can write

0 =

∫
R2

∫
R3

ln f 〈Q〉 (f, f) dvdx =

∫
R2

∫
R3

ln f 〈Q(f, f)〉 dvdx

=

∫
R2

∫
R3

ln f(x, v) Q(f(x, ·), f(x, ·))(v) dvdx ≤ 0

since for any x = (x, x3) we have the inequality∫
R3

ln f(x, v) Q(f(x, ·), f(x, ·))(v) dv ≤ 0. (34)

We deduce that for any x = (x, x3) we have equality in (34), which implies that f(x, ·) is a local

Maxwellian i.e.,

ln f(x, v) =
A(x)

ω2
c

|v|2

2
+B(x) ·

⊥v

ωc
+ δ(x)v3 + C(x)

for some functions A,B1, B2, δ, C : R3 → R. We have to determine the structure of the previous

functions, such that the constraint T f = 0 holds true. Observe that

0 = T ln f =
v · ∇xA
ω2
c

|v|2

2
− ∂x

⊥B : v ⊗ v
ωc

−B · v + v · ∇xδ v3 + v · ∇xC.

Clearly, the third (higher) order term in velocity vanishes, saying that ∇xA = 0, or equivalently

A = A(x3) and

−∂x
⊥B : v ⊗ v
ωc

−B · v + v · ∇xδ v3 + v · ∇xC = 0.

Similarly δ = δ(x3) and the second order term in v vanishes

∂x
⊥B : v ⊗ v = 0

implying that ∂x
⊥B is antisymmetric

∂x1
B2 = ∂x2

B1 = 0, ∂x1
B1 = ∂x2

B2, ∇xC = B.

We obtain immediately that there is a function α = α(x3) such that

∂x1
B1(x1, x3) = α(x3) = ∂x2

B2(x2, x3)

and thus B = β(x3) + α(x3)x for some functions β = (β1(x3), β2(x3)). The function C writes

C(x) = β(x3) · x+ α(x3)
|x|2

2
+ η(x3)

and finally

ln f(x, v) =
A(x3)

ω2
c

|v|2

2
+ β(x3) ·

(
x+

⊥v

ωc

)
+ α(x3)x ·

⊥v

ωc
+ δ(x3)v3 + α(x3)

|x|2

2
+ η(x3)

=
α(x3)

2

∣∣∣∣x+
⊥v

ωc

∣∣∣∣2 + β(x3) ·
(
x+

⊥v

ωc

)
+
A(x3)− α(x3)

ω2
c

|v|2

2
+
A(x3)

ω2
c

(v3)2

2

+ δ(x3)v3 + η(x3).

We have obtained for ln f the form in (33), taking γ(x3) = (A(x3)− α(x3))/ω2
c .
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It is easily seen that any equilibrium of the averaged Fokker-Planck-Landau kernel can be written

ln f(x, v) =
α(x3)

ω2
c

|ωcx+ ⊥v|2 − |v|2

2
+
β(x3)

ωc
· (ωcx+ ⊥v) +

(
γ(x3) +

α(x3)

ω2
c

)
|v|2

2

+ δ(x3)v3 + η(x3)

and appears as a linear combination (with coefficients depending on x3) of functions which are balanced

by 〈Q〉, globally in (x, v)∫
R2

∫
R3

〈Q〉 dvdx = 0,

∫
R2

∫
R3

(ωcx+ ⊥v, v3) 〈Q〉 dvdx = (0, 0, 0)

∫
R2

∫
R3

|v|2

2
〈Q〉 dvdx = 0,

∫
R2

∫
R3

|ωcx+ ⊥v|2 − |v|2

2
〈Q〉 dvdx = 0.

Clearly, up to a factor depending on x3, the equilibrium f writes

f ∼ exp

(
− |v|

2 + (v3 − u3(x3))2

2θ(x3)

)
exp

(
− |ωcx+ ⊥v − u(x3)|2 − |v|2

2µ(x3)

)
for some functions u(x3) = (u1, u2, u3)(x3), θ(x3), µ(x3), or equivalently as a product of three Maxwellians

f ∼ 1

2π µθ
µ−θ

exp

(
− |v|

2

2 µθ
µ−θ

)
1

(2πθ)1/2
exp

(
− (v3 − u3)2

2θ

)
1

2πµ
exp

(
−|ωcx+ ⊥v − u|2

2µ

)
.

Motivated by the above considerations, we parametrize the equilibria of 〈Q〉 by six functions ρ, u =

(u1, u2, u3), θ, µ, as announced by (14). It will be very useful, for the moment computations, to

introduce the following representation for such equilibria. These decomposition will be the starting

point for many development involving the moments, the entropy, ...

f(x, v) =
ρ(x3)ω2

c

(2π)5/2 µ2θ3/2

µ−θ

exp

(
−|v|

2 + (v3 − u3(x3))2

2θ(x3)

)
exp

(
−|ωcx+ ⊥v − u(x3)|2 − |v|2

2µ(x3)

)
(35)

=
ρ(x3)

2π µθ
µ−θ

exp

(
− |v|

2

2 µθ
µ−θ

)
1

(2πθ)1/2
exp

(
− (v3 − u3(x3))2

2θ

)
× ω2

c

2πµ
exp

(
−|ωcx+ ⊥v − u(x3)|2

2µ

)
.

For integrability reasons we assume that µ > θ > 0. The functions ρ, u, θ, µ are uniquely determined

by the moments of f with respect to

1, ωcx+ ⊥v, v3,
|v|2

2
,
|ωcx+ ⊥v|2 − |v|2

2
.

Proposition 3.6 For any (ρ, u1, u2, u3,K,G) ∈ R6, ρ > 0,K > 0,K +G > 0 there is a unique local

(in x3) equilibrium f = f(x, v) for 〈Q〉 satisfying∫
R2

∫
R3

f dvdx = ρ,

∫
R2

∫
R3

(ωcx+ ⊥v, v3)f dvdx = ρu

∫
R2

∫
R3

|v|2

2
f dvdx = ρ

(u3)2

2
+ ρK,

∫
R2

∫
R3

|ωcx+ ⊥v|2 − |v|2

2
f dvdx = ρ

|u|2

2
+ ρG.
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Proof. We are searching for a positive local equilibrium f = f(x, v) parametrized by ρ̃, ũ, θ, µ. For any

dimension d and real number T > 0, the notation Md
T (w) stands for the Maxwellian of temperature

T in Rd

Md
T (w) =

1

(2πT )d/2
exp

(
−|w|

2

2T

)
, w ∈ Rd.

For simplicity we drop the index d, but the reader should keep in mind that the Maxwellian dimension

is that of the variable taken as argument. The equilibrium f writes, cf. (35)

f(x, v) = ρ̃M µθ
µ−θ

(v)Mθ(v3 − ũ3) ω2
cMµ(ωcx+ ⊥v − ũ).

Clearly, integrating first with respect to x for any fixed v and performing the change of variable

ω2
cdx = d(ωcx+ ⊥v − ũ) yield ∫

R2

∫
R3

f(x, v) dvdx = ρ̃

and thus ρ̃ = ρ. Similarly∫
R2

∫
R3

(ωcx+ ⊥v)f dvdx =

∫
R2

∫
R3

(ωcx+ ⊥v − ũ+ ũ)f dvdx =

∫
R2

∫
R3

ũf dvdx = ρ̃ũ

∫
R2

∫
R3

v3f dvdx =

∫
R2

∫
R3

(v3 − ũ3 + ũ3)f dvdx =

∫
R2

∫
R3

ũ3f dvdx = ρ̃ũ3.

Therefore ũ = u and the parameters (ũ1,ũ2)
ωc

, ũ3 appear as the mean Larmor center and the mean

parallel velocity of the local equilibrium f(x, v). It remains to determine θ and µ. On the one hand

notice that∫
R2

∫
R3

|v|2 + (v3 − u3)2

2
f(x, v) dvdx =

∫
R2

∫
R3

|v|2

2
f dvdx−

∫
R2

∫
R3

(u3)2

2
f dvdx = ρK

and ∫
R2

∫
R3

|ωcx+ ⊥v − u|2 − |v|2

2
f(x, v) dvdx =

∫
R2

∫
R3

|ωcx+ ⊥v|2 − |v|2

2
f dvdx

−
∫
R2

∫
R3

|u|2

2
f dvdx = ρG.

On the other hand, using several times the formula∫
Rd
|w|2MT (w) dw = T

∫
Rd
|w|2M1(w) dw = −T

∫
Rd
w · ∇wM1(w) dw = Td (36)

yields

1

ρ

∫
R2

∫
R3

|v|2 + (v3 − u3)2

2
f dvdx (37)

=

∫
R2

∫
R3

|v|2

2
M µθ

µ−θ
(v)Mθ(v3 − u3) ω2

cMµ(ωcx+ ⊥v − u) dvdx

+

∫
R2

∫
R3

M µθ
µ−θ

(v)
(v3 − u3)2

2
Mθ(v3 − u3) ω2

cMµ(ωcx+ ⊥v − u) dvdx

=
µθ

µ− θ
+
θ

2
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and

1

ρ

∫
R2

∫
R3

|ωcx+ ⊥v − u|2 − |v|2

2
f dvdx (38)

=

∫
R2

∫
R3

M µθ
µ−θ

(v)Mθ(v3 − u3)
|ωcx+ ⊥v − u|2

2
ω2
cMµ(ωcx+ ⊥v − u) dvdx

−
∫
R2

∫
R3

|v|2

2
M µθ

µ−θ
(v)Mθ(v3 − u3) ω2

cMµ(ωcx+ ⊥v − u) dvdx

= µ− µθ

µ− θ
.

We are done if we prove that there is a unique solution θ, µ satisfying µ > θ > 0, for the system

µθ

µ− θ
+
θ

2
= K, µ− µθ

µ− θ
= G.

We solve with respect to ν := µ
θ > 1 which can be expressed in terms of S := G

K . Indeed, ν satisfies

2ν
ν − 2

3ν − 1
=
µ− µθ

µ−θ
µθ
µ−θ + θ

2

=
G

K
= S > −1

or equivalently

2(ν − 1)2 − 3S(ν − 1)− 2(S + 1) = 0.

The above equation of the unknown (ν−1) has one positive and one negative root, since their product

is −(S + 1) = −G+K
K < 0. Then the ratio ν = µ

θ > 1 is given by

ν =
4 + 3S +

√
9S2 + 16(S + 1)

4
.

Combining with the equation θ
2 + µ = K +G we obtain

θ =
K +G

1/2 + ν
> 0, µ = νθ = ν

K +G

1/2 + ν
> θ.

Remark 3.1 Any positive density f(x, v) satisfies∫
R2

∫
R3

|v|2 + (v3 − u3)2

2
f dvdx+

∫
R2

∫
R3

|ωcx+ ⊥v − u|2 − |v|2

2
f dvdx

=

∫
R2

∫
R3

|ωcx+ ⊥v − u|2 + (v3 − u3)2

2
f dvdx > 0

which justifies the hypothesis K +G > 0.

4 The fluid model near gyrokinetic equilibria

In this section we investigate the fluid approximation of the model (13) when the collision mechanism

dominates the transport. Clearly we are interested on regimes close to gyrokinetic equilibria. For

simplicity we neglect the perpendicular electric field and we assume that the parallel electric field

depends only on (t, x3) and thus 〈E3〉 = E3. The equation (13) becomes

∂tf
τ + v3∂x3

fτ +
q

m
E3(t, x3)∂v3f

τ =
1

τ
〈Q〉 (fτ , fτ ), (t, x, v) ∈ R+ × R3 × R3 (39)
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and we intend to analyse the asymptotic behavior for small τ . Formally we have

fτ = f + τf1 + τ2f2 + ... (40)

Following the standard arguments which allow us to derive the Euler equations starting from the

kinetic description when the collisions dominate the transport [1, 2, 22, 23], we determine the leading

order term in the expansion (40) by the conditions

〈Q〉 (f, f) = 0,

∫
R2

∫
R3

{∂tf + v3∂x3f +
q

m
E3∂v3f}ϕ(x, v) dvdx = 0, (t, x3) ∈ R+ × R

for any average collision invariant ϕ of the family

1, ωcx+ ⊥v, v3,
|v|2

2
,
|ωcx+ ⊥v|2 − |v|2

2
.

For any (t, x3) ∈ R+ × R, the density (x, v) → f(t, x, x3, v) is a local gyrokinetic equilibrium and

writes, cf. (35)

f(t, x, v) = ρ(t, x3)M µθ
µ−θ

(v)Mθ(v3 − u3(t, x3)) ω2
cMµ(ωcx+ ⊥v − u(t, x3)) (41)

for some functions ρ, u = (u1, u2, u3), θ, µ depending on (t, x3). The microscopic density f is deter-

mined by its moments whose evolution comes by imposing the balances corresponding to each collision

invariant. Using the collision invariant ϕ = 1 leads to the continuity equation

∂tρ+ ∂x3
(ρu3) = 0, (t, x3) ∈ R+ × R. (42)

In order to obtain the other conservation laws in Theorem 1.1 we need essentially to compute the first

and second order moments, together with their fluxes (see Appendix A for details).

Lemma 4.1 For any local gyrokinetic equilibria cf. (35)

f(x, v) = ρ(x3)M µθ
µ−θ

(v)Mθ(v3 − u3(x3)) ω2
cMµ(ωcx+ ⊥v − u(x3))

we have ∫
R2

∫
R3

v3(ωcx+ ⊥v, v3)f(x, v) dvdx = ρ(u3u, (u3)2 + θ)

and ∫
R2

∫
R3

(ωcx+ ⊥v, v3)∂v3f dvdx = (0, 0,−ρ).

Lemma 4.2 For any local gyrokinetic equilibria cf. (35)

f(x, v) = ρ(x3)M µθ
µ−θ

(v)Mθ(v3 − u3(x3)) ω2
cMµ(ωcx+ ⊥v − u(x3))

we have ∫
R2

∫
R3

v3
|v|2 + (v3 − u3)2

2
f(x, v) dvdx = ρu3

(
µθ

µ− θ
+
θ

2

)
∫
R2

∫
R3

v3
|ωcx+ ⊥v − u|2 − |v|2

2
f(x, v) dvdx = ρu3

(
µ− µθ

µ− θ

)
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∫
R2

∫
R3

v3
|v|2 + (v3 − u3)2

2
∂x3

f(x, v) dvdx = ∂x3

[
ρu3

(
µθ

µ− θ
+
θ

2

)]
+ ρθ∂x3

u3

∫
R2

∫
R3

v3
|ωcx+ ⊥v − u|2 − |v|2

2
∂x3

f dvdx = ∂x3

[
ρu3

(
µ− µθ

µ− θ

)]

∫
R2

∫
R3

|v|2 + (v3 − u3)2

2
∂v3f(x, v) dvdx =

∫
R2

∫
R3

|ωcx+ ⊥v − u|2 − |v|2

2
∂v3f dvdx = 0.

We will also need to compute the macroscopic entropy
∫
R2

∫
R3 f ln f dvdx and its parallel flux∫

R2

∫
R3 v3f ln f dvdx associated to any local gyrokinetic equilibrium f (see Appendix A for details).

Lemma 4.3 For any local gyrokinetic equilibrium cf. (35)

f(x, v) = ρ(x3)M µθ
µ−θ

(v)Mθ(v3 − u3(x3)) ω2
cMµ(ωcx+ ⊥v − u(x3))

we have ∫
R2

∫
R3

f ln f dvdx = ρ ln

(
ρ ω2

c

(2π)5/2 µ2θ3/2

µ−θ

)
− 5

2
ρ

and ∫
R2

∫
R3

v3f ln f dvdx = ρu3 ln

(
ρ ω2

c

(2π)5/2 µ2θ3/2

µ−θ

)
− 5

2
ρu3.

We are ready to derive the macroscopic limit model stated in Theorem 1.1 for strong collisional

regimes in the gyrokinetic framework.

Proof. (of Theorem 1.1)

We have already deduced the continuity equation (42), appealing to the collision invariant ϕ = 1.

Using the collision invariants ωcx+ ⊥v, v3 yields

∂t

∫
R2

∫
R3

(ωcx+ ⊥v)f dvdx+

∫
R2

∫
R3

v3(ωcx+ ⊥v)∂x3
f dvdx

+
q

m
E3

∫
R2

∫
R3

(ωcx+ ⊥v)∂v3f dvdx = 0

∂t

∫
R2

∫
R3

v3f dvdx+

∫
R2

∫
R3

(v3)2∂x3
f dvdx+

q

m
E3

∫
R2

∫
R3

v3∂v3f dvdx = 0.

Thanks to Lemma 4.1 one gets

∂t(ρu) + ∂x3
(ρu3u) = 0 (43)

∂t(ρu3) + ∂x3
[ρ((u3)2 + θ)]− q

m
E3ρ = 0. (44)

Appealing now to the collision invariant |v|
2+(v3−u3)

2

2 yields∫
R2

∫
R3

|v|2 + (v3 − u3)2

2
∂tf dvdx+

∫
R2

∫
R3

v3
|v|2 + (v3 − u3)2

2
∂x3

f dvdx (45)

+
q

m
E3

∫
R2

∫
R3

|v|2 + (v3 − u3)2

2
∂v3f dvdx = 0.
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Notice that (37) allows us to write∫
R2

∫
R3

|v|2 + (v3 − u3)2

2
∂tf dvdx = ∂t

∫
R2

∫
R3

|v|2 + (v3 − u3)2

2
f dvdx

−
∫
R2

∫
R3

(u3 − v3)∂tu3f dvdx = ∂t

[
ρ

(
µθ

µ− θ
+
θ

2

)]
and therefore, thanks to Lemma 4.2, (45) reduces to

∂t

[
ρ

(
µθ

µ− θ
+
θ

2

)]
+ ∂x3

[
ρu3

(
µθ

µ− θ
+
θ

2

)]
+ ρθ ∂x3u3 = 0. (46)

The previous equation can be written in conservative form, replacing the collision invariant |v|
2+(v3−u3)

2

2

by |v|
2

2 . In this case we have∫
R2

∫
R3

|v|2

2
f dvdx =

∫
R2

∫
R3

|v|2 + (v3 − u3)2

2
f dvdx+

∫
R2

∫
R3

(u3)2

2
f dvdx = ρ

(
µθ

µ− θ
+
θ

2
+

(u3)2

2

)
∫
R2

∫
R3

v3
|v|2

2
f dvdx = u3

∫
R2

∫
R3

|v|2

2
f dvdx+

∫
R2

∫
R3

u3(v3 − u3)2f dvdx

= u3ρ

(
µθ

µ− θ
+

3θ

2
+

(u3)2

2

)
∫
R2

∫
R3

|v|2

2
∂v3f dvdx = −

∫
R2

∫
R3

v3f dvdx = −ρu3.

We obtain

∂t

∫
R2

∫
R3

|v|2

2
f dvdx+ ∂x3

∫
R2

∫
R3

v3
|v|2

2
f dvdx+

q

m
E3

∫
R2

∫
R3

|v|2

2
∂v3f dvdx = 0

or equivalently

∂t

[
ρ

(
µθ

µ− θ
+
θ

2
+

(u3)2

2

)]
+ ∂x3

[
u3ρ

(
µθ

µ− θ
+

3θ

2
+

(u3)2

2

)]
− q

m
E3ρu3 = 0.

Finally, the last collision invariant |ωcx+
⊥v−u|2−|v|2

2 gives∫
R2

∫
R3

|ωcx+ ⊥v − u|2 − |v|2

2
∂tf dvdx+

∫
R2

∫
R3

v3
|ωcx+ ⊥v − u|2 − |v|2

2
∂x3

f dvdx (47)

+
q

m
E3

∫
R2

∫
R3

|ωcx+ ⊥v − u|2 − |v|2

2
∂v3f dvdx = 0.

Using (38) we deduce that∫
R2

∫
R3

|ωcx+ ⊥v − u|2 − |v|2

2
∂tf dvdx = ∂t

∫
R2

∫
R3

|ωcx+ ⊥v − u|2 − |v|2

2
f dvdx

−
∫
R2

∫
R3

(u− ωcx− ⊥v) · ∂tuf dvdx = ∂t

[
ρ

(
µ− µθ

µ− θ

)]
and Lemma 4.2 applied to the other terms in (47) implies

∂t

[
ρ

(
µ− µθ

µ− θ

)]
+ ∂x3

[
ρu3

(
µ− µθ

µ− θ

)]
= 0. (48)
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We write the balance of the microscopic entropy f ln f and we deduce a new conservation law (in

other words we construct a macroscopic entropy). Indeed, multiplying (39) by 1 + ln fτ yields after

integration with respect to (x, v)

∂t

∫
R2

∫
R3

fτ ln fτ dvdx+ ∂x3

∫
R2

∫
R3

v3f
τ ln fτ dvdx =

1

τ

∫
R2

∫
R3

(1 + ln fτ ) 〈Q〉 (fτ , fτ ) dvdx (49)

=
1

τ

∫
R2

∫
R3

ln fτ 〈Q〉 (fτ , fτ ) dvdx.

But thanks to Theorem 2.1 we know that for any (t, x3) ∈ R+ × R and τ > 0∫
R2

∫
R3

ln fτ 〈Q〉 (fτ , fτ ) dvdx ≤ 0

and therefore, passing formally to the limit when τ ↘ 0 in (49) implies

∂t

∫
R2

∫
R3

f ln f dvdx+ ∂x3

∫
R2

∫
R3

v3f ln f dvdx ≤ 0. (50)

By Lemma 4.3 we know that∫
R2

∫
R3

f ln f dvdx = ρ ln

(
ρ ω2

c

(2π)5/2 µ2θ3/2

µ−θ

)
− 5

2
ρ

∫
R2

∫
R3

v3f ln f dvdx = ρu3 ln

(
ρ ω2

c

(2π)5/2 µ2θ3/2

µ−θ

)
− 5

2
ρu3

and (50) reduces to

∂t

[
ρ ln

(
ρ ω2

c

(2π)5/2 µ2θ3/2

µ−θ

)
− 5

2
ρ

]
+ ∂x3

[
ρu3 ln

(
ρ ω2

c

(2π)5/2 µ2θ3/2

µ−θ

)
− 5

2
ρu3

]
≤ 0.

Combining with the continuity equation (42), we obtain the entropy inequality

∂t

[
ρ ln

(
ρ

µ2θ3/2

µ−θ

)]
+ ∂x3

[
ρu3 ln

(
ρ

µ2θ3/2

µ−θ

)]
≤ 0. (51)

When the solution (ρ, u, θ, µ) is smooth, the reader can check by standard computations, similar to

those used when dealing with the Euler equations, that the inequality in (51) becomes equality, being

a consequence of the previous conservation laws (42), (43), (44), (46), (48).

5 Linearization of the averaged Fokker-Planck-Landau oper-

ator

Another important issue is the derivation of a simplified averaged Fokker-Planck-Landau operator,

when the density is close to the equilibrium. The natural way to do it is to neglect the second

order fluctuations around the equilibrium, which makes sense for example in the strongly collisional

regime. The key point is that the resulting simplified kernel still keeps the main features of the original
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averaged Fokker-Planck-Landau kernel. For any positive density f = f(x, v) we denote by Ef the

equilibrium of 〈Q〉 having the same moments as f∫
R2

∫
R3

(Ef − f) dvdx = 0,

∫
R2

∫
R3

(ωcx+ ⊥v, v3)(Ef − f) dvdx = 0

∫
R2

∫
R3

|v|2

2
(Ef − f) dvdx = 0,

∫
R2

∫
R3

|ωcx+ ⊥v|2 − |v|2

2
(Ef − f) dvdx = 0.

Proof. (of Theorem 1.2)

We assume that f is close to Ef and by neglecting the terms of order (f −Ef )2 one gets the first order

approximation, denoted by L(f)

ω−2c 〈Q〉 (f, f) = ω−2c 〈Q〉 (f, f)− ω−2c 〈Q〉 (Ef , Ef ) (52)

=

4∑
i=1

divωcx,v

∫
R2

∫
R3

{f(x′, v′)ξi(x, v, x′, v′)⊗ ξi(x, v, x′, v′)∇ωcx,vf(x, v)

− Ef (x′, v′)ξi(x, v, x′, v′)⊗ ξi(x, v, x′, v′)∇ωcx,vEf (x, v)} dv′dx′

−
4∑
i=1

divωcx,v

∫
R2

∫
R3

{f(x, v)ξi(x, v, x′, v′)⊗ εiξi(x′, v′, x, v)∇ωcx′,v′f(x′, v′)

− Ef (x, v)ξi(x, v, x′, v′)⊗ εiξi(x′, v′, x, v)∇ωcx′,v′Ef (x′, v′)} dv′dx′

≈
4∑
i=1

divωcx,v

∫
R2

∫
R3

{E ′fξi ⊗ ξi∇(f − Ef ) + (f ′ − E ′f )ξi ⊗ ξi∇Ef} dv′dx′

−
4∑
i=1

divωcx,v

∫
R2

∫
R3

{Efξi ⊗ εi(ξi)′∇′(f ′ − E ′f ) + (f − Ef )ξi ⊗ εi(ξi)′∇′E ′f} dv′dx′

=: ω−2c L(f).

We have used the notations

f = f(x, v), f ′ = f(x′, v′), Ef = Ef (x, v), E ′f = Ef (x′, v′)

ξi = ξi(x, v, x′, v′), (ξi)′ = ξi(x′, v′, x, v), ∇ = ∇ωcx,v, ∇′ = ∇ωcx′,v′ .

Since Ef is an equlibrium, we know by Theorem 2.1 that

ξi · ∇ ln Ef − εi(ξi)′ · ∇′ ln E ′f = 0, 1 ≤ i ≤ 4

and therefore

E ′fξi ⊗ ξi∇(f − Ef )− (f − Ef )ξi ⊗ εi(ξi)′∇′E ′f = (53)

= EfE ′f
{
ξi ⊗ ξi∇(f − Ef )

Ef
− f − Ef

Ef
ξi ⊗ εi(ξi)′∇′ ln E ′f

}
= EfE ′f

{
ξi ⊗ ξi∇(f − Ef )

Ef
− f − Ef

Ef
ξi ⊗ ξi∇ ln Ef

}
= EfE ′fξi ⊗ ξi∇

(
f − Ef
Ef

)
= EfE ′fξi ⊗ ξi∇

(
f

Ef

)
.
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Similarly one gets

(f ′ − E ′f )ξi ⊗ ξi∇Ef − Efξi ⊗ εi(ξi)′∇′(f ′ − E ′f ) = (54)

= EfE ′f

{
f ′ − E ′f
E ′f

ξi ⊗ ξi∇ ln Ef − ξi ⊗ εi(ξi)′
∇′(f ′ − E ′f )

E ′f

}

= EfE ′f

{
f ′ − E ′f
E ′f

ξi ⊗ εi(ξi)′∇′ ln E ′f − ξi ⊗ εi(ξi)′
∇′(f ′ − E ′f )

E ′f

}

= −EfE ′fξi ⊗ εi(ξi)′∇′
(
f ′ − E ′f
E ′f

)
= −EfE ′fξi ⊗ εi(ξi)′∇′

(
f ′

E ′f

)
.

Combining (52), (53), (54) leads to the following expression for the first order approximation of 〈Q〉

near equilibrium

ω−2c L(f) =

4∑
i=1

divωcx,v

∫
R2

∫
R3

EfE ′f

{
ξi ⊗ ξi∇

(
f

Ef

)
− ξi ⊗ εi(ξi)′∇′

(
f ′

E ′f

)}
dv′dx′ (55)

=

4∑
i=1

divωcx,v

∫
R2

∫
R3

EfE ′f

{
ξi · ∇

(
f

Ef

)
− εi(ξi)′ · ∇′

(
f ′

E ′f

)}
ξi dv′dx′.

We justify now the properties of L.

1. Integrating by parts with respect to (x, v) we obtain∫
R2

∫
R3

L(f)ϕ dvdx = −
4∑
i=1

ω2
c

∫
R2

∫
R3

∫
R2

∫
R3

EfE ′f

×

{
(ξi · ∇ϕ)

[
ξi · ∇

(
f

Ef

)]
− εi(ξi · ∇ϕ)

[
(ξi)′ · ∇′

(
f ′

E ′f

)]}
dv′dx′ dvdx.

Performing the change of variables (x′, v′)↔ (x, v) yields∫
R2

∫
R3

L(f)ϕ dvdx = −
4∑
i=1

ω2
c

∫
R2

∫
R3

∫
R2

∫
R3

EfE ′f

×

{
((ξi)′ · ∇′ϕ′)

[
(ξi)′ · ∇′

(
f ′

E ′f

)]
− εi((ξi)′ · ∇′ϕ′)

[
ξi · ∇

(
f

Ef

)]}
dvdx dv′dx′.

Combining the above equalities gives∫
R2

∫
R3

L(f)ϕ dvdx = −ω
2
c

2

4∑
i=1

∫
R2

∫
R3

∫
R2

∫
R3

EfE ′fSi dv′dx′ dvdx

where

Si =
(
ξi · ∇ϕ− εi(ξi)′ · ∇′ϕ′

) [
ξi · ∇

(
f

Ef

)
− εi(ξi)′ · ∇′

(
f ′

E ′f

)]
, 1 ≤ i ≤ 4.

2. It comes immediately by taking ϕ = f/Ef in (16).

3. If f is a positive equilibrium of 〈Q〉, we have f = Ef and therefore L(f) = 0. Conversely, assume

that f is a positive equilibrium of L. Then we have equality in (17), saying that

ξi · ∇
(
f

Ef

)
− εi(ξi)′ · ∇′

(
f ′

E ′f

)
= 0, 1 ≤ i ≤ 4. (56)
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We consider the Hilbert space L2
Ef = {g(x, v) :

∫
R2

∫
R3 g

2/Ef dvdx < +∞} endowed with the scalar

product

(g, h)L2
Ef

=

∫
R2

∫
R3

gh

Ef
dvdx, g, h ∈ L2

Ef

and the linear operator lf given by

ω−2c lf (g) =

4∑
i=1

divωcx,v

∫
R2

∫
R3

EfE ′f

{
ξi · ∇

(
g

Ef

)
− εi(ξi)′ · ∇′

(
g′

E ′f

)}
ξi dv′dx′.

Obviously f − Ef belongs to the kernel of lf . By the first statement we deduce that

(lf (g), h)L2
Ef

= −ω
2
c

2

4∑
i=1

∫
R2

∫
R3

∫
R2

∫
R3

EfE ′f

(
ξi · ∇

(
g

Ef

)
− εi(ξi)′ · ∇′

(
g′

E ′f

))

×

(
ξi · ∇

(
h

Ef

)
− εi(ξi)′ · ∇′

(
h′

E ′f

))
dv′dx′ dvdx

saying that lf is symmetric with respect to the scalar product (·, ·)L2
Ef

. Moreover, it is easily seen that

g ∈ ker lf iff

ξi · ∇ ln

(
exp

(
g

Ef

))
− εi(ξi)′ · ∇′ ln

(
exp

(
g′

E ′f

))
= 0, 1 ≤ i ≤ 4. (57)

Thanks to Proposition 3.4, (57) implies that g ∈ ker lf iff g/Ef = ln exp(g/Ef ) is a linear combination

of the collision invariants

1, ωcx+ ⊥v, v3,
|v|2

2
,
|ωcx+ ⊥v|2 − |v|2

2
.

In particular, since f and Ef have the same moments with respect to the above collision invariants,

for any g ∈ ker lf one gets

(f − Ef , g)L2
Ef

=

∫
R2

∫
R3

(f − Ef )
g

Ef
dvdx = 0

saying that f − Ef ∈ (ker lf )⊥. Finally f − Ef ∈ ker lf ∩ (ker lf )⊥ = {0} and thus f = Ef .

The first order approximation of 〈Q〉 near equilibria (see (55)) inherits all the properties of 〈Q〉,

nevertheless its structure remains complex. Using L instead of 〈Q〉 requires almost the same compu-

tational effort. A classical way to circumvent these efforts relies on the BGK approximation of 〈Q〉,

which writes

LBGK = −(f − Ef ).

The properties of the BGK operator associated to 〈Q〉 are summarized below.

Theorem 5.1 1. For any f = f(x, v) and ϕ = ϕ(x, v) > 0 we have∫
R2

∫
R3

LBGK(f) lnϕ dvdx = −
∫
R2

∫
R3

(f − Ef )(lnϕ− ln Eϕ) dvdx.

2. For any positive density f we have the inequality∫
R2

∫
R3

LBGK(f) ln f dvdx ≤ 0

with equality iff f = Ef .
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3. The positive equilibria of LBGK are the positive equilibria of 〈Q〉

f > 0, LBGK(f) = 0 ⇔ f = Ef .

Proof.

1. For any ϕ > 0, ln Eϕ is a linear combination of the collision invariants

1, ωcx+ ⊥v, v3,
|v|2

2
,
|ωcx+ ⊥v|2 − |v|2

2
.

By the definition of Ef we have ∫
R2

∫
R3

(f − Ef ) ln Eϕ dvdx = 0

implying that∫
R2

∫
R3

LBGK(f) lnϕ dvdx = −
∫
R2

∫
R3

(f − Ef ) lnϕ dvdx = −
∫
R2

∫
R3

(f − Ef )(lnϕ− ln Eϕ) dvdx.

2. Taking ϕ = f > 0 in the previous statement, we obtain∫
R2

∫
R3

LBGK(f) ln f dvdx = −
∫
R2

∫
R3

(f − Ef )(ln f − ln Ef ) dvdx ≤ 0

with equality iff f = Ef .

3. Clearly LBGK(f) = 0 iff f − Ef = 0.

A Proofs of Propositions 1.4, 3.1, 3.2, 3.3, 3.4 and Lemmas

A.1, 4.1, 4.2, 4.3

Proof. (of Proposition 1.4)

By the linearity of the average operator we obtain〈
∂tf + v3∂x3

f +
q

m
E · ∇vf

〉
= 〈∂tf〉+ 〈v3∂x3

f〉+
q

m
〈E · ∇vf〉 .

It is easily seen that ∂t and ∂x3
commute with the average operator and thus, taking into account

that f ∈ ker T one gets

〈∂tf〉 = ∂t 〈f〉 = ∂tf, 〈v3∂x3f〉 = v3 〈∂x3f〉 = v3∂x3 〈f〉 = v3∂x3f.

Observe that T (fφ) = f v · ∇xφ = −f v · E and thus
〈
f v · E

〉
= 0. Thanks to Proposition 1.3 one

gets

〈E · ∇vf〉 = 〈divv{fE}〉 = divx

〈
f
⊥E

ωc

〉
+ T

〈
f
⊥v · E
ωc|v|2

〉
+ ∂v3 〈fE3〉

= divx

{
f

〈 ⊥E
ωc

〉}
+ ∂v3{f 〈E3〉}
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implying that

q

m
〈E · ∇vf〉 = divx

{
f

〈 ⊥E〉
B

}
+

q

m
∂v3{f 〈E3〉}.

Using again Proposition 1.3 we deduce that ∂v3 and divx commute with the average operator, implying

that

∂v3 〈E3〉 = 〈∂v3E3〉 = 0, divx
〈 ⊥E〉 =

〈
divx

⊥E
〉

= 0

and our statement follows.

Proof. (of Proposition 3.1) Observe that(
(v, 0)

|v|
,

( ⊥v, 0)

|v|

)
· ∇ωcx,v =

T
ωc|v|

and (
(v′, 0)

|v′|
,

( ⊥v′, 0)

|v′|

)
· ∇ωcx′,v′ =

T ′

ωc|v′|

where T ′ = v′ · ∇x′ + ωc
⊥v′ · ∇v′ . Therefore (29) writes

{σχ}1/2 r′ sinϕ (v3 − v′3)

|z|
√
|z|2 + (v3 − v′3)2

T ln f

ωc|v|
+ {σχ}1/2 r sinϕ (v′3 − v3)

|z|
√
|z|2 + (v3 − v′3)2

T ′ ln f ′

ωc|v′|
= 0

which reduces to
T ln f

r2
=
T ′ ln f ′

(r′)2
, if |r − r′| < |z| < r + r′, v3 6= v′3. (58)

We claim that T ln f depends only on the invariants of T i.e.,

T ln f(x, v) = T ln f(y, w)

for any (x, v), (y, w) ∈ R6 such that

ωcx+ ⊥v = ωcy + ⊥w, x3 = y3, |v| = |w|, v3 = w3. (59)

Take (x, v), (y, w) verifying (59) and (x′, v′) ∈ R6 such that

v3 6= v′3,

∣∣∣∣ |v||ωc| − |v′||ωc|
∣∣∣∣ < ∣∣∣∣x+

⊥v

ωc
−
(
x′ +

⊥v′

ωc

)∣∣∣∣ < |v|
|ωc|

+
|v′|
|ωc|

meaning that the Larmor circles of centers x′ + ⊥v′/ωc, x + ⊥v/ωc and radii |v′|/|ωc|, |v|/|ωc| have

non empty intersection. We also have

w3 6= v′3,

∣∣∣∣ |w||ωc| − |v′||ωc|
∣∣∣∣ < ∣∣∣∣y +

⊥w

ωc
−
(
x′ +

⊥v′

ωc

)∣∣∣∣ < |w||ωc| +
|v′|
|ωc|

and (58) implies
T ln f(x, v)

|v|2
=
T ′ ln f ′

|v′|2
=
T ln f(y, w)

|w|2
.

As |v| = |w|, we deduce that T ln f(x, v) = T ln f(y, w) for any (x, v), (y, w) verifying (59), and

therefore T ln f remains constant along the characteristic flow of T . Thus

T ln f = 〈T ln f〉 = Projker T T ln f = 0

and finally ln f and f belongs to the kernel of T .
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In the sequel we will need the following easy lemma.

Lemma A.1 Let F = F (y, p) : R2 × Rm → R2 be a smooth field satisfying

[F (y′, p′)− F (y, p)] · ⊥(y′ − y) = 0, y, y′ ∈ R2, p, p′ ∈ Rm. (60)

Then there is α ∈ R, β ∈ R2 such that F (y, p) = αy + β, (y, p) ∈ R2 × Rm.

Proof.

Observe that F does not depend on p. Indeed, taking y′ = y + hz, p′ = p+ hq we have

[F (y + hz, p+ hq)− F (y, p)

h
· ⊥z = 0.

Letting h→ 0 we obtain

[∂yF (y, p)z + ∂pF (y, p)q] · ⊥z = 0, y, z ∈ R2, p, q ∈ Rm.

Replacing z by tu with t ∈ R?, u ∈ R2, one gets

(t ∂yF (y, p)u+ ∂pF (y, p)q) · ⊥u = 0.

Passing to the limit when t→ 0, we deduce that

∂pF (y, p)q · ⊥u = 0, u ∈ R2, q ∈ Rm

and thus ∂pF = 0, saying that F (y, p) = F 0(y), with F 0(y) = F (y, 0).

Taking y′ = y + hz, h ∈ R?, z ∈ R2 in (60) we obtain

[F 0(y + hz)− F 0(y)

h
· ⊥z = 0.

Passing to the limit when h→ 0 yields

(∂yF
0(y) z) · ⊥z = 0, y, z ∈ R2

which is equivalent to

R(π/2)∂yF
0(y) : z ⊗ z = 0, y, z ∈ R2.

Therefore R(π/2)∂yF
0(y) is antisymmetric, saying that

∂y1F
0
1 (y) = ∂y2F

0
2 (y) = α, ∂y2F

0
1 (y) = ∂y1F

0
2 (y) = 0, y ∈ R2.

Notice that

∂y1α = ∂y1∂y2F
0
2 = ∂y2∂y1F

0
2 = 0, ∂y2α = ∂y2∂y1F

0
1 = ∂y1∂y2F

0
1 = 0

saying that α is constant. Finally we have

∇y{F 0
1 − αy1} = (0, 0) = ∇y{F 0

2 − αy2}

and thus there is β = (β1, β2) ∈ R2 such that

F 0(y) = αy + β, y ∈ R2.
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Proof. (of Proposition 3.2)

We have

ξ2 · ∇ ln f = {σχ}1/2 r − r
′ cosϕ

ωc|z| |v|
T ln f + {σχ}1/2

⊥z

ωc|z|
· ∇x ln f = {σχ}1/2

⊥z

ωc|z|
· ∇x ln f

and

(ξ2)′ · ∇′ ln f ′ = {σχ}1/2 r
′ − r cosϕ

ωc|z| |v′|
T ′ ln f ′ − {σχ}1/2

⊥z

ωc|z|
· ∇x′ ln f

′ = −{σχ}1/2
⊥z

ωc|z|
· ∇x′ ln f

′.

Thus (30) becomes

⊥z · (∇x ln f −∇x′ ln f
′) = 0, ||v| − |v′|| < |ωcx+ ⊥v − (ωcx′ +

⊥v′)| < |v|+ |v′|. (61)

Since the positive density f satisfies (29), ln f belongs to ker T and thus there is a function g such

that

ln f(x, v) = g

(
x+

⊥v

ωc
, x3, |v|, v3

)
, (x, v) ∈ R3 × R3.

Observe that

∇x ln f(x, v) = ∇ψ g(ψ1(x, v), ψ2(x, v), x3, |v|, v3), (x, v) ∈ R3 × R3

and therefore (61) reduces

⊥(ψ − ψ′) · (∇ψ g(ψ, x3, r, v3)−∇ψ′ g(ψ′, x3, r
′, v′3) = 0 (62)

for any (ψ, x3, r, v3), (ψ′, x3, r
′, v′3) satisfying |r− r′|/|ωc| < |ψ−ψ′| < (r+ r′)/|ωc|. We can not apply

directly Lemma A.1, since (62) holds only for pairs of Larmor circles with non empty intersection.

Nevertheless we can proceed as in the proof of Lemma A.1, taking h ∈ R? small enough, s, u3 ∈ R,

u ∈ R2 \ (0, 0)

r′ = r + hs, v′3 = v3 + hu3, ψ′ = ψ + hu

such that

|h| |s|
|ωc|

< |h| |u| < 2r + hs

|ωc|
.

Therefore (62) holds true, implying that

⊥u · G(ψ + hu, x3, r + hs, v3 + hu3)−G(ψ, x3, r, v3)

h
= 0 (63)

where G(ψ, x3, r, v3) = ∇ψ g(ψ, x3, r, v3). Letting h→ 0 we deduce that G depends only on ψ and x3

∇ψ g(ψ, x3, r, v3) = G(ψ, x3, r, v3) = G0(ψ, x3).

Coming back to (63) we obtain

⊥u · G
0(ψ + hu, x3)−G0(ψ, x3)

h
= 0

and we deduce by Lemma A.1 that

∇ψ g(ψ, x3, r, v3) = G0(ψ, x3) = α(x3)ψ + β(x3) = ∇ψ

{
α(x3)

|ψ|2

2
+ β(x3) · ψ

}
.
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Finally one gets

f(x, v) = exp(g(ψ(x, v), x3, |v|, v3))

= exp

(
α(x3)

2

∣∣∣∣x+
⊥v

ωc

∣∣∣∣2 + β(x3) ·
(
x+

⊥v

ωc

)
+ λ(x3, |v|, v3)

)
.

Proof. (of Proposition 3.3)

We introduce the field b4 · ∇x,v = −
⊥v
ωc|v| · ∇x + v

|v| · ∇v. We have

ξ3 · ∇ ln f = −{σχ}1/2 r
′ sinϕ

|z|
b4 · ∇x,v ln f

and

(ξ3)′ · ∇′ ln f ′ = −{σχ}1/2 r sinϕ

|z|
(b4)′ · ∇x′,v′ ln f ′.

Thanks to Proposition 3.1 we have

ln f(x, v) = g

(
ψ1 = x1 +

v2
ωc
, ψ2 = x2 −

v1
ωc
, x3, r = |v|, v3

)
and by direct computations one gets

∇x ln f(x, v) = ∇ψ g(ψ, x3, |v|, v3), ∇v ln f = −
⊥∇ψ g
ωc

+
v

|v|
∂rg.

Therefore b4 · ∇x,v is the derivative with respect to r = |v|

b4 · ∇x,v ln f = −
⊥v

ωc|v|
· ∇ψ g +

v

|v|
·

(
−
⊥∇ψ g
ωc

+
v

|v|
∂rg

)
= ∂rg

and (31) reduces to

∂rg(ψ, x3, r, v3)

r
=
∂r′g

′(ψ′, x3, r
′, v′3)

r′
,
|r − r′|
|ωc|

< |ψ − ψ′| < (r + r′)

|ωc|
.

Replacing (ψ′, r′, v′3) by small perturbations of (ψ, r, v3) such that |r−r′|/|ωc| < |ψ−ψ′| < (r+r′)/|ωc|

hold true, we deduce immediately that ∂rg
r depends only on x3 and thus

∂rg(ψ, x3, r, v3) = rγ(x3).

By Proposition 3.2 we know that

g = ln f = α(x3)
|ψ|2

2
+ β(x3) · ψ + λ(x3, r, v3)

implying that ∂rλ = rγ(x3). Finally λ(x3, r, v3) = γ(x3) r
2

2 + µ(x3, v3) saying that

f(x, v) = exp

(
α(x3)

2

∣∣∣∣x+
⊥v

ωc

∣∣∣∣2 + β(x3) ·
(
x+

⊥v

ωc

)
+ γ(x3)

|v|2

2
+ µ(x3, v3)

)
.
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Proof. (of Proposition 3.4)

The formula of the vector field ξ4 allows us to write

ξ4 · ∇ ln f = −{σχ}1/2 (r′ cosϕ− r)(v3 − v′3)

|z|
√
|z|2 + (v3 − v′3)2

b4 · ∇x,v ln f

+ {σχ}1/2 v3 − v′3
|z|
√
|z|2 + (v3 − v′3)2

z

ωc
· ∇x ln f − {σχ}1/2|z|√

|z|2 + (v3 − v′3)2
∂v3 ln f

and

(ξ4)′ · ∇′ ln f ′ = −{σχ}1/2 (r cosϕ− r′)(v′3 − v3)

|z|
√
|z|2 + (v3 − v′3)2

(b4)′ · ∇x′,v′ ln f ′

+ {σχ}1/2 v3 − v′3
|z|
√
|z|2 + (v3 − v′3)2

z

ωc
· ∇x′ ln f

′ − {σχ}1/2|z|√
|z|2 + (v3 − v′3)2

∂v′3 ln f ′.

By Proposition 3.1 we have

ln f(x, v) = g(ψ(x, v), x3, |v|, v3)

and by Proposition 3.3 we know that

b4 · ∇x,v ln f

|v|
=
∂rg

r
= γ(x3).

Therefore (32) reduces to

γ(x3)(v3 − v′3)[r(r − r′ cosϕ) + r′(r′ − r cosϕ)] +
v3 − v′3
ωc

z · (∇x ln f −∇x′ ln f
′)

− |z|2(∂v3 ln f − ∂v′3 ln f ′) = 0

when |r − r′| < |z| < r + r′. Taking into account that

r(r − r′ cosϕ) + r′(r′ − r cosϕ) = r2 + (r′)2 − 2rr′ cosϕ = |z|2

we obtain for any |r − r′| < |z| < r + r′

γ(x3)(v3 − v′3) +
v3 − v′3
ωc|z|

z

|z|
· (∇x ln f −∇x′ ln f

′) = ∂v3 ln f − ∂v′3 ln f ′. (64)

But ∇x ln f = ∇ψ g = α(x3)ψ(x, v) + β(x3), implying that

z

ωc|z|2
· (∇x ln f −∇x′ ln f

′) =
α(x3)

ω2
c

and therefore (64) is equivalent to

∂v3g(ψ, x3, r, v3)− ∂v′3g(ψ′, x3, r
′, v′3) = (v3 − v′3)

[
γ(x3) +

α(x3)

ω2
c

]
,
|r − r′|
|ωc|

< |ψ − ψ′| < r + r′

|ωc|
.

We introduce the function G(ψ, x3, r, v3) = ∂v3g(ψ, x3, r, v3) and let us consider h, s ∈ R?, u ∈

R2 \ {(0, 0)}, u3 ∈ R

ψ′ = ψ + hu, r′ = r + hs, v′3 = v3 + hu3

such that
|h| |s|
|ωc|

< |h| |u| < 2r + hs

|ωc|
.
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We deduce that

G(ψ + hu, x3, r + hs, v3 + hu3)−G(ψ, x3, r, v3)

h
= u3

(
γ(x3) +

α(x3)

ω2
c

)
which implies

∇ψ G · u+ ∂rG s+

(
∂v3G− γ(x3)− α(x3)

ω2
c

)
u3 = 0,

|s|
|ωc|

< |u|

saying that

∇ψ G = (0, 0), ∂rG = 0, ∂v3G = γ(x3) +
α(x3)

ω2
c

and

∂v3g(ψ, x3, r, v3) = G(ψ, x3, r, v3) =

(
γ(x3) +

α(x3)

ω2
c

)
v3 + δ(x3).

The previous equality allows us to determine the function µ = µ(x3, v3) in the expression of g = ln f

g(ψ, x3, r, v3) = α(x3)
|ψ|2

2
+ β(x3) · ψ + γ(x3)

|v|2

2
+ µ(x3, v3).

Taking the derivative with respect to v3 yields(
γ(x3) +

α(x3)

ω2
c

)
v3 + δ(x3) = ∂v3g = ∂v3µ

and therefore

µ(x3, v3) =

(
γ(x3) +

α(x3)

ω2
c

)
(v3)2

2
+ δ(x3)v3 + η(x3).

Proof. (of Lemma 4.1)

We have

v3(ωcx+ ⊥v)f = u3(ωcx+ ⊥v)f + ρM µθ
µ−θ

(v) (v3 − u3)Mθ(v3 − u3)

× ω2
cMµ(ωcx+ ⊥v − u)

and thus ∫
R2

∫
R3

v3(ωcx+ ⊥v)f(x, v) dvdx = ρu3u.

It is easily seen, thanks to (36), that∫
R2

∫
R3

(v3)2f dvdx =

∫
R2

∫
R3

(v3 − u3 + u3)2f dvdx =

∫
R2

∫
R3

(v3 − u3)2f dvdx+ ρ(u3)2

= ρ((u3)2 + θ).

Clearly we have, integrating by parts∫
R2

∫
R3

(ωcx+ ⊥v)∂v3f dvdx = (0, 0),

∫
R2

∫
R3

v3∂v3f dvdx = −ρ.
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Proof. (of Lemma 4.2)

Clearly ∫
R2

∫
R3

(v3 − u3)
|v|2 + (v3 − u3)2

2
f(x, v) dvdx = 0

and thus (37) yields∫
R2

∫
R3

v3
|v|2 + (v3 − u3)2

2
f(x, v) dvdx =

∫
R2

∫
R3

u3
|v|2 + (v3 − u3)2

2
f(x, v) dvdx

= ρu3

(
µθ

µ− θ
+
θ

2

)
.

Similarly, thanks to (38) we obtain∫
R2

∫
R3

v3
|ωcx+ ⊥v − u|2 − |v|2

2
f(x, v) dvdx =

∫
R2

∫
R3

u3
|ωcx+ ⊥v − u|2 − |v|2

2
f(x, v) dvdx

= ρu3

(
µ− µθ

µ− θ

)
.

It is easily seen that∫
R2

∫
R3

v3
|v|2 + (v3 − u3)2

2
∂x3

f(x, v) dvdx− ∂x3

∫
R2

∫
R3

v3
|v|2 + (v3 − u3)2

2
f dvdx

= −
∫
R2

∫
R3

v3(u3 − v3)∂x3
u3f dvdx =

∫
R2

∫
R3

(v3 − u3)2f(x, v) dvdx ∂x3
u3

= ρθ ∂x3
u3

and ∫
R2

∫
R3

v3
|ωcx+ ⊥v − u|2 − |v|2

2
∂x3

f dvdx− ∂x3

∫
R2

∫
R3

|ωcx+ ⊥v − u|2 − |v|2

2
f dvdx

= −
∫
R2

∫
R3

v3(u− ωcx− ⊥v) · ∂x3
u f dvdx

=

∫
R2

∫
R3

(v3 − u3)(ωcx+ ⊥v − u) · ∂x3u f dvdx = 0.

Therefore we obtain∫
R2

∫
R3

v3
|v|2 + (v3 − u3)2

2
∂x3

f dvdx = ∂x3

[
ρu3

(
µθ

µ− θ
+
θ

2

)]
+ ρθ ∂x3

u3

and ∫
R2

∫
R3

v3
|ωcx+ ⊥v − u|2 − |v|2

2
∂x3

f dvdx = ∂x3

[
ρu3

(
µ− µθ

µ− θ

)]
.

Proof. (of Lemma 4.3)

By direct computation one gets∫
R2

∫
R3

f ln f dvdx

=

∫
R2

∫
R3

[
ln

(
ρ ω2

c

(2π)5/2 µ2θ3/2

µ−θ

)
− |v|

2 + (v3 − u3)2

2θ
− |ωcx+ ⊥v − u|2 − |v|2

2µ

]
f dvdx

= ρ ln

(
ρ ω2

c

(2π)5/2 µ2θ3/2

µ−θ

)
− ρ

θ

(
µθ

µ− θ
+
θ

2

)
− ρ

µ

(
µ− µθ

µ− θ

)

= ρ ln

(
ρ ω2

c

(2π)5/2 µ2θ3/2

µ−θ

)
− 5

2
ρ
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and ∫
R2

∫
R3

v3f ln f dvdx =

∫
R2

∫
R3

(v3 − u3)f ln f dvdx+

∫
R2

∫
R3

u3f ln f dvdx

= u3

∫
R2

∫
R3

f ln f dvdx

= ρu3 ln

(
ρ ω2

c

(2π)5/2 µ2θ3/2

µ−θ

)
− 5

2
ρu3.
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