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Bayesian approach has become a commonly used method for inverse problems arising in signal and 
image processing. One of the main advantages of the Bayesian approach is the possibility to propose 
unsupervised methods where the likelihood and prior model parameters can be estimated jointly with 
the main unknowns. In this paper, we propose to consider linear inverse problems in which the noise 
may be non-stationary and where we are looking for a sparse solution. To consider both of these 
requirements, we propose to use Student-t prior model both for the noise of the forward model and 
the unknown signal or image. The main interest of the Student-t prior model is its Infinite Gaussian 
Scale Mixture (IGSM) property. Using the resulted hierarchical prior models we obtain a joint posterior 
probability distribution of the unknowns of interest (input signal or image) and their associated hidden 
variables. To be able to propose practical methods, we use either a Joint Maximum A Posteriori (JMAP) 
estimator or an appropriate Variational Bayesian Approximation (VBA) technique to compute the Posterior 
Mean (PM) values. The proposed method is applied in many inverse problems such as deconvolution, 
image restoration and computed tomography. In this paper, we show only some results in signal 
deconvolution and in periodic components determination of some biological signals related to dynamic 
circadian clock period determination for cancer studies.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Many linear inverse problems such as signal deconvolution, im-
age restoration, Computed Tomography (CT) image reconstruction, 
Fourier Synthesis (FS) inversion can be modelled as

g = H f + ε, (1)

where f represents the unknown quantity: input signal f (t) or 
original image f (x, y); g represents the measured data: output 
signal g(t), blurred image g(x, y) or projections gφ(r) in CT; 
H represents the forward matrix operator obtained from: the Im-
pulse Response Function (IRF) of the measurement system h(t), the 
Point Spread Function (PSF) of the imaging system h(x, y) or the 
geometry of detector-object-detectors in CT; and finally, ε repre-
sents the errors [1–6].

When the system H is known and we know f , computing or 
predicting g is the forward problem. When the input f and the 
output g are known, determining H is called identification. When 
H is known and g is given, estimating f is called inversion and 
the problem is called inverse problem. When H is partially known, 

E-mail address: djafari@lss.supelec.fr (A. Mohammad-Djafari).
http://dx.doi.org/10.1016/j.dsp.2015.08.005
1051-2004/© 2015 Elsevier Inc. All rights reserved.
for example when the IRF in signal deconvolution or the PSF in 
image restoration depend on some unknown parameters, we have 
myopic or blind deconvolution problems.

Between the classical inverse problems arising in signal and im-
age processing, we mention here a few examples:
– Deconvolution:

g(t) = h(t) ∗ f (t) + ε(t) =
∫

f (τ )h(t − τ )dτ + ε(t), (2)

where, when discretized, we obtain the equation (1) and where: 
the vector f contains the samples of f (t); the vectors g and ε
contain the samples of g(t) and ε(t) and the H f is equivalent to 
the convolution operation h(t) ∗ f (t). In this case, H is a Toeplitz 
matrix which is entirely defined from the samples of the impulse 
response h(t) denoted by the vector h.

– Image restoration:

g(x, y) =
∫∫

f (x′, y′)h(x − x′, y − y′)dx′ dy′ + ε(x, y), (3)

where h(x, y) represents the Point Spread Function (PSF) of the 
imaging system [1–4,7,5,6]. Here too, when discretized, we obtain 
the equation (1) with: f is a vector containing all the pixels of 
the image f (x, y) scanned column by column; g and ε contain 
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the pixels of g(x, y) and ε(x, y) and H is a Toeplitz-Bloc-Toeplitz 
(TBT) matrix which is entirely defined from the pixels of the PSF 
h(x, y).

– X ray Computed Tomography (CT) image reconstruction:

g(r, φ) =
∫∫

f (x′, y′) δ(r − x cos φ − y sin φ)dx′ dy′

+ ε(r, φ), (4)

where g(r, φ) is the projection at angle φ and f (x, y) represents 
the image to reconstruct [8–14]. Here too, when discretized, we 
obtain the equation (1) with: f representing the pixels of the 
object f (x, y) scanned column by column as in the previous exam-
ple; g contains the samples of projections g(r, φ) organized row 
by row for different angles and called sinogram and H is a very 
sparse matrix which is entirely defined from the geometry of the 
tomographic system. In a simple straight line model, the elements 
Hij is the length of the intersection of the ray i in the pixel j.

– Inverse Fourier series signal modelling problem:

g(t) =
∫

f (ν) exp [+ j2πνt] dν + ε(t), (5)

where g(t) represents a time series with periodic components 
f (ν). Here again, in the discretized version of equation (1): f rep-
resents values of f (ν) for different frequencies, g represents g(t)
and H is the Discrete Fourier Transform (DFT) matrix.

– Fourier Synthesis inverse problem:

g(u, v) =
∫∫

f (x′, y′) exp [− j2π(ux + v y)] dx′ dy′

+ ε(u, v), (6)

where g(u, v) is the 2D Fourier Transform (FT) of the objection 
f (x, y). Here again, in the discretized version of this equation, 
f represents f (x, y), g represents g(u, v) and H is the 2D DFT 
matrix [15].

Many other examples can be given in Microwave imaging 
[16,17], Ultrasound echography, Seismic imaging, Radio astronomy 
[18] Fluorescence imaging [100], Inverse scattering [19–22], Eddy 
current non-destructive testing [23], SAR imaging [24] etc.

In all these examples, the common inverse problem is to esti-
mate f from the observations of g . In general, the inverse prob-
lems are ill-posed [25]. This means that, in practice, the data g
alone is not sufficient to define an unique and satisfactory solu-
tion. Regularization theory and the Bayesian inversion have been 
successfully used for this task. See for example [33,35,36,48] for 
quadratic and Tikhonov regularization, [27,42,47] for Total varia-
tion, [28–30,34] for different entropy based regularization, [32,40]
for Lp and sparsity enforcing, [37–39,43] for blind deconvolution 
and applications, [31,41] for Cross Validation (CV) and general-
ized CV methods for determining the regularization parameter, and 
[26,54] for Bernoulli–Gaussian models, [44] for Compress Sens-
ing approach, [45,46] for multichannel blind deconvolution, [49,50]
for nonlinear and space variant PSF, [51,52] for document image 
restoration, [53] for joint restoration and segmentation.

In this paper, first we consider the linear inverse problem g =
H f + ε where we know that the noise ε = [ε1, · · · , εM ]′ is non-
stationary and that the input is sparse. Accounting for sparsity has 
been considered in many ways. The first one is by L0 or L1 reg-
ularization methods [55,57,56,58,59]. One of these methods which 
has become now the standard is LASSO [60]. The second way is 
via Bayesian inference using strict sparsity or sparsity enforcing 
priors. For the strict sparsity requirement, very often Bernoulli 
distribution is used: For example, Bernoulli–Gaussian [26,54,72], 
Bernoulli–Laplace [95], Bernoulli–Gamma, etc. For the sparsity en-
forcing, mainly three categories of priors have been considered and 
used very often: Generalized Gaussian (GG), Mixture models and 
heavy tailed probability laws such as Student-t. See [60,61] and 
their references for a review of these priors.

To account for the non-stationarity of the noise, a zero mean 
Gaussian model with unknown varying variance has been consid-
ered in [62] and a Cauchy–Gaussian model in [63]. To account 
for both of these two prior information, we propose to model 
the noise as a zero mean non-stationary Gaussian with unknown 
variances {vεi , i = 1, · · · , M}, on which we assign Inverse Gamma 
priors and to enforce the sparsity, we propose to use the Student-t 
prior which is a heavy tailed probability law. The main advantage 
of Student-t is that, thanks to its Infinite Gaussian Scaled Mixture 
Model (IGSM) property, it can be used in a hierarchical Gaussian–
Gamma model. In this way, in fact both for the non-stationarity
of the noise and for sparsity enforcing we have the same prior 
model structure: Gaussian with unknown variances on which we 
assign Inverse Gamma priors. In our knowledge, this combination 
is new and first communicated in a conference by the first author 
[101,102]. However, the Bayesian framework with different priors 
both on the noise and on the solution goes back to 1950 with 
Gaussian [64] or Poisson [65] for the noise and Gaussian for the 
solution. But more specific priors and in particular the Markovian 
model [66,67], Non Gaussian priors [16] the hierarchical models 
[68] are more recent. The main difficulties in these methods have 
been more on the computational aspects. Beside the classical Gaus-
sian approximation [69] and the MCMC methods [70–72], we may 
mention the more recent ones: the Approximate Bayesian Com-
putation (ABC) [73–76], Variational Bayesian Approximation (VBA) 
[77,78] and Message Passing (MP) [79–82] methods.

The rest of this paper is organized as follows: In the next 
section, the details of the above mentioned prior laws are given 
and the expression of the joint posterior law of all the unknowns 
is obtained. Then, successively are presented the Joint Maximum 
A posteriori (JMAP) and the Variational Bayesian Approximation 
(VBA) methods and algorithms. A comparison of their computa-
tional costs is also given. Some discussions on their theoretical and 
practical implementations are presented. In the simulation section, 
we show some results in deconvolution of sparse signals and an-
other application of the proposed method in a study related to 
biological dynamic circadian cycle studies where the observed time 
series are modelled by an expansion of very limited number of pe-
riodic components. Finally, some conclusions are presented in the 
last section.

2. Proposed prior laws and the expression of the joint posterior 
law

Starting from g = H f + ε , where g is a vector of the length 
M and f is a vector of length N , to account for possible non-
stationarity of the noise, we propose to use:

p(ε|vε) = N (ε|0, V ε) with V ε = diag [vε ] , (7)

where vε = [rε1 , · · · , rεM ]′ contain the unknown variances of the 
non-stationary noise. To be able to estimate them, we assign an 
Inverse Gamma conjugate prior on vεi :

p(vε) =
∏

i

p(vεi ) with p(vεi ) = IG(vεi |αε0 , βε0),∀i. (8)

From this, we can define the expression of the likelihood:

p(g| f , vε) = N (g|H f , V ε) with V ε = diag [vε ] . (9)

To account for the sparsity, as mentioned in the previous sec-
tion, we use the Student-t model:
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Fig. 1. Shape of generalized Student-t for different values of the two parameters (α, β) compared to the normal distribution. (For interpretation of the references to color in 
this figure, the reader is referred to the web version of this article.)
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p( f |ν) =
N∏

j=1

S( f j|ν), (10)

where

St( f j|ν) = 1√
πν


((ν + 1)/2)


(ν/2)

(
1 + f j

2/ν
)−(ν+1)/2

. (11)

Thanks to the Infinite Gaussian Scaled Mixture (IGSM) property of 
this probability law:

S( f j|ν) =
∞∫

0

N ( f j|0,1/u j)G(u j|ν/2, ν/2)du j, (12)

we propose to use the following hierarchical model

p( f |v f ) = N ( f |0, V f ) with V f = diag
[

v f
]

(13)

and

p(v f ) =
∏

j

p(r f j ) with p(r f j ) = IG(r f j |α f0 , β f0),∀ j, (14)

where v f = [r f1 , · · · , r f N ]′ .

Remark. With this hierarchical model, we have a kind of gener-
alization of the Student-t, called since after IGSM, which is now 
defined with two parameters:

S( f j|α,β) =
∞∫

0

N ( f j|0,1/u j)G(u j|α,β)du j, (15)

The mean value of this probability distribution is evidently zero 
and its variance is given by

Var {X} =
∫

x2S(x|α,β)dx

= 2β

[

(α + 1/2)
(α − 1)


(α)
(α − 1/2)
− 1

]
. (16)

For α = β = ν/2 we obtain the variance of classical Student-t 
which is ν

ν−2 . This remark takes its importance when we need 
to fix the two parameters (α, β) for the initialization of the al-
gorithms. In particular, to ensure the sparsity of the solution, 
we need to have a probability distribution which is concentrated 
enough around the zero and has enough heavy tails for the range 
Fig. 2. Graphical model linking different variables.

of the variation of the quantity of interest. In general, we want 
to have small values for the variances v j = 1/u j when f j is zero 
and when f j has high value, we need to reach high values of v j
which means that the parameters of the Inverse Gamma model of 
v j have to be fixed in such a way that its mean is close to zero 
and its variance in accordance to the dynamic of the variation of 
desired solution f j . So, to fix a priori the parameters, we propose 
to choose{

α = 2 + ζ 2

β = √
v0 ζ (1 + ζ 2)

(17)

which gives{
E
{

v j
}= β

α−1 = √
v0 ζ

Var
{

v j
}= β2

(α−1)2(α−2)
= v0

(18)

where ζ is a small positive value to insure α > 2 and also insures 
small value for E 

{
v j
}

and the desired variance v0 for v j .
The Fig. 1 presents the shape of this model for different values 

of the two parameters (α, β) compared to the normal distribution.

The global generative model described via the equations (1), 
(7), (8), (9), (13) and (14) is illustrated graphically in the Fig. 2.

Using these prior laws, the joint posterior law of all the un-
knowns becomes

p( f , v f , vε |g) ∝ p(g|v f , vε) p( f |v f )

p(v f |α0, β0) p(vε |αε0 , βε0).
(19)

From this point, at least two directions can be followed: first 
one is the JMAP solution:

( f̂ , v̂ f , v̂ε)= arg max
( f ,v f ,vε )

{
p( f , v f , vε |g)

}
= arg min

( f ,v ,v )

{
J ( f , v f , vε)

}
,

(20)
f ε
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where

J ( f , v f , vε) = − ln p( f , v f , vε |g). (21)

The second is the Variational Bayesian Approximation (VBA) which 
mainly consists in first approximating p( f , v f , vε |g) by a separa-
ble probability law, for example q( f , v f , vε) = q1( f )q2(v f )q3(vε), 
and then, to use this for defining any estimators f̂ , for f , v̂ f
for v f and v̂ε for vε . In recent years, there was extensive works 
on VBA in Machine Learning community [83–87] and in general 
[88–92]. However, very few works have been done for inverse 
problems [93–97,103].

In the following sections, we give details of these methods.

3. Joint MAP

The criterion to be optimized is:

J JMAP( f , θ) = − ln p(g| f , vε) − ln p( f |v f ) − ln p(v f )

− ln p(vε), (22)

which, using the above mentioned priors becomes:

J JMAP( f , v f , vε)

=∑M
i=1 ln vεi + 1

2 (g − H f )′V ε
−1(g − H f )

+∑N
j=1 ln r f j + 1

2 f ′V f
−1 f

+∑M
i=1

[
(αε0 + 1) ln vεi + βε0/vεi

]
+∑N

j=1

[
(α f0 + 1) ln r f j + β f0/r f j

]
,

(23)

which can also be written as:

J JMAP( f , v f , vε)

=∑M
i=1

[
ln vεi + 1

2vεi
(gi − [H f ]i)

2
]

+∑N
j=1

[
ln r f j + 1

2r f j
f 2

j

]
+∑M

i=1

[
(αε0 + 1) ln vεi + βε0/vεi

]
+∑N

j=1

[
(α f0 + 1) ln r f j + β f0/r f j

]
.

(24)

One of the basic optimization algorithm for this optimization 
problem is an alternate optimization with respect to each of the 
arguments which is detailed in the following. In fact, when vε and 
v f are fixed, the criterion as a function of f is a quadratic one:

J0( f ) = 1

2
(g − H f )′V ε

−1(g − H f ) + 1

2
f ′V f

−1 f , (25)

which has an analytical solution:

f = (H ′V ε
−1 H + V f

−1)−1 H ′V ε
−1 g. (26)

where V ε = diag [vε ] and V f = diag
[

v f
]
.

When f is fixed, the criterion is separable in vεi and in r f j

and we obtain easily the expressions of the minimizers by putting 
equal to zero its derivative with respect to each vεi or r f j :

vεi = βεi

αεi

with: αεi = αε0 + 3/2,

βεi = βε0 + 1

2
(gi − [H f ]i)

2 (27)

and

r f j = β f j

α f j

with: α f j = α f0 + 3/2, β f j = β f0 + 1

2
( f j)

2 (28)

These relations are summarized in the following algorithm:
∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

JMAP alternate optimization algorithm:

Initialization: αε0 , βε0 ,α f0 , β f0 → vε
(0) = βε0

αε0 −1 ,

v f
(0) = β f0

α f0 −1

vε
(0) = vε

(0)1, v(0)

f = v f
(0)1,

V ε = diag
[

vε
(0)
]
, V f = diag

[
v(0)

f

]
Iterations:
Step 1:

f = (H ′V ε
−1 H + V f

−1)−1 H ′V ε
−1 g

Step 2:

vεi = βεi
αεi

with:

αεi = αε0 + 3/2, βεi = βε0 + 1
2 (gi − [H f ]i)

2

V ε = diag [vε ]
Step 3:

r f j = β f j
α f j

with:

α f j = α f0 + 3/2, β f j = β f0 + 1
2 ( f j)

2

V f = diag
[

v f
]

(29)

We may note that, in fact, the implementation of this algorithm 
does not need any matrix inversion because the computation of 
f = (H ′V ε

−1 H + V f
−1)−1 H ′V ε

−1 g in Step 1 can be done via the 
optimization of the following quadratic criterion:

J0( f ) = 1

2
(g − H f )′V ε

−1(g − H f ) + 1

2
f ′V f

−1 f , (30)

which can be done by any appropriate gradient based algorithm. 
This step is however very important in particular for high dimen-
sional data. In this paper we do not focus much more on this point. 
In practice, we used either a steepest gradient descent or conjugate 
gradient algorithms.

As we will see later, the main advantage of this approach is its 
low computational cost. The main drawback is in the fact that, at 
each iteration, the uncertainties associated to the output of each 
step are not accounted for. Also, theoretically, the JMAP estimation 
may not have all the necessary good characteristics of a Bayesian 
approach because it corresponds to the mode of the posterior. The-
oretically, a better estimator is the Posterior Mean (PM). Its exact 
computation needs huge dimensional integration which has only 
an analytical solution in the Gaussian case. In general, its approx-
imate estimate can be done by MCMC methods which are very 
intensive in cost. Variational Bayesian Approximation (VBA) meth-
ods are alternatives to MCMC which can theoretically give poste-
rior mean estimates with lower computational costs than MCMC 
methods. The main steps of this approach are presented in the 
next subsection.

4. Variational Bayesian Approximation (VBA)

VBA mainly consists in first approximating p( f , v f , vε |g) by 
a separable probability law, for example q( f , v f , vε) = q1( f ) ×
q2(v f )q3(vε), and then, to use this for defining any estimators f̂ , 
for f , v̂ f for v f and v̂ε for vε . The main steps to find q is to use 
the Kullback-Leibler divergence Kl(q : p) and to optimize it to find 
the expressions of q1( f ), q2(v f ) and q3(vε). Using an alternate 
optimization technique, we obtain:⎧⎪⎨⎪⎩

q1( f ) ∝ exp
[
< ln p( f , v f , vε, g) >q2q3

]
q2(v f ) ∝ exp

[
< ln p( f , v f , vε, g) >q1q3

]
q (v ) ∝ exp

[
< ln p( f , v , v , g) >

] (31)
3 ε f ε q1q2
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To obtain the expressions of q1( f ), q2(v f ) and q3(vε), we need 
to compute < ln p( f , v f , vε, g) > with respect to q1, q2 and q3. 
Looking at the expression of J ( f , v f , vε) = ln p( f , v f , vε, g) in 
our case, we find very easily that if we choose q1( f ) to be Gaus-
sian, q2(v f ) and q3(vε) to be products of Inverse Gamma, during 
the iterations these families are conserved due to the conjugate 
properties of Gamma and Gaussian:⎧⎪⎨⎪⎩

q1( f ) = N ( f |μ f ,� f )

q2(v f ) = ∏
j IG(r f j |α f j , β f j )

q3(vε) = ∏
i IG(vεi |αεi , βεi )

(32)

We then need to find appropriate update relations between the 
parameters (μ f , � f ), (α f j , β f j ) and (αεi , βεi ).

The details of these steps are given in the Appendices A and B. 
The resulting algorithm is the following:∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

VBA alternate optimization algorithm:

Initialization: αε0 , βε0 ,α f0 , β f0 → vε
(0) = βε0

αε0 −1 ,

v f
(0) = β f0

α f0 −1

vε
(0) = vε

(0)1, v(0)

f = v f
(0)1,

V ε = diag
[

vε
(0)
]
, V f = diag

[
v(0)

f

]
Iterations:
Step 1:

q1( f ) = N ( f |μ f ,� f ) with:

� f = (H ′V ε
−1 H + V f

−1)−1

μ f = � f H ′V ε
−1 g

f̂ = μ f

Step 2:

q2i (vεi ) = IG(vεi |αεi , βεi ) with:

αεi = αε0 + 1
2

βεi = βε0 + 1
2 < |gi − [H f ]i‖2 >

with: < ‖g − H f ‖2 >= ‖g − Hμ f ‖2 + Tr
{

H� f H ′}
< vεi >= βεi

αεi −1

V ε = diag [< vε >]
Step 3:

q3 j (r f j ) = IG(r f j |α f j , β f j ) with:

α f j = α f0 + 1
2

β f j = β f0 + 1
2 < | f j|2 >

with: < ‖ f ‖2 >= ‖μ f ‖2 + Tr
{
� f

}
< r f j >= β f j

α f j
−1

V f = diag
[
< v f >

]

(33)

We may note that, here, a costly step is the computation of � f =
(H ′V ε

−1 H + V f
−1)−1. However, we only need its diagonal ele-

ments for the computation of

< ‖ f ‖2 >= ‖μ f ‖2 + Tr
{
� f

}
(34)

in Step 3 and the computation of

< ‖g − H f ‖2 >= ‖g − Hμ f ‖2 + Tr
{

H� f H ′} (35)

in Step 2.
If we can decompose � f = D ′ D , then

Tr
{
� f

}= ‖D1‖2 and Tr
{

H� f H ′}= ‖H D1‖2, (36)
Fig. 3. Comparison between JMAP and VBA.

where 1 is a vector of ones entries. This hint gives the possibility 
to compute quantities needed in different steps in this algorithm.

5. Comparison between JMAP and VBA

Looking in the details on the two methods and as illustrated in 
the Fig. 3 we see that:

In JMAP, during the iterations only the values are transmitted 
between the different steps without accounting for the uncertain-
ties.

In VBA, during the iterations the probability laws are transmit-
ted between the different steps thus accounting for uncertainties. 
In particular, we see that in steps 2 and 3, not only the value 
of (which is the expected value of q( f ) ) is transmitted but also 
its covariance matrix � f . This process has many similarities with 
message passing methods. However, the computation of this co-
variance matrix is the main extra cost of VBA with respect to JMAP.

From the theoretically point of view, we cannot say too much 
about the convergence properties of these algorithms. The pro-
posed JMAP is an alternate optimisation algorithm and so its con-
vergence depends mainly on the convexity of the JMAP criterion 
with respect to all of its arguments. The proposed VBA is also an 
alternate optimisation algorithm in the space of probability den-
sity functions. However, in the space of parameters, as mentioned 
before, the fact that the covariance matrix of f is used in steps 2 
and 3 makes a better theoretical property. A rigorous mathematical 
proof is not easy. However, in practice, both algorithms converge to 
a local minimum. The initialization is then important.

For initialization, we need to choose appropriately the hyper-
parameters (αε0 , βε0 ) in such a way that vε be fixed according to 
a reasonable prior knowledge of the variance of the noise and its 
variability along the observation process and (α f0 , β f0) in such a 
way that the corresponding prior (Student-t) be well concentrated 
around the zero with heavy tailed scaled to the dynamic of the 
seeking solution. These points are discussed more extensively in 
the second application of the proposed method for periodic com-
ponents estimation.

6. Simulations

We implemented these two algorithms for many linear inverse 
problems. Here, we give two examples in signal processing which 
are the deconvolution and periodic components estimation of bio-
logical time series problem. In both cases, the main idea is first to 
simulate sparse inputs f and then generate data g = H f + ε with 
different SNR and different realization of the noise ε . Then, apply-
ing different reconstruction algorithms, compute the estimate f̂
and compare with f , for example using the following quantitative 
relative distances:

δp f = ‖ f̂ − f ‖p
p

‖ f ‖p
p

, p = 1,2. (37)

δ2 f is the Normalized Mean Square Error (NMSE) and δ1 f is the 
Normalized Mean Absolute Error (NMAE). This simulation protocol 
is illustrated in Fig. 4.
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Also, when the original signal f is sparse, we can try to obtain 
a sparse solution by thresholding f̂ to be able, for example, to give 
the Missing Values (MV):

MV( f̂ , f ) = # of non-zero value components in f
not present in f̂

(38)

and the False Alarms (FA):

FA( f̂ , f ) = # of zero value components in f
which is not zero value in f̂

(39)

as a measure of performances for the algorithm.
These performance measures can be computed in simulation, 

but for real applications these are not possible. One can then, com-
pute ĝ = H f̂ and compare with g using the following relative 
distances:

Fig. 4. Forward model for simulation and Inversion or Inference. In simulation we 
can compare f̂ with f and ĝ with g0 or g . In real case, we do not have access 
to f , we can only compare ̂g with g .
δp g = ‖g − ĝ‖p
p

‖g‖p
p

, p = 1,2. (40)

δ2 g is the Normalized Mean Square Residual Error (NMSRE) and 
δ1 g is the Normalized Mean Absolute Residual Error (NMARE).

The whole protocol of the forward simulation and inversion and 
possibilities of comparison are illustrated in the Fig. 4.

In simulation, methods with which reach lower values for 
NMSE, NMAE as well as MV and FA are preferred. In real case, 
we cannot have access to these quantities. We may then reject the 
methods which give high values for NMSRE and NMARE. However, 
having very low values for these quantities (over fitting) does not 
forcibly mean that the method is good. We may use Cross valida-
tion methods in this case.

In all these simulations, there are other quantities which are in 
general important to monitor:

• The evolution of the different quantities such as f j , r f j and 
vεi during the iterations;

• final values of vε and v f ;
• final values of μ f and diag

[
� f

]
which can be interpreted as 

the posterior means and variances of the solution.
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Fig. 5. Data generation: a) Input f (t), b) IRF h(t), c) output g0(t) = h(t) ∗ f (t) and d) noisy data g(t) = g0(t) + ε(t).
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Fig. 6. A typical result obtained by JMAP, VBA which are compared with the results obtained by Lasso: First row: a) original f (t), g0(t) and b) g(t). Second row: c) f (t) and 
f̂ (t) and d) g(t) and ̂g(t) obtained by JMAP. Third row: e) f (t) and ̂ f (t) and f) g(t) and ̂g(t) obtained by JMAP. Fourth row: g) f (t) and ̂ f (t) and h) g(t) and ̂g(t) obtained 
by Lasso with optimal CV value for the regularization parameter. The relative distances between f (t) and f̂ (t) and between g(t) and ĝ(t) are given as the measures of 
performances. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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Fig. 7. The relative distances between f (t) and f̂ (t) (NMSE and NMAE) and between g(t) and ĝ(t) (NMERE and NMARE) and the number of Missing Values (MV) and the 
number of False Alarms (FA) when comparing f (t) and ̂ f (t) are given for LASSO and the two proposed methods: JMAP and VBA. (For interpretation of the references to color 
in this figure, the reader is referred to the web version of this article.)
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Fig. 8. The results in this figure have the same legends as in Fig. 6 but for the case where the noise is non-stationary. The non-stationarity of the noise is simulated by the 
changes of its variance during the measurements process. Noise level change is shown in d) and its standard deviation estimated values by the proposed VBA method is 
given in e). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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Fig. 9. The results in this figure have the same legends as in Fig. 7 but for the case where the noise is non-stationary. The relative distances between f (t) and ̂ f (t) (NMSE 
and NMAE) and between g(t) and ĝ(t) (NMERE and NMARE) and the number of missing values (MV) and the number of false alarms (FA) when comparing f (t) and f̂ (t)
are given for LASSO and the two proposed methods: JMAP and VBA. (For interpretation of the references to color in this figure, the reader is referred to the web version of 
this article.)
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Fig. 10. Stationary (left column) and non-stationary (right column) noise cases: First row: original and estimated noise, Second row: original and estimated noise variances 
Third row: reconstruction results with their associated error bars (±3σ ). (For interpretation of the references to color in this figure, the reader is referred to the web version 
of this article.)
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Fig. 11. Real part f R and Imaginary part f I of f , generated signal without and with noise.
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In the following, we present two examples, one for a decon-
volution and another for periodic components estimation of time 
series.

6.1. Deconvolution

For the deconvolution problem, we simulated an input f (t), an 
Impulse Response Function (IRF) h(t) and computed the ideal out-
put g0(t) = h(t) ∗ f (t) on which we added a non-stationary noise 
ε(t) with slowly varying variances vεi to obtain the simulated data 
g(t) = g0(t) + ε(t). Fig. 5 shows these signals.

From these data, we applied the JMAP and VBA algorithms and 
compared the results. As a reference, the results obtained by Lasso 
is also given. In Fig. 6 we can see one of such results.

To show some other relative performances of the proposed 
methods compared to Lasso, which is the most concurrent in de-
terministic methods, we present the Normalized Mean Absolute 
Errors (NMAE) and Normalized Mean Square Errors (NMSE) be-
tween f and f̂ and the Normalized Mean Absolute Residual Errors 
(NMARE) and Normalized Mean Square Residual Errors (NMSRE) 
between g and ĝ as a function of SNR. These results are presented 
in Fig. 7.

As we can see, the performances depend on the criterion. To 
show the main advantage of the proposed method, we simulated 
the case where the noise variance is changing during the measure-
ment process. As the proposed method is designed to estimate the 
noise variance, the performances are surely better than the meth-
ods which cannot do that. This is shown in Fig. 8.

For this non-stationary case, also, the Fig. 9 shows the NMSE, 
NMAE, NMSRE, NMARE, MFA and MV as in Fig. 7 for the stationary 
case.

We did many other extensive simulations comparing the per-
formances of these two proposed algorithms compared to more 
classical regularization based methods and in particular with L2

or L1 regularization criteria. In general, the results with L2 reg-
ularization are not sparse, but those with L1 are as good as the 
proposed method. However, in regularization methods, the results 
depend on the regularization parameter. Even if there are methods 
based on cross validation which can give a good value to use, but 
there is no easy way to measure the remaining uncertainty of the 
computed solution.

In the proposed Bayesian method, not only we have an unsu-
pervised method, but also we have the possibilities to quantify the 
uncertainties, for example to put error bar on the solution. A typ-
ical result obtained by VBA is given in Fig. 10. In this figure, the 
results are shown with error bars using the estimated diagonal el-
ements of the posterior covariance matrix �̂ . First row shows the 
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Fig. 12. Comparison between PC and estimated PC, between g0, g and gPM and between noise and estimated noise. (For interpretation of the references to color in this 
figure, the reader is referred to the web version of this article.)
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Fig. 13. Comparison between proposed method vs. Lasso and FFT (Simulation corresponding to SNR = 5 dB). (For interpretation of the references to color in this figure, the 
reader is referred to the web version of this article.)
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results for the stationary noise case and the second row for the 
non-stationary noise case.

As a final conclusion for these simulations, we see the superi-
ority of the Bayesian approach, mainly in three main points:

i) the possibility to easily account for the non-stationarity of the 
noise;

ii) the possibility of estimating noise variances;
iii) the possibility of putting error bars on the solution.

6.2. Periodic components estimation in biological time series

For the periodic components estimation of biological time se-
ries, here we show some simulation results modelling time series 
issued in cancer treatment experiments in the chronobiological 
context. The time series considered represents the photon ab-
sorption of mice inoculated with cancer and due to the tumour
growth the time series presents some particularities: short length 
(10 days) and increasing trend. The challenge is to be able to de-
cide the stability or instability of the periodic components, having 
as a prior information the sparse structure of the periodic compo-
nent vector, i.e. the reduced number of clocks expressed. Since the 
circadian period is defined at 24 h, in order to analyse the stabil-
ity or instability of the periodic components, we need a method 
that can analyse very short signals relative to the circadian period 
(4 days signals) and offer informations of the periods in a spe-
cific range with a precision of one hour. More precisely, for such 
signals we want informations concerning the periods inside the 
interval [8–32] (which represents the circadian domain plus the 
corresponding harmonics.)

g(tm) =
N∑

n=1

f (pn)e j2π 1
pn

tm + εm, m ∈ {1, . . . , M} (41)

where g(tm) represents the observed value at time tm , pn rep-
resents the n-th periodic component and εm accounts for errors, 
uncertainties as well as the measurement noise. With the no-
tation g(tm) = gm and f (pn) = fn , defining the vectors f =
[ f1, f2, . . . , f N ]T , g = [g1, g2, . . . , gM ]T and ε = [ε1, ε2, . . . , εM ]T

we obtain the following model:

g = H f + ε (42)

where the elements of the matrix Hmn = e j2π 1
pn

tm . We may note 
that, as the data are real valued, f n can be considered as a com-
plex number f j = f R

n + j f I
n and we can also write the forward 

model as
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Fig. 14. Comparison between proposed method versus Lasso and FFT (Simulation with SNR of 10 dB). (For interpretation of the references to color in this figure, the reader 
is referred to the web version of this article.)
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g(tm) =
N∑

n=1

f R(pn)cos(2π
1

pn
tm) + f I (pn)sin(2π

1

pn
tm) + εm,

m ∈ {1, . . . , M} (43)

Before going to the numerical experimentation, a complementary 
point for applying the proposed method for this case is that we 
assume the variances of the real parts f R and imaginary part f I

are the same:

p( f R |v f ) = p( f I |v f ) (44)

and that they are only conditionally independent

p( f |v f ) = p( f R |v f ) p( f I |v f ). (45)

Note however that this does not mean that a priori they are inde-
pendent, because they are conditionally independent.

For validating the proposed method, in a first step, we gener-
ated synthetic data. In the real case the theoretical f is unknown, 
so the only possible comparison is between the available g (rep-
resenting the real data) and the estimated ĝ = H f̂ (obtained via 
the reconstruction done over the estimated f̂ ). An important step 
for validating the method is to consider signals with known corre-
sponding periodic components vector, which gives the possibility 
to compare f and the estimated f̂ . We consider the following pro-
tocol:

(a) Generate a sparse amplitude periodic components vector f , 
via f R and f I , Figs. 11 (a) and (b). For the simulations used in this 
article, we analysed a periodic components vector for the inter-
val associated with the circadian domain and the most important 
corresponding harmonics, i.e. the interval [8, 32], with one hour 
precision [99,98].

(b) Generate the corresponding signal g0 = H f called the the-
oretical output (representing 4 days = 96 hours length, simulating 
a body temperature measurement or a gene expression measure-
ment or a rest-activity pattern measurement. In the analysis of the 
real data, we will present simulations corresponding to the last 
two, i.e. gene expression and rest-activity pattern measurements), 
Fig. 11 (c).

(c) Add some noise g = g0 + ε to generate the data for the in-
version step. For the first simulation presented, we added a Gaus-
sian noise, corresponding to SNR = 05 dB, Fig. 11 (d). We include 
during this simulation section the detailed cases of levels of noise 
corresponding to SNR = 10 dB, SNR = 15 dB, SNR = 20 dB, com-
paring the proposed method with the FFT method and also with 
LASSO. Also, the comparative study between the proposed method 
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Fig. 15. Comparison between proposed method versus Lasso and FFT (Simulation with SNR of 15 dB). (For interpretation of the references to color in this figure, the reader 
is referred to the web version of this article.)
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and LASSO depending on the SNR is presented, considering levels 
of noise between 05 dB and 40 dB.

(d) We then applied the proposed method and compared the 
estimated f̂ R , f̂ I and f̂ with the original f R , f I and f̂ , Figs. 12
(a), (c) and (e). The proposed method also indicates the variances 
corresponding to each estimated period from the PC vectors f R

and f I . We note that via the proposed algorithm, after we ap-
plied VBA we concluded that f is modelled by a multivariate 
Normal distribution, and the corresponding covariance matrix was 
estimated, �̂ . We also compare the original signal g and the the-
oretical output g0 with the reconstructed one ĝ , Figs. 12 (b) and 
(d). A comparison between the estimated noise the original one is 
presented in Fig. 12 (f).

As a comparison, we decided to compare the performances of 
the proposed method with two classical methods: the classical FFT 
which is today the standard technique used in the chronobiological 
community and the Lasso which is now the standard L1 regular-
ization, so a good candidate for a method enforcing the sparsity.

Fig. 13 presents a comparison between the proposed method 
(d), Lasso (c) and FFT (b). The FFT is not offering the wanted pre-
cision, while the estimation corresponding to Lasso is far for being 
precise. In particular, the number of false alarms is 7, and the most 
important peak in the PC vector, corresponding to 23 hours is esti-
mated as zero. For the proposed method, the estimated PC vector 
is a sparse one, and the only peaks estimated are the three ones 
that appear in the theoretical PC. In terms of the error, the normal-
ized MSE corresponding to the proposed method is NMSE = 0.03, 
while for LASSO is NMSE = 0.69.

Fig. 14 presents a comparison between the proposed method 
(d), Lasso (c) and FFT (b), corresponding to a noise level SNR =
10 dB. We note that for the LASSO estimation, the number of false 
alarms is 6, while the dominant period of the PC vector, i.e. 23 
hours, is inaccurate.

Fig. 15 presents a comparison between the proposed method (d),
Lasso (c) and FFT (b), corresponding to a noise level SNR = 15 dB. 
We note that for the LASSO estimation, the number of false alarms 
is 3, while the dominant period of the PC vector, i.e. 23 hours, is 
inaccurate. This is also the case of the simulations corresponding 
to SNR = 20 dB, Fig. 16.

The behaviour of the proposed method compared to LASSO for 
different levels of noise is presented in Fig. 17. We have considered 
levels of noise corresponding to SNR = {05, 10, 15, 20, 30, 40} dB. 
We compare the estimations corresponding to the two methods 
for f I , f R and f using as measurements of the errors the NMSE 
Figs. 17 (b), (d), (f) and MAE Figs. 17 (a), (c), (e).

The same analysis is presented for g and g0 in Fig. 18.
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Fig. 16. Comparison between proposed method versus Lasso and FFT (Simulation with SNR of 20 dB). (For interpretation of the references to color in this figure, the reader 
is referred to the web version of this article.)
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We may note that, for typical data we have, i.e.; tn = n
t,
n = 1, · · · , N with 
t = 1 hour, N = 96, pm = 8 : 32 hours, the 
matrix H which is of size 96 × 25 is very ill-conditioned. This is 
due to the fact that, the successive rows of the matrix are very 
close to each other. In DFT matrix, this is not the case, because the 
spacing are linear in frequencies but not in periods. Here, we are 
looking for a precision of 1 hour in period estimation between 8 
and 32 hours.

The final step is applying the proposed method on real data. As 
mentioned, since the standard method in chronobiology today is 
FFT, we include the corresponding FFT results for comparison. The 
detailed biological explanation of the experiments are given in [98,
99]. From the signal processing point of view, the main objective is 
the estimation of a few periodic components of a signal observed 
for a very short period of time relative to the prior knowledge of 
the circadian period (∼24 hours) to study their evolution during 
the days with a precision of one hour. Knowing that this preci-
sion cannot be obtained with FFT based methods when observing 
the signal on the intervals of 4 days, we developed the proposed 
method.

For the results corresponding to real data, we consider data ob-
tained in experiments in chronobiology for cancer treatment. The 
particular experiment presented is realized over mice, investigat-
ing the locomotor activity (rest-activity patterns) of KI/KI Per2::luc 
mouse, aged 10 weeks, singly housed in RT-BIO and synchronized 
with LD-12:12 (i.e. 12 hours of light, followed by 12 hours of dark, 
Light–Dark, LD). The particular signal considered represent the lo-
comotor activity of the mouse, which is known to be rhythmic. 
After the LD part of the signal, the mouse is kept in total darkness 
(Dark–Dark, DD) for 3 days, corresponding to the before treatment 
part of the signal and then D-luciferin is loaded in subcutaneous 
implanted Alzet pump [90 mg/ml], recording for 5 days the Ac-
tivity signal corresponding to the during treatment part of the 
signal. The last two days represents the during treatment part of 
the signal. During the DD segment, the locomotor activity might be 
perturbed, due to the absence of the Light-Day regime and due to 
the treatment effects. Fig. 20 (a) presents the raw data correspond-
ing to the activity signal. The figure indicates the four segments 
of interest: the LD segment, the DD-before treatment segment, the 
DD-during segment and the DD-after treatment segment. Each seg-
ment is analysed using the proposed method and the FFT method, 
the standard method in chronobiology today. The raw data signal is 
sampled every minute. For the four segments studied, we consider 
mean-zero signals, normalized between [−10 : 10] and sampled 
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Fig. 17. Comparison between PC and estimated PC, between g0, g and gPM and between noise and estimated noise. (For interpretation of the references to color in this 
figure, the reader is referred to the web version of this article.)
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every hour. Fig. 19 presents the raw data corresponding to the 
rest-activity pattern, Activity signal considered. The four segments 
of interest are presented in Figs. 20 (a), (b), (c) and (d). As men-
tioned, the context is the analysis of short signals relative to the 
prior knowledge of the ∼ 24 hours. We note that for the experi-
ment discussed here we need to analyse signals having a length 
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Fig. 18. Comparison between PC and estimated PC, between g0, g and gPM and between noise and estimated noise. (For interpretation of the references to color in this 
figure, the reader is referred to the web version of this article.)
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Fig. 19. Activity raw data. (For interpretation of the references to color in this figure, 
the reader is referred to the web version of this article.)

of 3 days (Fig. 20 (c), corresponding to the before treatment seg-
ment) or 2 days (Fig. 20 (e), corresponding to the after treatment 
segment)

For the LD segment, 8 days are available. The PC vector cor-
responding to the LD segment is estimated using the Proposed 
Method and FFT, Fig. 21:

The dominant period is estimated at 24 hours, via FFT. More-
over, the PC vector is difficult to be interpreted by the biologist, 
since the vector is not sparse and the peaks corresponding to the 
biological phenomena cannot be distinguished from the peaks due 
to the noise. Via the Proposed method, the PC vector is sparse, esti-
mating only two non-zero peaks, and setting the dominant period 
at 25 hours. For analysing the stability of the dominant period we 
consider 4-days length signals (windows) from the available sig-
nal, with a shift of one day and compute the PC via FFT and the 
Proposed method. The comparison is presented in Fig. 22:

Via FFT, all four windows considered present a 24 hours dom-
inant periodicity, Figs. 22 (c), (f), (i) and (l), leading to the con-
clusion that the rest-activity patterns are stable during the LD 
segment. Via the proposed method a variability of the dominant 
period is detected: for the first and fourth windows the dominant 
period is 25 hours while for the second and third windows the 
dominant period is 24 hours. The representation of the results cor-
responding to the two methods is presented in Fig. 23.
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Fig. 20. Activity raw data (a) and the corresponding parts (b), (c), (d), normalized and one-hour sampled.

Fig. 21. Considered signal (a) and the corresponding PC via VBA (b) and FFT (c).
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The lines of matrices represents the PC vector corresponding 
to different windows. The colourbar indicates the numerical values 
of the amplitudes. The figure shows the stability and the variabil-
ity detected by the FFT method, respectively the Proposed Method. 
We also note the sparse structure of PC vectors estimated via the 
Proposed Method. For the DD-before treatment segment, only 3 
days of data are available. The PC vector is estimated using FFT 
and Proposed Method, Fig. 24. In particular, the only two non-
zero peaks that are present in the PC vector estimated via the 
Proposed Method correspond to two highest peaks from the PC 
vector estimated via FFT. For the DD-during treatment segment 5 
days are available, Fig. 25. For analysing the stability of the dom-
inant period we consider 4-days length signals (windows) from 
the available signal, with a shift of one day and compute the PC 
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Fig. 22. PC vector stability: estimation via Proposed Method and FFT for 4-days length signals.
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via FFT and the Proposed method. The comparison is presented in 
Fig. 26.

Via the Proposed Method, a variability is detected for the dom-

inant period, while via the FFT method this variability is not de-
tected. The representation of the results corresponding to the two 
methods is presented in Fig. 27.

For the DD-after treatment segment, 2-days length data are 
available. We compare the Proposed Method with the FFT method 
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Fig. 23. PC vector stability: Proposed Method (a) vs. FFT (b). (For interpretation of the references to color in this figure, the reader is referred to the web version of this 
article.)

Fig. 24. DD before signal (a) and the corresponding PC via Proposed Method (b) and FFT (c).

Fig. 25. DD during signal (a) and the corresponding PC via VBA (b) and FFT (c).
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in Fig. 28. The circadian rhythm is perturbed during this phase. 
The result corresponding to the Proposed Method is consistent 
with the result obtained via FFT, the only three peaks associated 
with biological phenomena being the 3 highest peaks present in 
the PC vector estimated via FFT. All the other non-zero peaks that 
are present in the FFT estimated PC vector are associated with the 
noise in the Proposed Method estimation.
7. Conclusions

In this paper, we considered linear inverse problems and pro-
posed appropriate prior models to account for non-stationarity of 
the errors (forward modelling and measurement noise) and for 
sparsity enforcing of the input. A generalized Student-t probabil-
ity density function and its IGSM equivalence are used for both. 
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Fig. 26. PC Stability: Estimated PC by FFT and VBA for 4-days length signals, Activity DD, during.

Fig. 27. PC Stability: Proposed Method (a) vs. FFT (b). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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Even if Student-t has been used previously for sparsity enforc-
ing, its use for non-stationarity is new. Using these prior laws, we 
obtained the expression of the joint posterior law of all the un-
knowns of the problem and proposed two main estimators: JMAP 
using an alternate optimization algorithm and the Posterior Mean 
computed via appropriate VBA method. Even if the MCMC meth-
ods are the standard methods for Bayesian computation, we prefer 
to use VBA which is more effective for practical applications. The 
advantages of VBA compared to MCMC methods have been no-
ticed by many authors [79,93,94,96,91,21,103,101,102]. Indeed, it 
is crucial to consider the implementation issues, in particular, for 
great dimensional problems in imaging science such as image de-
convolution or 3D computed tomography. However, in this paper, 
to show some of the performances of the proposed methods, we 
considered two signal processing inverse problems: Impulse input 
deconvolution and periodic components estimation in biological 
time series.

In the presented chrono-biological application, we have showed 
the importance of the precision in the estimation of the periodic 
component around 24 hours. For the FFT based method which 
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Fig. 28. DD after signal (a) and the corresponding PC via Proposed Method (b) and FFT (c).
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is the standard one in the chrono-biology community, the result 
has not enough resolution to see small changes (a few hours) in 
the period during the days. The results obtained by the proposed 
method could show these variations which are very important to 
biological studies.

To summarize, here we give the highlights of this paper:

• Bayesian inference for linear inverse problems
• Non-stationary noise is modelled via Gaussian with unknown 

varying variances
• A generalized Student-t prior model is proposed for enforcing 

sparsity
• Details of two Bayesian algorithms: JMAP and VBA are pre-

sented and their performances are compared to the most con-
current method which is Lasso in two applications: parse sig-
nal deconvolution and in periodic components estimation in 
biological time series.

• In the deconvolution, we only compared the performances in 
simulation, but in the second application, not only we showed 
the performances in simulation but also for real data obtained 
in a chrono-biological experiments for cancer research.

Appendix A

• With respect to f :

∂L
(

f , ẑ, v̂ f
)

∂ f
= 0 ⇔ ∂

∂ f

(
‖V

− 1
2

ε (g − H f )‖2

+ ‖(V f )
− 1

2 f ‖2
)

= 0

⇔ −H T V −1
ε (g − H f ) + V −1

f f = 0

⇔
[

H T V −1
ε H + V −1

f

]
f = H T V −1

ε g

⇒ f̂ JMAP =
[

H T V −1
ε H + V −1

f

]−1

× H T V −1
ε g

• With respect to rεi , i ∈ {1,2, . . . , N}:

∂L( f̂ , vε, v̂ f )

∂rεi

= 0 ⇔ ∂

∂rεi

((
αεi 0 + 3

2

)
ln rεi

+
[
βεi 0 + 1

2
(gi − H i f )2

]
r−1
εi

)
= 0

⇔
(
αεi 0 + 1 + 1

)
rεi
2
−
(

βεi 0 + 1

2
(gi − H i f )2

)
= 0

⇒ r̂εi JMAP = βεi 0 + 1
2 (gi − H i f )2

αεi 0 + 1 + 1
2

• With respect to r f , j ∈ {1,2, . . . , M}:

∂L( f̂ , v̂ε, v f )

∂r f j

= 0

⇔ ∂

∂r f j

(
1

2
ln det

(
V f

)
+ 1

2
‖ (V f

)− 1
2 f ‖2 + (

α f 0 + 1
)

ln r f j + β f 0r−1
f j

)
= 0

⇔ ∂

∂r f j

([
α f 0 + 1 + 1

2

]
ln r f j +

[
β f 0 + f j

2

2

]
r−1

f j

)
= 0

⇔
(
α f 0 + 1 + 1

2

)
r f j −

(
β f 0 + f j

2

2

)
= 0

⇒ r̂ f j JMAP
= β f 0 + f j

2

2

α f 0 + 1 + 1
2

Appendix B

The analytical expression of the logarithm:

ln p( f , vε, v f |g)

= −1

2
ln det (V ε) − 1

2
‖V

− 1
2

ε (g − H f )‖2 − 1

2
ln det

(
V f

)
− 1

2
‖V

− 1
2

f f ‖2 −
N∑

i=1

(
αεi 0 + 1

)
ln rεi −

N∑
i=1

βεi 0r−1
εi

−
M∑

j=1

(
α f j0 + 1

)
ln r f j −

M∑
j=1

β f j 0r−1
f j

+ C (B.1)

• Expression of q1( f ) :
The proportionality relation concerning q1( f ) refers to f , so in 
the expression of ln p( f , vε , v f |g) all the terms free of f can be 
regarded as constants:〈
ln p( f , vε, v f |g)

〉
q2(vε ) q3(v f )

=
〈
C − 1

2
‖V

− 1
2

ε (g − H f )‖2−

− 1

2
‖V

− 1
2

f f ‖2
〉

q2(vε ) q3(v f )
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leading to:〈
ln p( f , vε, r f |g)

〉
q2(vε ) q3(v f )

= C − 1

2

〈
‖V

− 1
2

ε (g − H f )‖2
〉

q2(vε )

− 1

2

〈
‖V

− 1
2

f f ‖2
〉

q3(v f )

(B.2)

Considering the notations corresponding to V ε and denoting the 
i-th line of the matrix H with H i , i ∈ {1,2, . . . , N}, we write:

V
− 1

2
ε (g − H f )

=
[

r−1/2
ε1 (g1 − H 1 f ) . . . r−1/2

εN (gN − H N f )
]T

(B.3)

so the norm is written:

‖V
− 1

2
ε (g − H f )‖2 =

N∑
i=1

r−1
ε i

(gi − H i f )2 (B.4)

Introducing the notations:

r̃−1
εi =

∫
r−1
εi

q2i(rεi )drεi ; ṽ−1
ε =

[
r̃−1
ε1 . . . r̃−1

εi . . . r̃−1
εN

]T ;
˜V −1

ε = diag
(

ṽ−1
ε

)
(B.5)

we can write:〈
‖V

− 1
2

ε (g − H f )‖2
〉

q2(vε )

=
N∑

i=1

r̃−1
εi (gi − H i f )2

= ‖
(

˜V −1
ε

)1/2

(g − H f )‖2 (B.6)

Introducing the notation

r̃−1
f j

=
∫

r−1
f j

q3 j(r f j )dr f j ; ṽ−1
f = [

r̃−1
f 1

. . . r̃−1
f j

. . . r̃−1
f M

]T ;
˜V −1

f = diag
(

r̃−1
f j

)
(B.7)

we can write:〈
‖V

− 1
2

f f ‖2
〉

q3(v f )

= ‖
(

˜V −1
ε

) 1
2

f ‖2 (B.8)

Finally from (B.2), (B.6) and (B.8), for the expression of the loga-
rithm 

〈
ln p( f , vε , r f |g)

〉
q2(vε ) q3(v f )

we have:

〈
ln p( f , vε, v f |g)

〉
q2(vε ) q3(v f )

= C − 1

2
‖
(

˜V −1
ε

)1/2

(g − H f )‖2

− 1

2
‖
(

˜V −1
f

) 1
2

f ‖2 (B.9)

and via the first proportionality and the notation:

J ( f ) = ‖
(

˜V −1
ε

)1/2

(g − H f )‖2 + ‖
(

˜V −1
f

) 1
2

f ‖2 (B.10)

the probability q1( f ) can be expressed by the following propor-
tionality:

q1( f ) ∝
{
−1

2
J ( f )

}
(B.11)

The criterion J ( f ) introduced in equation (B.10) is quadratic in f . 
Equation (B.11) establish a proportionality relation between q1( f )
and an exponential function having as argument a quadratic crite-
rion. This leads to the following

The probability distribution function q1( f ) is a multivariate 
Normal Distribution.

Of course, the mean is given by the solution that minimize the 
criterion J ( f ) i.e. the solution of the equation ∂ J ( f )

∂ f = 0 (and in 
particular, this is the same criterion that arrived in the MAP esti-
mation technique for f , with some the formal differences):

∂ J ( f )

∂ f
= 0 ⇒ f̂ PM =

(
H T ˜V −1

ε H + ˜V −1
f

)−1

H T ˜V −1
ε g (B.12)

The corresponding covariance matrix is computed by identification. 
On one hand we have the following relation:

N
(

f | f̂ PM, �̂
)

∝ (
dét

{
�̂
}) 1

2 exp

{
−1

2

(
f − f̂ PM

)T
�̂

−1 (
f − f̂ PM

)}
(B.13)

One the other hand, we have the following proportionality, given 
by equation (B.11):

N
(

f | f̂ PM, �̂
)∝ q1( f ) ∝ exp

{
−1

2
J ( f )

}
(B.14)

So, the covariance matrix �̂ must respect the following relation:(
f − f̂ PM

)T
�̂

−1 (
f − f̂ PM

)≡ J ( f ), (B.15)

where the sign ≡ represents a equality between the two terms 
until a free- f term. If we consider the covariance matrix

�̂ =
(

H T ˜V −1
ε H + ˜V −1

f

)−1

(B.16)

we have the following equalities:(
f − f̂ PM

)T
�̂

−1 (
f − f̂ PM

)
=
(

f − �̂H T ˜V −1
ε g

)T

�̂
−1
(

f − �̂H T ˜V −1
ε g

)
=
(

f T − gT ˜V −1
ε H�̂

)(
�̂

−1
f − H T ˜V −1

ε g

)
= f T

(
H T ˜V −1

ε H + ˜V −1
f

)
f − 2 f T H T ˜V −1

ε g + C, (B.17)

where we have used the equality f T H T ˜V −1
ε g = gT ˜V −1

ε H f , 
as a consequence of the fact that one term is the transpose 
of the other and the term is a scalar. We used �̂ = �̂

T
and 

gT ˜V −1
ε H

(
H T ˜V −1

ε H + ˜V −1
f

)−1

H T ˜V −1
ε g was viewed as a con-

stant C . We also have the following equalities:

J ( f ) = ‖
(

˜V −1
ε

)1/2

(g − H f )‖2 + ‖
(

˜V −1
f

) 1
2

f ‖2 =

=
(

gT − f T H T
)

˜V −1
ε (g − H f ) + f T ˜V −1

f f

= f T
(

H T ˜V −1
ε H + ˜V −1

f

)
f − 2 f T H T ˜V −1

ε g + C . (B.18)

Equations (B.17) and (B.18) shows that equality imposed in (B.15)
is verified with the covariance matrix defined as in (B.16). So, for 
the Normal distribution N

(
f | f̂ , �̂

)
proportional to q1( f ) we have 

the following parameters:
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q1( f ) = N
(

f | f̂ PM, �̂
)
,⎧⎪⎪⎪⎨⎪⎪⎪⎩

f̂ PM =
(

H T ˜V −1
ε H + ˜V −1

f

)−1

H T ˜V −1
ε g

�̂ =
(

H T ˜V −1
ε H + ˜V −1

f

)−1
(B.19)

• Expression of q2i(rεi )

The proportionality relation concerning q2i(rεi ) refers to rεi so in 
the expression of ln p( f , vε , v f |g) all the terms free of rεi can be 
regarded as constants:〈
ln p( f , vε, v f |g)

〉
q1( f ) q2−i(rεi ) q3(v f )

= C − 1

2
〈ln det (V ε)〉q2−i(rεi )

− (
αεi 0 + 1

)
ln rεi

− 1

2

〈
‖V

− 1
2

ε (g − H f )‖2
〉

q1( f ) q2−i(rεi )

− βεi 0r−1
εi

(B.20)

For the first integral, it is trivial to verify:

〈ln det (V ε)〉q2−i(rεi )
= C + ln rεi (B.21)

For the second integral, we have the following development:〈
‖V

− 1
2

ε (g − H f )‖2
〉

q1( f ) q2−i(rεi )

=
〈
‖˜V −1

ε−i

1
2
(g − H f )‖2

〉
q1( f )

(B.22)

where we have introduced the following notations:

˜v−1
ε−i = [

r̃−1
ε1 . . .

˜r−1
ε i−1 r−1

εi

˜r−1
ε i+1 . . . r̃−1

εN

]T ;
˜V −1

ε−i = diag

(
˜v−1

ε−i

)
(B.23)

Again, using the fact that q1( f ) is a multivariate Normal Distribu-
tion we have:〈
‖˜V −1

ε−i

1
2
(g − H f )‖2

〉
q1( f )

= ‖˜V −1
ε−i

1
2 (

g − H f̂ PM
)‖2

+ Tr

(
H T ˜V −1

ε−i H�̂

)
(B.24)

and considering as constants all terms free of rεi we have:

‖˜V −1
ε−i

1
2 (

g − H f̂ PM
)‖2 = C + r−1

εi

(
gi − H i f̂ PM

)2
(B.25)

and

Tr

(
H T ˜V −1

ε−i H�̂

)
= C + r−1

εi
H i�̂H i

T (B.26)

where H i is the line i of the matrix H , so we can conclude:〈
‖V

− 1
2

ε (g − H f )‖2
〉

q1( f ) q2−i(rεi )

= C +
[

H i�̂H i
T + (

gi − H i f̂ PM
)2
]

r−1
εi

(B.27)

From (B.20) via (B.21) and (B.27) we get:
〈
ln p( f , z, vε, v f |g)

〉
q1( f ) q2−i(rεi ) q3(v f )

= C −
(
αεi 0 + 1 + 1

2

)
× ln rεi

(
βεi 0 + 1

2

[
H i�̂H i

T + (
gi − H i f̂ PM

)2
])

r−1
εi

from which we can establish the proportionality corresponding to 
q2i(rεi ):

q2i(rεi ) ∝ r
−
(
αεi 0+1+ 1

2

)
εi exp

{−1

rεi

(
βεi 0 + 1

2

[
H i�̂H i

T

+ (
gi − H i f̂ PM

)2
])}

(B.28)

Equation (B.28) leads to following
The probability distribution function q3i(rεi ) is an Inverse 

Gamma Distribution, with the parameters αεi and βεi :
We can write:

q2i(rεi ) = IG
(
rεi |αεi , βεi

)
,⎧⎪⎨⎪⎩

αεi = αεi 0 + 1
2

βεi = βεi 0 + 1
2

[
H i�̂H i

T + (
gi − H i f̂ PM

)2
] (B.29)

• Expression of q3 j(r f j )

The proportionality relation concerning q3 j(r f j ) refers to r f j , so in 
the expression of ln p( f , z, vε , v f |g) all the terms free of r f j can 
be regarded as constants. Considering all r f j free terms as con-
stants it is easy to verify:〈
ln det

(
V f

)〉
q3− j(r f j

)
= C + ln r f j (B.30)

For the second integral:〈
‖ (V f

)− 1
2 f ‖2

〉
q1( f )q3− j(r f j

)

=
〈
‖
(

˜V −1
f −i

) 1
2

f ‖2

〉
q1( f )

(B.31)

where we have introduced the notations:

˜v−1
f −i =

[
r̃−1

f 1
. . .

˜r−1
f i−1

r−1
f i

˜r−1
f i+1

. . . r̃−1
f N

]T ;
˜V −1

f −i = diag

(
˜v−1

f −i

)
(B.32)

Considering the fact that q1( f ) was established a multivariate Nor-
mal Distribution, we have:〈
‖
(

˜V −1
f −i

) 1
2

f ‖2

〉
q1( f )

= ‖
(

˜V −1
f −i

) 1
2

f̂ PM‖2 + Tr

(
˜V −1

f −i�̂

)
=

= C + r−1
f i

(
f̂ j

2
PM + �̂ j j

)
(B.33)

Via (B.30) and (B.33) we get:〈
ln p( f , vε, v f |g)

〉
q1( f ) q2(vε ) q3− j(r f j

)

= −
(
α f j 0 + 1

2
+ 1

)
ln r f

−
(

β f j0 + 1

2

(
f̂ j

2
PM + �̂ j j

))
r−1

f (B.34)

from which we can establish the proportionality corresponding to 
q4(r f ):
j
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q3 j(r f j ) ∝ r
−
(
α f j 0+ 1

2 +1
)

f j

× exp

{
−
[
β f j0 + 1

2

(
f̂ j

2
PM + �̂ j j

)]
r−1

f

}
(B.35)

Equation (B.35) leads to the following
The probability distribution function q4(r f ) is an Inverse 

Gamma Distribution, with the parameters α f j and β f j :

q3 j(r f j ) = IG
(

r f j |α f j , β f j

)
,⎧⎪⎨⎪⎩

α f j = α f j 0 + 1
2

β f j = β f j 0 + 1
2

(
f̂ j

2
PM + �̂ j j

) (B.36)

Expressions (B.19), (B.29) and (B.36) resumes the distributions fam-
ilies and the corresponding parameters for q1( f ), q2i(rεi ), i ∈
{1,2, . . . , N} and q3 j(r f j ), j ∈ {1,2, . . . , M}. However, the parame-
ters corresponding to the multivariate Normal distribution are ex-

pressed via ˜V −1
ε and ˜V −1

f (and by extension all elements forming 

the three matrices r̃−1
εi , i ∈ {1,2, . . . , N} and r̃−1

f j
, j ∈ {1,2, . . . , M}).

• Computation of ˜V −1
ε ,

˜V −1
f :

For a Inverse Gamma Distribution with parameters α and β , 
IG (x|α,β), the following relation holds:〈
x−1

〉
IG(x|α,β)

= α

β

The prove of the above relation is done by direct computation, us-
ing the analytical expression of the Inverse Gamma Distribution:〈
x−1

〉
IG(x|α,β)

=
∫

x−1 βα


(α)
x−α−1 exp

{
−β

x

}
dx

= βα


(α)


(α + 1)

βα+1

∫
βα+1


(α + 1)
x−(α+1)−1

× exp

{
−β

x

}
dx = α

β

∫
IG(x|α + 1, β)︸ ︷︷ ︸

1

dx = α

β

Since q2i(rεi ), i ∈ {1,2, . . . , N} and q3 j(r f j ), j ∈ {1,2, . . . , M} are 
Inverse Gamma Distributions, with parameters αεi and βεi , i ∈
{1,2, . . . , N} respectively α f j and β f j , j ∈ {1,2, . . . , M} we can ex-

press the expectancies r̃−1
εi and r̃−1

f j
via the parameters of the two 

Inverse Gamma Distributions using the result above:

r̃−1
εi = αεi

βεi

; r̃−1
f = α f

β f
(B.37)

Using the notation introduced in (B.5) and (B.7) we obtain:

˜V −1
ε =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

αε1
βε1

. . . 0 . . . 0

...
. . .

...
. . .

...

0 . . .
αεi
βεi

. . . 0

...
. . .

...
. . .

...

0 . . . 0 . . .
αεN
βεN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ̂V −1

ε ;

˜V −1
f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α f1
β f1

. . . 0 . . . 0

...
. . .

...
. . .

...

0 . . .
α f j
β f j

. . . 0

...
. . .

...
. . .

...

0 . . . 0 . . .
α fM
β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ̂V −1

f (B.38)
fM
In equation (B.38) we have introduced other notations for ˜V −1
f

and ˜V −1
ε . All three values were expressed during the model via 

unknown expectancies, but in this point we arrive to expression 
that don’t contain any more integrals to be computed. Therefore, 
the new notations represents the final expressions for the density 
functions q that depends only on numerical hyperparameters, set 
in the prior modelling.
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